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A APPENDIX

Definition 5 (HTO inequality). Let x,y ∈ Rn such that y ∈ Hs(x). Then, according to Definition 3,
the following for any Iy

s is called HT operator inequality:

|xi| ≤ |xj | ∀ i ∈ (Iy
s )

c and j ∈ Iy
s . (11)

Definition 6 (The IHT algorithm). The IHT scheme in Algorithm 1 is an iterative process that applies
the HT operator on the updated vector found by the gradient descent algorithm.

Definition 7 (Basic stationary point). When x∗ is a local minimizer of Problem (2), then ∇I∗
s
f(x∗) =

0 when ∥x∗∥0 = s or ∇f(x∗) = 0 when ∥x∗∥0 < s, Beck & Eldar (2013). Every point satisfying
these conditions is called basic stationary point of Problem (2). Points with the aforementioned
property are called basic feasible points in Beck & Eldar (2013).

A.1 PROOF OF CLAIM 1:

Proof. In this part we show why the hard thresholding operator keeps the s largest entries of its input
in absolute value sense. First, notice that one can write ∥z− x∥22 =

∑n
i=1(zi − xi)

2. Without loss of
generality suppose that x is given such that its entries are in a descending order in terms of absolute
value. Then one can write the following:

n∑
i=1

(zi − xi)
2 =

s∑
j=1

(zi − xi)
2 +

n∑
i=s+1

(zi − xi)
2.

The optimal solution should have n− s entries whose values are zero. Let z∗ be a vector such that
the first s entries of z∗ be the s largest entries of x in absolute value sense and the rest be zero. Then
one can get the following:

n∑
i=1

(z∗i − xi)
2 =

n∑
i=s+1

x2
i .

Because
∑n

i=s+1 x
2
i is the sum of n − s smallest entries of x, the objective value in (5) would be

minimized. Any choice other than a vector z∗ that has the largest s element of x and zero elsewhere,∑n
i=s+1 x

2
i cannot lead to the minimum of the function value. Hence, z∗ = Hs(x) keeps the s

largest entries of x in absolute value and zero out the rest.

A.2 PROOF OF THEOREM 1:

Proof. Fix 0 < γ ≤ 1
Ls

, Ix
s for a given x ∈ Cs, y ∈ Hs(x− γ∇f(x)) and Iy

s . Let I := Ix
s ∪ Iy

s .
Clearly, yIc = xIc = 0, xI\Ix

s
= 0, yI\Ix

s
= 0, and yIy

s
= (x− γ∇f(x))Iy

s
= xIy

s
− γ∇Iy

s
f(x).

This shows that

(y − x)Ic = 0, (y − x)I\Iy
s
= −xI\Iy

s
, (y − x)Iy

s
= −γ∇Iy

s
f(x).

Since f(x) is Ls-RSS and both ∥x∥0 ≤ s and ∥y∥0 ≤ s, one can write (3). Then, notice that both the
inner product and the norm squared in (3) can be partitioned into two terms based as the following:

f(y) ≤ f(x) + ⟨∇f(x),y − x⟩+ Ls

2
∥y − x∥22

≤ f(x) + ⟨∇Iy
s
f(x), (y − x)Iy

s
⟩+ Ls

2
∥(y − x)Iy

s
∥22 + ⟨∇I\Iy

s
f(x), (y − x)I\Iy

s
⟩+ Ls

2
∥(y − x)I\Iy

s
∥22

≤ f(x)− γ⟨∇Iy
s
f(x),∇Iy

s
f(x)⟩+ Ls

2
∥ − γ∇Iy

s
f(x)∥22 − ⟨∇I\Iy

s
f(x),xI\Iy

s
⟩+ Ls

2
∥xI\Iy

s
∥22

≤ f(x)− γ(1− γLs

2
)∥∇Iy

s
f(x)∥22 − ⟨∇I\Iy

s
f(x),xI\Iy

s
⟩+ Ls

2
∥xI\Iy

s
∥22

(12)
Since 0 < γ ≤ 1

Ls
, we have 0 < Ls ≤ 1

γ . Hence, one can write the following:
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− ⟨∇I\Iy
s
f(x),xI\Iy

s
⟩+ Ls

2
∥xI\Iy

s
∥22

≤ −⟨∇I\Iy
s
f(x),xI\Iy

s
⟩+ 1

2γ
∥xI\Iy

s
∥22

=
1

2γ

(
∥xI\Iy

s
∥22 − 2γ⟨∇I\Iy

s
f(x),xI\Iy

s
⟩+ γ2∥∇I\Iy

s
f(x)∥22

)
− γ

2
∥∇I\Iy

s
f(x)∥22

=
1

2γ
∥xI\Iy

s
− γ∇I\Iy

s
f(x)∥22 −

γ

2
∥∇I\Iy

s
f(x)∥22.

