Under review as a conference paper at ICLR 2026

A MORE DETAILS ON DATA GENERATION

Clusters of Equivalent Tools Realistic Queries for Clusters

7 7

world_weather_online_api "What's the weather in Paris?"
weatherapi_com "Give me the weather in LA."

weather_forecast_14_days

Bias Metric

Benchmark

Models

Generate & 4
EE Bias Measures

Queries

Q Rapid
RapidAPI 16000+ APIs

Figure 7: An overview of our clustering and query generation pipeline.

Embed
&

Cluster EIF)E
OFs2 (OFsz

qr_code_generator_api "Generate a QR for my URL."
generate_qr_easy "Create a QR for my website."

qr_code_generator_v2

We build on the “tool-usage” evaluation pipeline introduced by |Qin et al. (2024), hereafter referred
to as ToolLLM, owing to its wide adoption and extensibility. At its core, ToolLLM assembles a large
catalog of real-world APIs scraped from RapidAPI spanning 49 functional categories (RapidAPI|
2025b). For each API, ToolLLM provides a JSON file containing the API’s human-readable
name, detailed description, and full parameter schema. In this work, we leverage exactly that API
repository but restrict our attention to the stages in which ToolLLM selects among a short list of
retrieved candidates. Note that in ToolLLM, a set of closely-related APIs is called a ‘tool’. For
example, a geocoding tool could offer both forward geocoding and reverse geocoding API

We assemble our benchmark in two stages: (1) clustering APIs into functionally equivalent
groups, and (2) generating realistic user queries for each group (see Figure[7).

Algorithm 1 Generation of Functionally-Equivalent API Clusters

Require: API id to metadata map ,
Precomputed embeddings F,
List of “general” APIs G = {(tool, tool_desc, api_name, api_desc)},
neighbor count K,
max outlier loops R

1. C+ 0

2: for all (tool, tool_desc, api_name, api_desc) € G do

3: Construct query text ¢ = “tool: tool_desc | api_name : api_desc”

4: Embed ¢ with ADA: v, <— Embed(q)

5: Compute cosine similarities: s; <— cos(vy, E;) Vi

6: Select top—K unique tools with largest similarity and store in set TOP g
7: candidate < {7[i] | i € TOPg}

8: for r < 1to R do

9: Prompt GPT-4 to detect outliers: outliers < DetectOutliers(candidate)
10: if outliers = () then break

11: end if

12: Remove outliers from candidate: candidate = candidate \ outliers

13: end for

14: if |candidate| > 3 then
15: C + C U {candidate}
16: end if

17: end for

18: return C

3Geocoding is the process of converting between human-readable addresses and geographic coordinates:
“forward” geocoding maps an address (e.g., “1600 Amphitheatre Parkway”) to its latitude/longitude, while
“reverse” geocoding maps a given coordinate pair back to a structured postal address.

13

Under review as a conference paper at ICLR 2026

You are a prompt-writing assistant. I will give you a set of API
endpoints (tool name + description, endpoint name + description,
and potentially the required parameters) that all perform the same

underlying task. Please generate exactly {n} distinct, natural-
language user queries that could be satisfied by ALL of these
endpoints. xxInclude realistic sample valuesx* for any required
parameters (e.g. use "https://example.com" for a URL, or "Hello
World" for a text field). Return them as a JSON array of strings,
with no extra commentary.

User:

Here are the endpoints:

— Tool: WeatherNow - Provides current weather information
Endpoint: Current Weather - Returns temperature, humidity,
and conditions for a given location.

Required parameters:
* city (string) - name of the city
* country (string) - ISO country code

Figure 8: Example prompt used for query generation. The model outputs n natural-language queries
that all listed endpoints can satisfy.

API clustering. We begin by embedding every endpoint’s metadata (tool name, API name,
descriptions, etc.) into a shared vector space using a pre-trained text encoder (OpenAl’s
text-embedding-ada-002 model). We then curate a small set of “seed” APIs whose de-
scriptions span a number of “general” tasks, such as text translation or weather forecasting. For
each seed, we retrieve its top-K nearest neighbors in embedding space to form a candidate cluster.
To ensure true functional equivalence, we iteratively prompt GPT-4 to flag any outlier endpoints that
cannot perform the same task as the rest; flagged APIs are removed and the check repeats for up to a
pre-defined number of rounds. Any cluster that stabilizes with more than three members is retained.
See Algorithm [T|for an overview of our clustering approach. Lastly, we manually inspect and refine
these clusters, yielding 10 high-quality groups of five APIs each.

