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A APPENDIX

Definition 5 (HTO inequality). Let x,y € R" such that'y € H,(x). Then, according to Definition3]
the following for any IY is called HT operator inequality:

lzi| <lz;| V i€ (Z¥)andje LY. (11)

Definition 6 (The IHT algorithm). The IHT scheme in Algorithmll|is an iterative process that applies
the HT operator on the updated vector found by the gradient descent algorithm.

Definition 7 (Basic stationary point). When x* is a local minimizer of Problem (2)), then V- f (x*) =
0 when ||x*||o = s or Vf(x*) = 0 when ||x*||o < s, Beck & Eldar(2013). Every point satisfying
these conditions is called basic stationary point of Problem (2). Points with the aforementioned
property are called basic feasible points in|Beck & Eldar|(2013).

A.1 PROOF OF CLAIM[T}

Proof. In this part we show why the hard thresholding operator keeps the s largest entries of its input
in absolute value sense. First, notice that one can write ||z — x||3 = >, (2; — #;)?. Without loss of
generality suppose that x is given such that its entries are in a descending order in terms of absolute

value. Then one can write the following:

n S

Z(zi —z;)? = Z(Zi —x) + Z (2 — )%

i=1 j=1 i=s+1

The optimal solution should have n — s entries whose values are zero. Let z* be a vector such that
the first s entries of z* be the s largest entries of x in absolute value sense and the rest be zero. Then
one can get the following:

n n

* 2 2
E (zf —2i)" = E Ly -
1=1 1=s+1

Because ZZ’:S 41 x? is the sum of n — s smallest entries of x, the objective value in l| would be
minimized. Any choice other than a vector z* that has the largest s element of x and zero elsewhere,
S 41 x? cannot lead to the minimum of the function value. Hence, z* = H(x) keeps the s
largest entries of x in absolute value and zero out the rest. O

A.2 PROOF OF THEOREM/[IL

Proof. Fix 0 < v < L%,I;‘ foragivenx € Cs,y € Hy(x — vV f(x))and ZY. Let 7 := TX U LY.
Clearly, yzc = xzc = 0, xn\7x = 0, y1\7x = 0, and yzy = (x=7Vf(x))y = xzv =7V f(x).
This shows that

(y—%X)ze =0, (y—X)nz=Xnw, F-—%Xp=-7Vryf(x).

Since f(x) is Ls-RSS and both [|x[|o < s and |y||o < s, one can write (3). Then, notice that both the
inner product and the norm squared in (3] can be partitioned into two terms based as the following:

F(¥) < F@) +(VF00,y %)+ 2y — x3

Ls

5+ (Voo f(x), (y = x)nzy) + 5 I(y — %)z 3

< J@) 4 (V20 0. (y —0)z) + 2y — 20z

2
2

L, L,
< f(z) - 7<szf(x)7 VI;Z{f(X» + 7” - szzf(X)H% - <VI\IZf(X)aXI\I§'> + 7||XI\I§’

< fla) — (1 - M

2
2 2

L
NV f(x)]15 — (Voo f(x),xp\79) + ?HXI\IQ'
(12)
Since 0 < v < %, we have 0 < Ly < % Hence, one can write the following:
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2
2

L,
~ (Voo f(x), xn\zy) + 5 Ixnay

1
< (Vo f(x), xp\zy) + 5||XI\I§(H§

1 gl
2 (Ixnzy B = 2V 02y 100 5020 + 221V FOIR) = 5 19y 0B

1 Y
= ﬂ”xz\zz — WV fX)3 - §HVI\Ig'f(X)H§~
We claim that
Ixr\zy =V fX5 < WV ) = Y IVazf X3 (13)

To show this claim, recall that from the definition of hard thresholding inequality in Definition[5] one
can write the following for any ZY:

1Xg = WVaf ()] < |xp =V f(X)|, Vg e (ZY) vpelf
Also, Z\ZY C (ZY)¢ and (Z\Z¥) C Z¥. Therefore, according to the hard thresholding operator for

S

all i € Z\ZY and for all j € Z\Z* we have the following:
|<XI\I_2' —YVozy f(X))J < |(XI\I;‘ - 'YVI\I;‘f(X))j|

= |( - 'YVI\I;‘f(X))j|

where the last inequality follows from the fact that for every entry with index j in Z\ZX, the
corresponding value is zero. Also, since the number of elements in |ZX| = |ZY|, one can write the
following:

(14)

IINLY | = T3] = 125 NI | = T3] = 125 NIy | = [T\IT] (15)
which implies that the numbers of elements in Z\ZY and Z\ZX* are the same. Hence, one can square
each inequality in (14) to get the ||xz\7y — 7V\z f(¥)[3 < [[7V\z= f () 3.