We claim that
∥xI\Iy

s
− γ∇I\Iy

s
f(x)∥22 ≤ ∥γ∇I\Ix

s
f(x)∥22 = γ2∥∇I\Ix

s
f(x)∥22. (13)

To show this claim, recall that from the definition of hard thresholding inequality in Definition 5, one
can write the following for any Iy

s :

|xq − γ∇qf(x)| ≤ |xp − γ∇pf(x)|, ∀q ∈ (Iy
s )

c, ∀p ∈ Iy
s

Also, I\Iy
s ⊆ (Iy

s )
c and (I\Ix

s ) ⊆ Iy
s . Therefore, according to the hard thresholding operator for

all i ∈ I\Iy
s and for all j ∈ I\Ix

s we have the following:

|
(
xI\Iy

s
− γ∇I\Iy

s
f(x)

)
i
| ≤ |

(
xI\Ix

s
− γ∇I\Ix

s
f(x)

)
j
|

= |
(
− γ∇I\Ix

s
f(x)

)
j
|

(14)

where the last inequality follows from the fact that for every entry with index j in I\Ix
s , the

corresponding value is zero. Also, since the number of elements in |Ix
s | = |Iy

s |, one can write the
following:

|I\Iy
s | = |Ix

s | − |Ix
s ∩ Iy

s | = |Iy
s | − |Ix

s ∩ Iy
s | = |I\Ix

s | (15)
which implies that the numbers of elements in I\Iy

s and I\Ix
s are the same. Hence, one can square

each inequality in (14) to get the ∥xI\Iy
s
− γ∇I\Iy

s
f(x)∥22 ≤ ∥γ∇I\Ix

s
f(x)∥22.

Using (13) one can find an upper bound on the right hand side of (12) as follows:

f(y) ≤ f(x)− γ(1− γLs

2
)∥∇Iy

s
f(x)∥22 +

1

2γ
γ2∥γ∇I\Ix

s
f(x)∥22 −

γ

2
∥∇I\Iy

s
f(x)∥22. (16)

Notice that Iy
s is the disjoint union of Ix

s ∩Iy
s and I\Ix

s , i.e., Iy
s = (Ix

s ∩Iy
s )∪ (I\Ix

s ). Therefore,
∥∇Iy

s
f(x)∥22 = ∥∇Ix

s ∩Iy
s
f(x)∥22 + ∥∇Ix

s ∩Iy
s
f(x)∥22. Substituting the right-hand side into prior

inequality yields: By adding some positive values to the right hand side of (16) we have:

f(y) ≤ f(x)− γ(
1

2
− γLs

2
)∥∇I\Ix

s
f(x)∥22 − γ(1− γLs

2
)∥∇Ix

s ∩Iy
s
f(x)∥22 −

γ

2
∥∇I\Iy

s
f(x)∥22

≤ f(x)− γ(
1

2
− γLs

2
)
(
∥∇I\Ix

s
f(x)∥22 + ∥∇Ix

s ∩Iy
s
f(x)∥22 + ∥∇I\Iy

s
f(x)∥22

)
= f(x)− γ

2
(1− γLs)∥∇Ix

s ∪Iy
s
f(x)∥22

where the last equations follows from the fact that I = Ix
s ∪ Iy

s is the disjoint union of I\Ix
s ,

Ix
s ∩ Iy

s , and I\Iy
s .

A.3 PROOF OF COROLLARY 1:

Proof. Since yIc = xIc = 0 and I is the disjoint union of I\Iy
s and Iy

s , one can write the following:

∥y − x∥22 = ∥yIc − xIc∥22 + ∥yI\Ix
s
− xI\Ix

s
∥22 + ∥yI\Iy

s
− xI\Iy

s
∥22 + ∥yIx

s ∩Iy
s
− xIx

s ∩Iy
s
∥22

= ∥yI\Iy
s
− xI\Iy

s
∥22 + ∥yIy

s
− xIy

s
∥22

= ∥ − xI\Iy
s
∥22 + ∥yIy

s
− xIy

s
∥22

= ∥xI\Iy
s
∥22 + ∥γ∇Iy

s
f(x)∥22.

(17)

15



Under review as a conference paper at ICLR 2023

By applying the reverse triangle inequality on Inequality (13) one can bound ∥xI\Iy
s
∥22 as follows:

∥xI\Iy
s
∥2 − ∥γ∇I\Iy

s
f(x)∥2 ≤ ∥γ∇I\Ix

s
f(x)∥2.