Query generation. For each cluster, we prompt GPT-4 (see Figure [8) to produce natural-language
queries that all members can satisfy. In batches of ten, the model generates candidate queries until
we collect 100 unique queries per cluster, filtering out duplicates. In cases where freeform gener-
ation exhibits provider-specific bias (e.g., mentioning a particular vendor’s feature), we switch to a
template-filling workflow: we design a small set of generic templates with placeholders (e.g. “Get
the latest news headlines for {country} about {topic}.”), and ask GPT-4 to instantiate each template
multiple times with realistic sample values.

Final curation. All 1,000 generated queries are then reviewed by hand to remove any that inadver-
tently favor a single provider or rely on specialized parameters. The resulting dataset consists of 10
clusters with 5 APIs each, and 100 balanced, provider-agnostic queries for each cluster.

Running each model over these prompts yields empirical selection distributions over APIs and list
positions, from which we compute our total-variation-based bias metrics dap1, dpos, and dmodel-
This rigorously grounded benchmark enables precise measurement and comparison of tool-selection
bias across models and settings.

B ATTRIBUTE-LEVEL ANALYSIS FEATURE TABLE

See Table [3|for the list of features used in the analysis of Section[4.3]

C MORE DETAILS ON THE BIASED CPT EXPERIMENT

We test whether pre-training data can cause tool-selection bias by doing biased continued pre-
training (CPT) on a single model. That is, we do additional next-token training on raw text using

14

Under review as a conference paper at ICLR 2026

Table 3: API-level predictor features.

Feature Description

avg_similarity._tool_desc Mean text similarity between cluster queries and the tool’s de-
scription.

avg_similarity_api_desc Mean text similarity between cluster queries and each API’s
description.

age_days Days since the API was first published.

desc_name_length_sum Total character count of the API’s name plus description.

num_params Number of required and optional parameters.

flesch_reading.ease Flesch reading-ease score of the combined descriptions.

positive_word_count Count of positive or promotional words (e.g. “efficient,” “ro-
bust”).

~3.5M tokens deliberately saturated with one endpoint’s metadata (its name, description, and
parameter info). After this exposure, we re-run the selection tasks and measure shifts in that
endpoint’s selection share.

To generate the biased corpus, we synthesize long-form prose with an external LLM (Gem-
ini 2.5 Flash). We prompt it to produce a single document of roughly 1.1-1.3k words written in a
randomly sampled style (e.g., blog note, Q&A memo, release note, how-to guide, troubleshooting
checklist). The prompt requires frequent natural mentions of the target API name, the exact
or faithfully paraphrased tool description, and the exact or paraphrased API description; it also
requests inclusion of the endpoint path in about 60% of documents and parameter metadata in about
50%. This pipeline yields a large, stylistically varied corpus that is nevertheless saturated with the
same endpoint’s metadata.

We then run CPT on the same base model used elsewhere (i.e., Qwen3-8B) with parameter-
efficient adapters (LoRA) attached (see [Hu et al.| (2022) for more details on LoRA). We keep
tokenizer unchanged.

We evaluate pre/post CPT selection distributions on the original cluster, prompts, and infer-
ence settings. The primary outcome is the shift in the target API’s selection share. We also measure
spillover: changes in the selection shares of non-target APIs within the cluster. If biased CPT
reliably increases the target API’s selection share, this is evidence that a portion of tool-selection
bias originates from pre-training exposure.

D DETAILS ON THE IMPLEMENTATION AND EVALUATION OF THE
MITIGATION METHOD

After showing the existence and possible causes of bias, we seek to mitigate it. We pursue a simple
approach based on the following insight: Models often know which APIs can solve a task but
can possibly exhibit biased choices among interchangeable endpoints. We decouple capability
recognition from final selection via a lightweight debiasing module.

The debiasing module consists of a lightweight LLM (Qwen3 14B in our case) prompted to
output the subset of APIs from the given candidate list that can solve the task given in the query.
This way, we get a subset selector that outputs an array of the APIs that can complete the task. The
system prompt constrains the output to an exact list with no prose. From the returned set .S, we pick
one API uniformly at random. This API then replaces the original API list and is used for the rest
of the tool-usage pipeline.