Using (T3) one can find an upper bound on the right hand side of (T2) as follows:

vLs 1 gl
Fy) < 160 = (1= )V f)15 + 572\\7Vz\z;<f(><)||§ ~ S IVam fIE. (16)
Notice that ZY is the disjoint union of ZX NZY and Z\ZF, i.e., IY = (ZX NZY) U (Z\I¥). Therefore,

IV FRN3 = IVzxnzy f(X)]15 + [Vzxnzy f(x)]|5. Substituting the right-hand side into prior
inequality yields: By adding some positive values to the right hand side of (I6) we have:

1 ~L, L,
1) < 569 =G = SOV F I =10 = 5 Vrsery F I = 2V £
1 ~L,
< 169 =5 = 52 (Vo f @3 + 1 Vaznz I3 + IV S 113

= () = 2 (1= 1L I Vrzzs )3

where the last equations follows from the fact that Z = ZX U ZY is the disjoint union of Z\Z%,
IXNIY,and I\ZY. O

A.3 PROOF OF COROLLARY [T}

Proof. Since yze = xze = 0 and Z is the disjoint union of Z\ZY and Z¥, one can write the following:

2
2

ly = xII5 = llyze — xz¢[5 + llynzx — xn\zx |3 + lynzy — X7\1¥ 5+ 1Y xnzy — Xzxnzy

2
2

= lynz — XI\IZ”% +llyy —xzy
=l =xpz 3+ lyzy —xzzll5
5+ IV Vzy FX)3

= ||XI\I§
(17)
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By applying the reverse triangle inequality on Inequality one can bound ||x7\ 7y |2 as follows:

2 = WVnzy f(¥)ll2 < [VVnze f (%) |2

Hence, one can write the following:

3 < WVaz F&)l2 + 17Vnzef(2)]2)* < 207Vozy )3 + 29V z= f (%) 12

||XI\Ig'

HXI\zg

By plugging the above upper bound in place of ||x7\7y |2 in equation we get the following:

ly = |13 < 2[lhVnz F&)3 + 2l Vg f ()l + IV F(x)ll3
= [WVnz F&E + WV F&®E + WYz F&E + 7V f R + v Vrz f(x)ll3
= |V f(x)3+ ||’YVI\Ig’f(X)||§ + ||’YVI\I;<f(X)H§ + V2= f(x)|3
< WV + WV f (R + 7V f(x)|
< 3|7V f(x)II3

2
2

Multiplying by 3 (1 — L) one would get the result. O

A.4  PROOF OF COROLLARY [2}

Proof. According to (T6), one can write the following:

vLs v

5 NV zxnzy FRIE + S IVzy FIIE < F(x) = F(y)

Ls gl

TV e SOOI+ LIV vz SO03 < ) — )

i i
2 Varzz PN + 2 IV 22 SN < £00) — £ ()

2V f )3 < £60) = ()
(18)

where the second inequality follows from the fact that 3 (1 — vL,) is nonnegative and one can
remove (1 — %) IV 2 2y f(x) |3 from the left hand side. The third inequality follows the fact that
7(1—77“)2%when0<7§%. O

(1= yL)[Vrz= f ()5 +~(1 =

o2

(1=

A.5 PROOF OF COROLLARY 3]

Proof. From Corollary [2]one can write the following:

2V fa) 3 < 65 = FH), k>0

which means f(x*) > f(x**1). Then, ( f(xF )) N is a nonincreasing sequence. Since f is bounded
>0

k
below and ( f (xk)) is nonincreasing, ( f (xk)) is a monotone sequence and converges. Now
k>0 k>0
suppose X* is an accumulation point of (x*), _ . Thus, there exists a subsequence (x*7), _ of
= 1=
(xk) k>0 converging to x*. Differentiability of f implies its continuity and its continuity implies
( f(xFs )) — f(x*). Now, using the fact that ( f (xk)) is nonincreasing, one can write
k;>0 k>0

F(x*) < f(xF9) forall k; > 0. Thus, f(x*) < f(x*) forall k > 0 otherwise we get a contradiction.