Hence, one can write the following:

∥xI\Iy
s
∥22 ≤ (∥γ∇I\Iy

s
f(x)∥2 + ∥γ∇I\Ix

s
f(x)∥2)2 ≤ 2∥γ∇I\Iy

s
f(x)∥22 + 2∥γ∇I\Ix

s
f(x)∥22

By plugging the above upper bound in place of ∥xI\Iy
s
∥22 in equation 17, we get the following:

∥y − x∥22 ≤ 2∥γ∇I\Iy
s
f(x)∥22 + 2∥γ∇I\Ix

s
f(x)∥22 + ∥γ∇Iy

s
f(x)∥22

= ∥γ∇I\Iy
s
f(x)∥22 + ∥γ∇Iy

s
f(x)∥22 + ∥γ∇I\Iy

s
f(x)∥22 + ∥γ∇I\Ix

s
f(x)∥22 + ∥γ∇I\Ix

s
f(x)∥22

= ∥γ∇If(x)∥22 + ∥γ∇I\Iy
s
f(x)∥22 + ∥γ∇I\Ix

s
f(x)∥22 + ∥γ∇I\Ix

s
f(x)∥22

≤ ∥γ∇If(x)∥22 + ∥γ∇If(x)∥22 + ∥γ∇If(x)∥22
≤ 3∥γ∇If(x)∥22

Multiplying by γ
2 (1− Lsγ) one would get the result.

A.4 PROOF OF COROLLARY 2:

Proof. According to (16), one can write the following:

γ

2
(1− γLs)∥∇I\Ix

s
f(x)∥22 + γ(1− γLs

2
)∥∇Ix

s ∩Iy
s
f(x)∥22 +

γ

2
∥∇I\Iy

s
f(x)∥22 ≤ f(x)− f(y)

γ(1− γLs

2
)∥∇Ix

s ∩Iy
s
f(x)∥22 +

γ

2
∥∇I\Iy

s
f(x)∥22 ≤ f(x)− f(y)

γ

2
∥∇Ix

s ∩Iy
s
f(x)∥22 +

γ

2
∥∇I\Iy

s
f(x)∥22 ≤ f(x)− f(y)

γ

2
∥∇Ix

s
f(x)∥22 ≤ f(x)− f(y)

(18)
where the second inequality follows from the fact that γ

2 (1 − γLs) is nonnegative and one can
remove γ(1− γLs

2 )∥∇I\Iy
s
f(x)∥22 from the left hand side. The third inequality follows the fact that

γ(1− γLs

2 ) ≥ γ
2 when 0 < γ ≤ 1

Ls
.

A.5 PROOF OF COROLLARY 3:

Proof. From Corollary 2 one can write the following:

γ

2
∥∇Ik

s
f(xk)∥22 ≤ f(xk)− f(xk+1), k ≥ 0

which means f(xk) ≥ f(xk+1). Then,
(
f(xk)

)
k≥0

is a nonincreasing sequence. Since f is bounded

below and
(
f(xk)

)
k≥0

is nonincreasing,
(
f(xk)

)
k≥0

is a monotone sequence and converges. Now

suppose x∗ is an accumulation point of
(
xk

)
k≥0

. Thus, there exists a subsequence
(
xkj

)
kj≥0

of(
xk

)
k≥0

converging to x∗. Differentiability of f implies its continuity and its continuity implies(
f(xkj )

)
kj≥0

→ f(x∗). Now, using the fact that
(
f(xk)

)
k≥0

is nonincreasing, one can write

f(x∗) ≤ f(xkj ) for all kj ≥ 0. Thus, f(x∗) ≤ f(xk) for all k ≥ 0 otherwise we get a contradiction.
Since,

(
f(xk)

)
k≥0

is monotone and has a convergent subsequence, it converges to the limit point of

its subsequence, i.e.,
(
f(xk)

)
k≥0

→ f(x∗).
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A.6 PROOF OF THEOREM 2:

Proof. Fix an arbitrary constant γ ∈ (0, 1
Ls

]. Consider ∥x̃∥0 = s first. In this case, ∥x̃∥0 = s.
Consequently, I x̃

s is unique and is given by supp(x̃). Also, min
(
|x̃i| : i ∈ I x̃

s

)
> 0. Define

δ1 :=
min

(
|x̃i|:i∈Ix̃

s

)
2 > 0. Due to the continuity of min function and uniqueness of I x̃

s which is

equal to supp(x̃), there exists a neighborhood N1 of x̃ such that min
(
|xi| : i ∈ I x̃

s

)
>

min
(
|x̃i|:i∈Ix̃

s

)
2

for all x in N1 := {x ∈ Rn | ∥x− x̃∥2 < δ1}. Using uniqueness of I x̃
s one can define h(x) as the

following:

h(x) := max
(
|xj − γ∇jf(x)| : j /∈∈ I x̃

s

)
−min

(
|xi − γ∇if(x)| : i ∈ I x̃

s

)
.