If this approach is successful, each API in S has an expected selection share of 1/|S], elimi-
nating position/API favoritism at the choice stage. If the selector’s true positive/negative rates are
high enough, the overall selection distribution approaches uniform even when original models were
skewed. This, following our definition, means the tool selection stage becomes unbiased by design.

15

Under review as a conference paper at ICLR 2026

050 075 1.00 1.25 1.50 175 2.00 0.70 0.75 0.80 085 0.90 0.95 1.00 0 50 100 150 200
Temperature Top-p Model size (B parameters)

(a) Temp. (ChatGPT 3.5) (b) Top-p (ChatGPT 3.5) (c) Model size (Qwen 3)

Figure 9: Sensitivity of the combined bias metric dodel to model hyperparameters. Each point is
the mean over three independent runs (except for the top-p subplot); vertical bars show one standard
deviation where available.

To evaluate this approach, we build a 1000-query benchmark with 8 API candidates per
query and a ground truth set indicating which K € {2,3,4,5} APIs are sufficient (~250 items
each). We report subset quality: precision, recall, and exact-set match. Note that the formula for
exact-set match is given by % Zf\; 1[S; = G;] where G denotes the set of ground truth sets, S the
set of selected subsets, and N is the number of queries. Additionally note that bias can persist if the
subset selector itself is biased; underselecting viable tools (false negatives) or selecting unrelevant
ones (false positives). Measures of recall and precision will tell us whether this is the case.

E MORE ELABORATE ABLATION AND SENSITIVITY ANALYSIS

Temperature. Raising temperature reduces combined bias. As shown in Figure [9a| as temperature
goes from 0 to 2, the mean dy,0qe1 for ChatGPT 3.5 drops from about 0.350 to 0.285, a 6.5%
absolute reduction. Figure[I0]makes clear why: the overall selection patterns remain similar across
temperatures, but higher temperatures soften extreme preferences. This suggests that increased
stochasticity slightly mitigates bias, but does not eliminate it.

Top-p. Figure w shows how the combined bias 0401 for ChatGPT 3.5 varies with the top-
p cutoff. Increasing top-p from 0.7 to 1.0 yields a small decrease in bias (from ~0.346 to ~0.340),
suggesting that less aggressive truncation of the probability distribution slightly softens extreme
tool preferences. The effect is noticeably weaker than the temperature change.

Model Size. In Figure @ the combined bias 0401 is depicted for Qwen 3 with varying
model size. It seems that larger models exhibit less bias, with a notable drop at 32B. This pattern
suggests that larger models develop more nuanced selection mechanisms which temper extreme
preferences for certain APIs.

API Ordering. Figure [11] compares ChatGPT 3.5’s API selection under two different ordering
schemes: cyclic rotations versus random permutations. Across all clusters, the choice distribution
is very similar: no API’s selection rate shifts more than about ten percentage points. This indicates
that the ordering of the APIs has some influence, but the dominant signal is the model’s intrinsic
preference. However, the small differences could also reflect the inherent noise from stochastic
token sampling, and overall we argue that the tool-selection behavior is robust to either type of
shuffling.

System Prompts. To evaluate how sensitive tool selection is to the phrasing and structure of
the instructions given, we compare three variants of the system prompt: the original “Base” prompt,
a lightly reworded “Similar” prompt, and a structurally different “Adjusted” prompt. Figure
shows the resulting distributions for ChatGPT 3.5.

Prompt wording shifts model preferences but does not remove bias. Reworded prompts can amplify
dominant choices and in some cases radically redistribute the selection shares. Elsewhere, effects are
modest. Overall, framing and formatting can tilt the implicit ranking among functionally equivalent

16

Under review as a conference paper at ICLR 2026

LIl =05 LI - 2

Address — Coordinates Coordinates — Address Top News Headlines by Region IP Address — Geolocation

e 3
‘WHOIS Domain History Email Validation Sentiment Analysis Language Identification

Selection Rate

QR Code Generation Multi-Day Weather Forecast

Figure 10: Selection distributions for ChatGPT 3.5 using four different temperatures across ten
clusters of functionally equivalent APIs. Each subplot corresponds to one cluster, with the x-axis
indicating the API in the cluster and the y-axis showing the fraction of times that API was chosen
by the respective model over 500 runs.

APIs, indicating that part of the observed bias is prompt-dependent even as a tendency to favor a
subset of tools remains.