Moreover, I x̃
s = supp(x̃) implies ∇Ix̃

s
f(x̃) = 0, x̃(Ix̃

s )
c = 0, and h(x̃) > 0 where

h(x̃) = max
(
|x̃j − γ∇jf(x̃)| : j /∈∈ I x̃

s

)
−min

(
|x̃i − γ∇if(x̃)| : i ∈ I x̃

s

)
> 0.

Let β1 := h(x̃) and ν :=
3β2

1

32γ > 0. Due to the continuity of ∇f , min, and max functions, h(x) is a
continuous function and there exists δ2 > 0 and a neighborhood N2 = {x ∈ Rn | ∥x− x̃∥2 < δ2}
such that h(x) > h(x̃)

2 . Let N = {x ∈ Rn | ∥x− x̃∥2 < δ} where δ = min(δ1, δ2) > 0. Thus, for
all x ∈ N ∩ Cs, one has ∥x∥0 = s, Ix

s = supp(x) = supp(x̃) and

max
(
|xj − γ∇jf(x)| : j /∈∈ Ix

s

)
−min

(
|xi − γ∇if(x)| : i ∈ Ix

s

)
≥ β1

2
.

Fix an arbitrary x ∈ N ∩ Cs. Then, for any y ∈ Hs(x − γ∇f(x)) and any Iy
s there exist two

indices r ∈ Argmin{|xi − γ∇if(x)| : i ∈ Ix
s } and t ∈ Argmin{|xj − γ∇jf(x)| : j /∈ Ix

s } such
that r /∈ Iy

s and t ∈ Iy
s . Clearly, r ∈ Ix

s and t /∈ Ix
s . Recall that I := Ix

s ∪ Iy
s . Thus, r ∈ I\Iy

s and
t ∈ I\Ix

s . Thus, one has the following:

0 ≤ |xr − γ∇rf(x)| ≤ |xt − γ∇tf(x)| −
β1

2
= γ|∇tf(x)| −

β1

2
≤ γ|∇tf(x)| −

β1

4

where we used the fact that xt = 0. Observe that the above implies γ|∇tf(x)| ≤ β1

2 . Therefore, one
can write the following:

0 ≤ |xr−γ∇rf(x)|2 ≤ (γ|∇tf(x)|−
β1

4
)2 = (γ|∇tf(x)|)2−

β1

2
(γ|∇tf(x)|)+

β2
1

16
≤ (γ|∇tf(x)|)2−

3

16
β2
1

According to (14) for all i ∈ I\Iy
s with i ̸= r and for all j ∈ I\Ix

s with j ̸= t, one has
|xi − γ∇if(x)| ≤ |∇jf(x)|. Also, according to (15) one can write the following:

∥xI\Iy
s
− γ∇I\Iy

s
f(x)∥22 ≤ ∥γ∇I\Ix

s
f(x)∥22 −

3

16
β2
1 .

Therefore, using (16) and applying the same step as the we did for the last step of proof of Theorem 1
one can write the following:

f(y) ≤ f(x)− γ(1− γLs

2
)∥∇Iy

s
f(x)∥22 +

1

2γ
(∥γ∇I\Ix

s
f(x)∥22 −

3

16
β2
1)−

γ

2
∥∇I\Iy

s
f(x)∥22

≤ f(x)− γ

2
(1− γLs)∥∇Ix

s ∪Iy
s
f(x)∥22 −

3

32
β2
1

≤ f(x)− ν

where we used ν :=
3β2

1

32γ > 0.

Consider ∥x̃∥0 < s next. In this case, supp(x̃) is a proper subset of any I x̃
s , i.e., supp(x̃) ⊂ I x̃

s .
Hence,

min
(
|x̃i| : i ∈ I x̃

s

)
= 0, ∀I x̃s ; and max

(
|x̃j − γ∇jf(x̃)| : j /∈ supp(x̃)

)
> 0. (19)

17
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Let ∥x̃∥0 = d < s. Since ∥x̃∥0 = d < s, there are
(
n−d
s−d

)
sets of I x̃

s . The elements of gradients over
these sets of I x̃

s are either zero or nonzero. Thus, define the following two (finite) families of I x̃
s ’s

which constitute a disjoint union of all I x̃
s :

I1 = {I x̃
s | ∇Ix̃

s
f(x̃) ̸= 0}, and I2 = {I x̃

s | ∇Ix̃
s
f(x̃) = 0}.

Clearly, I1 is nonempty because (19) implies that there exists an I x̃
s that contains j ∈ Argmin{|xj −

γ∇jf(x)| : j /∈ supp(x̃)} such that |γ∇jf(x)| ≠ 0. If I2 is empty, define

β2,1 := min
(
∥γ∇Ix̃

s
f(x̃)∥ | I x̃

s ∈ I1
)

and let β2 := β2,1 > 0. If I2 is nonempty, then for any I x̃
s ∈ I2, we have,

0 = min
(
|x̃i − γ∇if(x̃)| : i ∈ I x̃

s

)
< max

(
|x̃j − γ∇jf(x̃)| : j /∈ I x̃

s

)
because supp(x̃) ⊂ I x̃

s . If I2 is empty, we let β2 := β2,1 > 0; otherwise, define

β2,2 := min

(
max

(
|x̃j−γ∇jf(x̃)| : j /∈ I x̃

s )
)
−min

(
|x̃i−γ∇if(x̃)| : i ∈ I x̃

s

)
| I x̃

s ∈ I2
)

> 0

and β := min(β2,1, β2,2) > 0.

Based on emptiness or non-emptiness of I2 we consider two sub-cases as follows:

(i) Suppose I2 is empty. For this case define ν :=
β2
2

8γ > 0. Similar to case ∥x̃∥0 = s, by observing
the fact that min

(
|x̃i| : i ∈ supp(x̃)

)
> 0 and using the continuity of ∇f(·) and considering that

β2 = min
(
∥γ∇Ix̃

s
f(x̃)∥ | I x̃

s ∈ I1
)

, one can can show that there exists a neighborhood N of

x̃ such that for all x ∈ N ∩ Cs, ∥∇Ix̃
s
f(x)∥ ≥ β2

2γ for any I x̃
s ∈ I1. Also, for all x ∈ N ∩ Cs,

supp(x) = supp(x̃), and Ix
s = I x̃

s for some I x̃
s . Therefore, for all x ∈ N ∩ Cs and any I x̃

s , I x̃
s ∈ I1

and ∥∇Ix
s
f(x)∥ ≥ β2

2γ . Hence, following Corollary 2 one can write the following for all x ∈ N ∩Cs

and any y ∈ Hs(x− γ∇f(x)):

f(x)− f(y) ≥ γ

2
∥∇Ix

s
f(x)∥22 ≥ β2

2

8γ
= ν

(ii) Suppose I2 is nonempty. Let ν :=
3β2

1

32γ > 0. In this case there exists a neighborhood N of x̃ such

that for all x ∈ N ∩ Cs, supp(x) = supp(x̃), each Ix
s equals to some I x̃

s , ∥∇Ix̃
s
f(x)∥ ≥ β2,1

2γ for
every I x̃

s ∈ I1, and for all I x̃
s ∈ I2 one can write the following:

max
(
|xj − γ∇jf(x)| : j /∈ Ix

s )
)
−min

(
|xi − γ∇if(x)| : i ∈ I x̃

s

)
≥ β2,2

2
> 0.

Hence, for all x ∈ N ∩Cs and any Ix
s , either Ix

s ∈ I1 or Ix
s ∈ I2. For the former, we see via the same

argument for sub-case (i) that for every y ∈ Hs(x − γ∇f(x)), f(x) − f(y) ≥ γ
2 ∥∇Ix

s
f(x)∥22 ≥

β2
2,1

8γ ≥ β2
2

8γ >
3β2

2

32γ = ν. For the latter, it follows from the similar argument for the case of ∥x̃∥0 = s

that for any y ∈ Hs(x− γ∇f(x)), f(y) ≤ f(x)− 3β2
2

32γ = ν. This leads to the desired results.

A.7 PROOF OF THEOREM 3:

Proof. The proof of a) is given in (Beck & Eldar, 2013, Theorem 2.2). To show b) first one needs to
show x∗ is a HT-stable stationary point. To show that suppose it is not. Then, it is a HT-unstable
stationary point. According to Theorem 2, there exist ν > 0 and a neighborhood N of x∗ such
that f(y) ≤ f(x) − ν for all x ∈ N ∩ Cs and any y ∈ PCs

(x − γ∇f(x)). Let x = x∗ to get
f(y) ≤ f(x∗)− ν. This contradicts our assumption that x∗ is a global minimizer. Hence, x∗ is a
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HT-stable stationary point. Consequently, ∇supp(x∗)f(x
∗) = 0. Now, let γ = 1

Ls
and suppose that

∥x∗∥0 < s. Since x∗ is a HT-stable point, one can write the following:

min
(
|x∗

i | : i ∈ Ix∗

s

)
≥ γmax

(
|∇jf(x

∗)| : j /∈ supp(x∗)
)
.