F MORE ELABORATE DISCUSSION ON THE EXPLANATION OF BIAS

We now expand on the analysis given in the main text surrounding the investigation of bias. We
expand on the feature-level analysis, where we try to predict selection rates according to intrinsic
API attributes, and on the perturbation experiments that directly intervene on the API metadata to
see which cues the models rely on during selection.

F.1 WHICH API-LEVEL FEATURES PREDICT SELECTION RATES?

We extract a common set of descriptive features from every API (see Section [3.3) and mean-center
them to investigate how being relatively high or low on a feature affects the API selection. These are
then paired with the empirical selection rates yielding a dataset of 50 examples for each LLM. We
then probe relationships between features and selection behavior in three ways. First, we compute
Pearson correlations to capture linear and monotonic associations. Second, we fit a linear regression
per model to quantify the aggregate explanatory power (reported as R?) and inspect coefficients to
understand the direction and relative weight of each feature. Third, we train random-forest regressors
with cross-validation to allow for non-linear interactions and obtain alternative measures of feature
importance.

Similarity between tool / API description and query is most correlated to selection rate.
As Table El makes clear, the most predictive feature of API selection is semantic similar-
ity between the query and the tool/API descriptions. Both avg.similarity_-tool_desc
and avg_similarity_api.-desc are -consistently positively correlated with selection
rates—especially strong for Qwen and clear for Gemini; ChatGPT shows the same pattern, albeit

17

Under review as a conference paper at ICLR 2026

. Random = Cyclic

Address — Coordinates Coordinates — Address Top News Headlines by Region IP Address — Geolocation

M
‘WHOIS Domain History

Email Validation

Sentiment Analysis

Language Identification

Selection Rate

o o

c
QR Code Generation Multi-Day Weather Forecast

Figure 11: Selection distributions for ChatGPT 3.5 using cyclic and random shuffling of the APIs
across ten representative clusters. Each subplot corresponds to one cluster, with the x-axis indicating
the API in the cluster and the y-axis showing the fraction of times that API was chosen for that
specific API ordering method over 500 runs.

Table 4: Correlation between API-level features and model selection rates. Each entry shows Pear-
son r with its p-value.

Feature

ChatGPT 4.1

Gemini

Qwen

avg_similarity_tool_desc
avg_similarity_api_desc
age_days

+0.227(p=0.113)
+0.111(p=0.442)
—0.199p=0.201)
+0.044p=0.760)

—0.092(p=0.526)
+0.330(p=0.019)
—0.144p=0.356)
+0.103p=0.477)

+0.234(p=0.101)
+0.411(p=0.003)
—0.163(p=0.296)
+0.038(p=0.795)

desc_name_length_sum
num_params
flesch_reading_ease
positive_word_count

—0.065(pp=0.653) +0.038p=0.793) —0.185(p=0.198)
+0.160p=0267) +0.176(p=0222) +0.098(p=0.496)
+0.126(p=0384) +0.087(p=0547) +0.093(p=0.521)

weaker with higher p-values. By contrast, structural or stylistic attributes (e.g., parameter count,
promotional wording) exhibit little consistent influence. Tool age (age_days) shows a modest,
broadly consistent negative correlation across models.

Linear regression reveals that surface-level semantic alignment is the primary signal but leaves
a lot unexplained. Figure [13|tells us that linear models explain only part of the variance: R?
is modest—~0.143 for ChatGPT-4.1 and 0.387 for ToolLLaMA—Ileaving substantial error. Coeffi-
cients show surface-level semantic alignment dominates: similarity between the query and tool/API
descriptions has the largest positive weights for most models, with Qwen weighting both most
strongly and Gemini emphasizing API-level descriptions. Unexpectedly, ToolLLaMA gives a neg-
ative weight to tool-description similarity. Other features contribute little. Hence, semantic align-
ment is important in driving selection but still gives an incomplete explanation, implying nonlinear
or omitted factors and motivating more flexible models (e.g., random forests).

18

Under review as a conference paper at ICLR 2026

BN Base B Similar . Adjusted

Address — Coordinates Coordinates — Address Top News Headlines by Region IP Address — Geolocation

0.8

o > S N
e e G X
O

o

> e
™ o

W R
e Ak RO s
@ e W e

W e
g o s I R N N

‘WHOIS Domain History Email Validation i Analysis Language Identificati

Selection Rate

o
= RS

QR Code Generation Multi-Day Weather Forecast

Figure 12: Selection distributions for ChatGPT 3.5 using different system prompts across ten clus-
ters. Each subplot corresponds to one cluster, with the x-axis indicating the API in the cluster and
the y-axis showing the fraction of times that API was chosen using the corresponding system prompt
over 500 runs.