Because supp(x∗) is a proper subset of Ix∗

s , min
(
|x∗

i | : i ∈ Ix∗

s

)
= 0 which implies

∇(supp(x∗))cf(x
∗) = 0. Together with ∇supp(x∗)f(x

∗) = 0, one can conclude ∇f(x∗) = 0. Thus,
x∗ = x∗ − γ∇f(x∗) = Ps(x

∗ − γ∇f(x∗)). Now suppose that ∥x∗∥0 = s. Thus, supp(x∗) = Ix∗

s .
Since x∗ is a HT-stable stationary point ∇Ix∗

s
f(x∗) = 0 and one can write the following:

min
(
|x∗

i − γ∇if(x
∗)| : i ∈ Ix∗

s

)
≥ max

(
|x∗

j − γ∇jf(x
∗)| : j /∈ Ix∗

s

)
which implies the following that is definition of HT operator in Definition 5:

|x∗
i − γ∇if(x

∗)| ≥ |x∗
j − γ∇jf(x

∗)| ∀i ∈ Ix∗

s , j /∈ Ix∗

s .

Thus, x∗ ∈ Ps(x
∗ − γ∇f(x∗)).

A.8 PROOF OF THEOREM 4:

Proof. Let γ ∈ (0, 1
Ls

]. Since x∗ is an accumulation point, there exists a subsequence (xkj ) of (xk)

converging to x∗. Also, there exists a subsequence (xkjl ) of (xkj ) converging to x∗ such that Ix
kjl

s

is a constant set for all k. Let J = Ix
kjl

s . According to Corollary 2 one can write the following:

γ

2
∥∇J f(xkjl )∥22 ≤ f(xkjl )− f(xkjl

+1).

We can sum over l to get the following:

γ

2

∞∑
l=1

∥∇J f(xkjl )∥22 ≤
∞∑
l=1

(
f(xkjl )− f(xkjl

+1)
)
≤

∞∑
k=0

(
f(xk)− f(xk+1)

)
where the second inequality follows the fact that (xkjl ) is a subsequence of (xk) and (f(xk)) is
a nonincreasing sequence. Thus, γ

2

∑∞
l=1 ∥∇J f(xkjl )∥22 ≤ f(x0) − f(xk+1). By letting l go

to infinity, the right hand side would be bounded since f is bounded below on Cs. Therefore,
∇J f(x∗) = 0. Notice that x

kjl

(Ix
kjl

s )c
= 0 for all kjl . Since J = Ix

kjl

s , one has x
kjl

J c = 0

for all kjl . On the other hand, xkjl → x∗ so x∗
J c = 0. This shows supp(x∗) ⊆ J . Since

supp(x∗) ⊆ J , one has ∇supp(x∗)f(x
∗) = 0. Now suppose to the contrary that x∗ is a HT-unstable.

Then, according to Theorem 2, there exists a constant ν > 0 and a neighborhood N of x∗ such that
f(y) ≤ f(x)− ν for all x ∈ N ∩Cs and any y ∈ Hs(x− γ∇f(x)). Thus, there exists k ≥ N such
that (xkjl ) ∈ N ∩ Cs and one can write f(xkjl

+1) ≤ f(xkjl ) − ν. Then one can sum over j’s to
get f(xkj+1) − f(xk1) ≤ −νj. By letting j go to infinity, we get f(xkj+1) → ∞ which implies
f(xk) → ∞. This contradicts the boundedness of f from below. Hence, x∗ is a HT-stable stationary
point.

A.9 PROOF OF COROLLARY 4:

Proof. Let x∗ be a HT-unstable point associated with some γ ∈ (0, 1
Ls

]. Then, according to Theorem
2, there exists a constant ν > 0 and a neighborhood N of x∗ such that f(y) ≤ f(x) − ν for all
x ∈ N ∩ Cs and any y ∈ Hs(x − γ∇f(x)). Let x = x∗ and α = f(x∗). Thus, S = {x ∈
Cs|f(x) ≤ f(x∗) = α} is nonempty since f(y) ≤ f(x∗) − ν < f(x∗). Also, let

(
xk

)
k≥0

be an
IHT sequence with x0 = y. Since

(
f(xk)

)
k≥0

is nonincreasing,
(
xk

)
k≥0

is in S. Because S is
bounded, there exists a subsequence (xkj ) of (xk) converging to x̃∗. Since x̃∗ is an accumulation
point of the IHT sequence, by virtue of Theorem 4 it is a HT-stable stationary point. Hence, by the
continuity of f , one has f(xkj ) → f(x̃∗) ≤ y < f(x∗) which is the desired result.
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A.10 PROOF OF COROLLARY 5:

Proof. Fix an arbitrary 0 < γ(0, 1
Ls

]. By virtue of the proof for Corollary 4 any IHT sequence(
xk

)
k≥0

is bounded and attains an accumulation point. Suppose A.1 holds. To show the convergence
of