BN ChatGPT 3.5 (R? = 0.222) BN Gemini (R? = 0.120) I Qwen (R? = 0.226)
B ChatGPT 4.1 (R? = 0.143) WS DeepSeck (R? =0.182) W ToolLLaMA (R? = 0.387)

Linear regression coefficient

T T T T T T T
e e ¥ A\ @6‘6 o

o Q\ - o N
O 2 2% oD
e o

5
NN - O
G = Qe Qo“v‘»“

Figure 13: Linear regression feature weights used to predict API selection rates for six LLMs. Each
group of bars corresponds to one API-level feature; different colors denote models, with their R?
shown in the legend. Larger positive weights indicate features that increase the predicted selection
rate.

19

Under review as a conference paper at ICLR 2026

Random forests fail to offer meaningful improvement. We fitted random-forest regressors with
the same mean-centered features using both cross-validation and a held-out split, but predictive per-
formance was poor, meaning the forests often did worse than a trivial constant baseline. This sug-
gests the available features, at least in their current form and scale, don’t contain enough signal or
that some artifacts are overwhelming the gains from nonlinearity. Therefore, any feature-importance
estimates from these trees would be unreliable and we do not lean on them for explanation. Future
work could involve revisiting this with a richer feature set, more data, or alternative nonlinear mod-
eling.

F.2 HOW DO METADATA INTERVENTIONS AFFECT API SELECTION?

We saw that corrupting descriptions produces much larger and more stable effects on selection
behavior than name-level perturbations, which are sometimes noisy and unpredictable, in Section
Figure|14| corroborates this across clusters. Name perturbations often leave distributions near-
unchanged or can make them drift unpredictably (e.g., Cluster 1, where Cluster 1 is positioned at the
top-left and Cluster 6 at the bottom-right), whereas description/parameter scrambles frequently over-
haul rankings: sometimes amplifying the dominant API (Cluster 2), other times causing dramatic
re-ordering (Clusters 3). Name edits rarely produce comparably stable re-ranking.

Together, these patterns indicate that description-level semantics (and, to a lesser extent, parameter
semantics) are the primary cues models use to discriminate among functionally similar APIs. Name
perturbation alone tend to inject noise without consistent effects. Finally, bias persists under minimal
semantic signal (only names and schema fields), implying selection behavior sometimes relies on
residual, non-obvious priors rather than solely on coherent, human-interpretable heuristics.

Manipulating the description of certain tools has mixed effects across clusters. Figure|14|(lower
row) shows three behaviors when we manipulate descriptions. First, swapping the most- and least-
popular tools’ descriptions can invert their selection rates (Cluster 4), indicating description text
alone can dominate choice. Second, the same swap sometimes yields only a modest lift for the
least-popular tool while unexpectedly altering the selection shares of unaffected tools (Cluster 5),
suggesting the landscape is reconfigured rather than ranks simply exchanged. Third, in some clus-
ters the swap has minimal effect (Cluster 6), implying other cues—e.g., name priors or parameter
schemas—anchor preferences.

Targeted corruption of the most-selected tool’s description has similarly inconsistent effects. In
Cluster 4, scrambling collapses its share to near zero as another tool absorbs the mass; in Clusters
5-6, corruption diffuses probability across competitors, producing a more even allocation. Over-
all, description tampering often wields substantial influence, but the impact is context-dependent:
the same intervention can invert, redistribute, or barely change preferences, underscoring that tool
choice emerges from multiple interacting cues.

G ADDITIONAL FIGURES

G.1 CORRELATION IN SELECTION BETWEEN MODELS

Figure |15|shows that models exhibit varying degrees of correlation in their tool-selection patterns,
suggesting shared but non-identical biases across families.

G.2 SELECTION DISTRIBUTIONS FOR ALL CLUSTERS
This subsection provides a full version of the figure referenced in the main text (Figure[3). It expands

the subset plot to all ten clusters and keeps axes, run counts, and error-bar conventions identical to
the summary in Section[4.2] Use Figure [16]for detailed inspection of per-cluster behavior.

G.3 FULL FIGURE RELATED TO THE CPT EXPERIMENT

Figure |17|shows how biased continued pre-training gradually increases preference for the exposed
endpoint.