(
xk

)
k≥0

, we show that
(
xk

)
k≥0

has a unique accumulation point. Note that due to Theorem 4 any
accumulation point of IHT sequence is HT-stable stationary point. Now, suppose the accumulation
is not unique. Then,

(
xk

)
k≥0

has (at least) two distinct accumulation points denoted by x∗ and
y∗, respectively. And, there exist two subsequences

(
xkj ) and

(
xkl) of

(
xk) converging to x∗

and y∗, respectively. Since f is continuous,
(
f(xkj )

)
and

(
f(xkl)

)
converge to f(x∗) and f(y∗),

respectively. However, by invoking Corollary 3, one can observe that the sequence of the objective
function value

(
f(xk)

)
k≥0

converges. Thus
(
f(xk)

)
k≥0

converges to both f(x∗) and f(y∗). This
implies that f(x∗) = f(y∗), a contradiction. Hence,

(
xk

)
k≥0

has exactly one accumulation point
and is convergent. The convergence results under A.2 follows from ∥xk+1 − xk∥2 → 0 as k → ∞
when 0 < γ < 1

Ls
(Moré & Sorensen, 1983, Lemma 4.10).

A.11 PROOF OF COROLLARY 6:

Proof. According to Theorem 2, there exists a constant ν > 0 and a neighborhood N of x∗ such that
f(y) ≤ f(x) − ν for all x ∈ N ∩ Cs and any y ∈ Hs(x − γ∇f(x)). Then every IHT sequence
with an arbitrary x0 ∈ Cs has finitely many points in N ∩Cs. Otherwise there exists x0 ∈ Cs and an
IHT sequence starting from x0 such that for all N ∈ N, there exists k ≥ N for which xk ∈ N ∩ Cs.
Then, there exists a subsequence (xkj ) of (xk) that is in N ∩ Cs. Thus, f(xkj+1) ≤ f(xkj )− ν for
all j ≥ 1. Then one can sum over j’s to get f(xkj+1)− f(xk1) ≤ −νj. By letting j go to infinity,
we get f(xkj+1) → ∞ which implies f(xk) → ∞. This contradicts the boundedness of f from
below. Hence, the claim.

A.12 PROOF OF PROPOSITION 1:

Proof. Fix an arbitrary constant γ ∈ (0, 1
Ls

]. When x∗ is strictly HT-stable point, ∥x∗∥0 = s. Thus,
min

(
|x∗

i | : i ∈ Ix∗

s

)
> 0. Since ∥x∗∥0 = s, Ix∗

s is unique and is given by supp(x∗). Define

δ1 :=
min

(
|x∗

i |:i∈Ix∗
s

)
2 > 0. Due to the continuity of min function and uniqueness of Ix∗

s , we know

that there exists a neighborhood N1 of x such that min
(
|xi| : i ∈ Ix

s

)
>

min
(
|x∗

i |:i∈Ix∗
s

)
2 for all x

in N1 := {x ∈ Rn | ∥x − x∗∥2 < δ1}. Also, using uniqueness of Ix∗

s one can define h(x) as the
following:

h(x) := min
(
|xi − γ∇if(x)| : i ∈ Ix∗

s

)
−max

(
|xj − γ∇jf(x)| : j /∈ Ix∗

s

)
.

Moreover, Ix∗

s = supp(x∗) implies ∇Ix∗
s
f(x∗) = 0, x∗

(Ix∗
s )c

= 0, so h(x∗) > 0 where

h(x∗) = min
(
|xi − γ∇if(x

∗)| : i ∈ Ix∗
s

)
−max

(
|x∗

j − γ∇jf(x)| : j /∈ Ix∗

s

)
> 0.

Due to continuity of ∇f , min, and max functions, h(x) is a continuous function and there exists
δ2 > 0 and a neighborhood N2 := {x ∈ Rn | ∥x − x∗∥2 < δ2} such that h(x) > h(x∗)

2 . Since
min

(
|x∗

i | : i ∈ Ix∗

s

)
> 0, ∇Ix∗

s
f(x∗) = 0, Ix∗

s is unique, and ∇f is continuous there exists
δ3 > 0 and a neighborhood N3 := {x ∈ Rn | ∥x − x∗∥2 < δ3} such that γ∥∇Ix∗

s
f(x∗)∥2 <

min
(
|x∗

i |:i∈Ix∗
s

)
4 . Let B = {x ∈ Rn | ∥x− x∗∥2 < δ} where δ = min(δ1, δ2, δ3) > 0. Thus, for all

x ∈ B ∩ Cs, one has ∥x∥0 = s, Ix
s = supp(x) = supp(x∗) and

min
(
|xi − γ∇if(x)| : i ∈ Ix

s

)
> max

(
|xj − γ∇jf(x)| : j /∈ Ix

s

)
. (20)

By observing the fact that Ix
s = supp(x∗) for all x ∈ B ∩ Cs, let SL be a subspace defined by Ix

s .
As f is strictly convex on any SJ , f(x) ≥ f(x∗) for all x ∈ B ∩ Cs such that x∗ is a unique local
minimizer of Problem (2) on B ∩Cs. Further, in light of 20 we obtain that for any given x ∈ B ∩Cs,
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Hs(x − γ∇f(x)) has a unique solution y with supp(y) = L, and yL = xL − γLf(x). Hence,
y ∈ SL. We claim that

∥y − x∗∥2 ≤ ∥x− x∗∥2.
Towards this end, we see via y ∈ SL and the previous argument that f(y) ≥ f(x∗). Furthermore,
since yL = xL − γLf(x), we deduce from Corollary 2 and Ix

s = supp(x∗) = L that
γ

2
∥∇Lf(x)∥22 ≤ f(x)− f(y).

Due to the (strict) convexity of f on SL and supp(x) = supp(x∗) = SL and one has the following:

f(x∗) ≥ f(x) + ⟨∇f(x),x∗ − x⟩ = f(x) + ⟨∇Lf(x),x
∗
L − xL⟩

which yields f(x)− f(x∗) ≤ ⟨∇Lf(x),xL − x∗
L⟩. We further have

0 ≤ f(y)− f(x∗) ≤ f(x)− f(x∗)− γ

2
∥∇Lf(x)∥22 ≤ ⟨∇Lf(x),xL − x∗

L⟩ −
γ

2
∥∇Lf(x)∥22.

Using these results, we obtain

0 ≤ ⟨∇Lf(x),xL − x∗
L⟩ −

γ

2
∥∇Lf(x)∥22 =

1

2γ

(
∥xL − x∗

L∥22 − ∥xL −∇Lf(x)− x∗
L∥22

)
=

1

2γ

(
∥xL − x∗

L∥22 − ∥yL − x∗
L∥22

)
This shows that ∥y − x∗∥2 ≤ ∥x− x∗∥2 thus the claim holds.

In view of the above claim, we deduce via induction that for any x0 ∈ B ∩ Cs, xk ∈ B ∩ Cs for
all k ∈ N. Hence, the IHT sequence (xk) is contained in B and thus is bounded such that it has
an accumulation point. As shown in Theorem 4, all accumulation points x̃ of an IHT sequence
are HT-stable and satisfy ∇supp(x̃)f(x̃) = 0 so does any accumulation point x̂ of (xk). Since
(xk) is contained in B ∩ Cs, Ixk

s = supp(x∗) for all k ≥ 0 and x̂ satisfies supp(x̂) = SL and
∇Lf(x̂) = 0. Thus, x̂L = x∗

L; otherwise, due to strict convexity of f , one can write f(x̂) >
f(x∗) + ⟨∇Lf(x

∗), x̂L − x∗
L⟩ = f(x∗) and f(x∗) > f(x̂) + ⟨∇Lf(x̂),x

∗
L − x̂L⟩ = f(x̂) which

are impossible. This shows that any IHT sequence (xk) in B has exactly one accumulation point
given by x∗ and thus converges to x∗.

To show Q-linearly convergence suppose that f is strongly convex on SJ for all index subsets J
with |J |. Then there exists a positive constant mJ with 0 < mJ ≤ Ls such that

f(y) ≥ f(x) + ⟨∇J f(x),yJ − xJ ⟩+ mJ

2
∥y − x∥22, ∀y,x ∈ SJ

The prior argument shows that ∇J f(x∗) = 0. Since f is strongly convex on SJ , we have f(y) ≥
f(x) + mJ

2 ∥y − x∥22 for all y ∈ SJ . It follows from the similar argument as before that for every
x ∈ B ∩ Cs, Hs(x− γ∇f(x)) has a unique solution x with supp(y) = L and yL = xL − γLf(x).
Hence, y ∈ SJ . As a result, we obtain, in view of 0 < 1

γ ≤ Ls,

mJ

2
∥y − x∗∥22 ≤ f(y)− f(x∗) =

1

2γ

(
∥xL − x∗

L∥22 − ∥xL −∇Lf(x)− x∗
L∥22

)
=

Ls

2

(
∥xL − x∗

L∥22 − ∥yL − x∗
L∥22

)
=

Ls

2

(
∥x− x∗∥22 − ∥y − x∗∥22

)
.

This give rise to

∥y − x∗∥22 ≤ Ls

Ls +mJ
∥x− x∗∥22

Obviously, this implies that any IHT sequence (xk) in B Q-linearly converges to x∗.
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