20

Under review as a conference paper at ICLR 2026

BN Base B Rand. Name B Desc. + Param. B Targ. Desc. B Swap. Desc.

Address — Coordinates IP Address — Geolocation WHOIS Domain History

- & S O
obtl &) \C) O@)‘) <
& & & &
oé’ &*‘\Q O Ygx
0 Email Validation Language Identification Multi-Day Weather Forecast
0.8

Selection Rate

Figure 14: Selection distributions for Gemini under different name/ordering perturbations across six
clusters of functionally equivalent APIs. Each subplot corresponds to one cluster; the x-axis lists the
APIs and the y-axis shows the fraction of times the model under each condition selected that API,
averaged over repeated runs. Error bars (when present) indicate the standard deviation across those
repeats, making visible how robust or variable the preferences are under the different perturbations.
Tools whose names are in green are the most selected by the baseline, and those in red are the least
selected. These are the tools that are targeted for the swapping and selected scramble experiments.

21

Under review as a conference paper at ICLR 2026

1.00
GPT 3.5 0.29
0.75
GPT 4.1 A 0.25
- 0.50
Claude 1 0.12 - 0.25
=1
Gemini{ 0.10 L0.00 F
&
DeepSeek 1 0.28 r—0.25
r —0.50
Qwen 4 0.12
—0.75
T-LLaMA 4 0.29
T —1.00
o NS & > o > >
EN N 06 N &L & @
> & 3 & $ oy >
S S O & K »
[© G NN &1\’

Figure 15: Pearson correlation matrix between models’ tool-selection bias patterns.

G.4 TABLE RELATED TO THE REDUCTION OF BIAS DUE TO MITIGATION

Table [5] demonstrates that our mitigation substantially flattens selection distributions and reduces
both API- and position-level bias.

Table 5: Average cluster-level API bias 0 Apy, positional bias d;,0s, and combined bias d.,de1 before
and after mitigation.

Setup JAPI 6p os dmodel
Before 0.338 0.422 0.380
After 0.108 0.079 0.094

H EFFECT OF METADATA PERTURBATION ON BIAS

Relative to the base distributions, both models move farther from uniform (get more biased) when
we lower semantic signal (see bars corresponding to the description + parameter and full pertur-
bations in Figure [I8). For Gemini, these manipulations yield the largest TV distances to uniform
(~0.42-0.43); ChatGPT shows similar results. This suggests that when descriptions/parameters are
corrupted, models amplify bias rather than flatten choices.

Conversely, targeted edits to the most popular API tends to decrease bias. For Gemini, tar-
geting the description of the most popular API leads to an average TVD slightly below the baseline
and swapping the description between most- and least popular API leads to one that is substantially
lower, indicating that weakening or transferring the strongest semantic cue moves the selection

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

B ChatGPT 4.1 W Claude

Address — Coordinates

Coordinates — Address

. Gemini L

DeepSeck ~ WEE ToolLLaMA WS Qwen

Top News Headlines by Region IP Address — Geolocation

Selection Rate

o o o

‘WHOIS Domain History Email Validation

o

© a «
R
RS

Analysis Language Identification

]
g
=06 i
2
04
=
5
Prpes I E R ThE——. PRI UPETR B B § U B OSSO W ——
0.0
» &
o sV o WO B e W »
R « s o™
P o 4 s B
o
o QR Code Generation Multi-Day Weather Forecast
g
&
H
E
2
5

N

o o0
a® o v

Figure 16: Selection distributions for six LLMs across ten clusters of functionally equivalent APIs.
Each subplot corresponds to one cluster, with the x-axis indicating the API in the cluster and the y-
axis showing the (mean) fraction of times each model chose that API over 500 inference runs; error
bars indicate the standard deviation across three independent experimental runs. This visualization
highlights how different models exhibit systematic preferences for some APIs.

23

Under review as a conference paper at ICLR 2026

Base Model CPT Model (1/3 epoch)
1.0
08
3
£ 06
=
2
+
2 044
5
02 1 [— e . — 1 B - — . —
0.006
0.0 r r " r r r r r
KO ¥ s o oV
\)«‘,\\% . o R B e e N \)%\\"a‘\ Aé\px\% s o
\\1\\?“" %“?"% so VY ke \N‘t\?“‘ A =
© S 2D
o - o2 o e R o
o CPT Model (2/3 epoch) CPT Model (1 epoch)
08
3
£ 06
B
2
3=
S
< 0.4
3
0.122
024 e l rr T e e
0.0 r r - r r r r r
.. . D)
s o) < oK o = SN
\)%0%\3 &e© ?\gxﬂ o9 e A_\)%‘\g,\l . &e© SO 695\@« \;b\‘%oc\/
B w w RS X 2o w S \S
QW \L A a0 Ao QU NS e A2
e W 20 A0S 2
Qe Ry & 2 Q™ v NS
(28 X

Figure 17: Selection rates for the Language Identification cluster across biased continued pre-
training (CPT) checkpoints. Bars give the fraction that each endpoint was chosen across 500 in-
ference runs. Panels show (top-left) base model, (top-right) CPT after 1/3 epoch, (bottom-left) 2/3
epoch, and (bottom-right) 1 full epoch. The Text Language by API-Ninjas endpoint is highlighted,
with its exact selection rate printed above its bar. Differences across panels visualize how biased
CPT shifts tool choice over training.

B Gemini s ChatGPT

08

Mean TV distance vs. Uniform

0.0

o

P gt ™ Q0 RO o e e ™ W e
X P

\\A\\\\- - s %\\\\\\- : s e

o

Figure 18: Mean total-variation (TV) distance from the uniform selection distribution to the distri-
bution pertaining to each metadata perturbation (higher = more deviation from uniform). Blue bars
show Gemini and orange bars show ChatGPT; error bars denote standard deviation across clusters,
and single bars indicate perturbations not run for ChatGPT. Dashed horizontal lines (in the corre-
sponding model colors) mark each model’s baseline TV-to-uniform without perturbations.

distribution toward uniform. Name-only manipulations have similar effects, but name scrambling
does not increase bias as much.

24

Under review as a conference paper at ICLR 2026

I DETAILS ON CPT SETUP

Model and adapters. We continue pre-training Qwen3—8B—-Base using Unsloth with 4-bit load-
ing. The maximum sequence length is 2048. We attach LoRA adapters with ~16.29% trainable
parameters. See Table[6| for more info.

Table 6: Model/adapter configuration.

Base model unsloth/Qwen3-8B-Base—-unsloth-bnb-4bit
Max seq. length 2048
Quantization 4-bit (bitsandbytes)

LoRA hyperparameters r = 128, a = 32, dropout= 0

Data. We use our corpus saturated with metadata of a single target endpoint (Text Language by
API-Ninjas). The corpus contains ~3.5M tokens.

Training. Training uses Unsloth’s trainer for one epoch with cosine LR scheduler and warmup.
Optimizer is 8-bit AdamW. We also set a smaller LR for the embedding modules. See Table [/| for
more info.

Table 7: CPT training hyperparameters.

Epochs 1
Total steps (epoch) 153
Per-device batch size 2
Grad. accumulation 8
Effective batch size 16

Learning rate 5 x 10~° (embeddings 5 x 107)
Scheduler / Warmup cosine / warmup ratio 0.1
Optimizer adamw_8bit

Weight decay 0.0

Checkpoints used step O (base), 52 (=1/3), 104 (=2/3), 153 (1 epoch)

Evaluation (inference). For all checkpoints, we keep prompts and decoding fixed: temperature
= 0.5, top-p = 1.0, and max_new_tokens=512. We evaluate with the Language Identification
cluster under circular shifts, aggregating the selection rates over 500 inference runs per checkpoint.

25

	Introduction
	Related Work
	BiasBusters: how we uncover, explain, and mitigate bias.
	Bias Definition
	Dataset Generation
	Explaining Bias

	Experiments
	Experimental set-up
	How do LLMs select among functionally equivalent APIs?
	Are tool-selections driven by human-interpretable heuristics?
	Can we mitigate the observed bias?

	Conclusion
	More Details on Data Generation
	Attribute‐Level Analysis Feature Table
	More Details on the Biased CPT Experiment
	Details on the Implementation and Evaluation of the Mitigation Method
	More Elaborate Ablation and Sensitivity Analysis
	More Elaborate Discussion on the Explanation of Bias
	Which API-level features predict selection rates?
	How do metadata interventions affect API selection?

	Additional Figures
	Correlation in Selection between Models
	Selection Distributions for all Clusters
	Full Figure related to the CPT Experiment
	Table related to the Reduction of Bias due to Mitigation

	Effect of Metadata Perturbation on Bias
	Details on CPT Setup