Since, ( f (x’f)) >0 1s monotone and has a convergent subsequence, it converges to the limit point of

its subsequence, i.e., (f(xk))k>0 — f(x*). O
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A.6 PROOF OF THEOREM 2}

1
~ > Ls ~
Consequently, ZX is unique and is given by supp(X). Also, min (|Z;| : i € Z¥) > 0. Define

5 min (\:z;\:iezf)

Proof. Fix an arbitrary constant v € (0, +—|. Consider ||X||o = s first. In this case, ||X||p = s.

> 0. Due to the continuity of min function and uniqueness of Z¥* which is

equal to supp(x), there exists a neighborhood NV of x such that min (|z;| : i € I¥) > M

forall x in A := {x € R" | ||x — X||2 < d1}. Using uniqueness of Z* one can define h(x) as the
following:

h(x) := max (|:v] -V, f(x)]: j ¢€ If) — min (\xl —yVif(x)] i € I:‘)
Moreover, Z¥ = supp(X) implies Vzz f(X) = 0, X(zx)c = 0, and h(X) > 0 where
h(%X) = max (|:zj V(X)) e If) — min (|x V()] i € I") > 0.

2
Let 81 := h(X) and v := % > 0. Due to the continuity of V f, min, and max functions, h(x) is a
continuous function and there exists d2 > 0 and a neighborhood N3 = {x € R™ | ||x — X[|2 < 2}

such that h(x) > @ Let N = {x € R" | ||x — X||2 < 0} where 6 = min(dy, d2) > 0. Thus, for

all x € N'N Cs, one has ||x|lg = s, ZX = supp(x) = supp(x) and

max (|xj -V, f(x)]:j ¢€ If) — min (|:vz —Vif(x)]:i€ IZ‘) > %

Fix an arbitrary x € N N C,. Then, for any y € Hy(x — vV f(x)) and any Z¥ there exist two
indices r € Argmin{|z; — YV, f(x)| : ¢ € IX} and t € Argmin{|z; — YV, f(x)| : j ¢ ZX} such
thatr ¢ 7¥ and t € ZY. Clearly, r € ZX and t ¢ T¥. Recall that Z := ZX* UZY. Thus, r € Z\Z¥ and
t € Z\Z¥. Thus, one has the following:

0< fre ~79e S ()] < lr = 7VS (0] = 5 =5 Vef (0] - 2 <49f 0] -

where we used the fact that 2; = 0. Observe that the above implies 7|V, f(x)| < % Therefore, one
can write the following:

B

1

0< o1V fGIP < GV = GV I -2 GIT 6D+ 5E < (1T Gl 157

4 16 —

According to for all i € Z\Z¥ with i # r and for all j € Z\Z¥ with j # t, one has
|z; —yVif(x)| < |V;f(x)|. Also, according to one can write the following:

3
”XI\IZ - WVI\Ig’f(X)”g < ||7VI\I;=f(X)H§ - Tﬁﬁ%'

Therefore, using (T6) and applying the same step as the we did for the last step of proof of Theorem/[I]
one can write the following:

L, 1 3
J) £ 769 =21 = IV 3 + 5= (hVoe S = 68D — 319z F0)1B
3
< J() = 3 (1= 1L Vazezy O = 55

< f(x)-v
._ 367
where we used v := 30 > 0.

Consider ||X||o < s next. In this case, supp(X) is a proper subset of any Z%, i.e., supp(X) C Z%.
Hence,

min (\:EZ\ (i€ Ii‘) =0, VZ*; and max (|;i] —YV,ifx)]:j¢ supp(i)) > 0. (19)
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Let [|[%[|o = d < s. Since || X[jo = d < s, there are ("_4) sets of ZX. The elements of gradients over

these sets of 7 are either zero or nonzero. Thus, define the following two (finite) families of ZXs
which constitute a disjoint union of all Z7:

L ={Z¥ | V7 f(%) #0}, and I = {I} | Vzz f(X) = 0}.
Clearly, I; is nonempty because implies that there exists an ZX that contains j € Argmin{ |z; —
YV, f(x)| : j ¢ supp(X)} such that |vV; f(x)| # 0. If I, is empty, define
B = min (|n Vo R | TX € 1 )
and let B3 := 51 > 0. If I, is nonempty, then for any I¥ € 1, we have,
0= min (|7; — Vi f(%)] :i € TF) < max (|3 — 7V, f(R)] : j ¢ T¥)

because supp(X) C Ig‘. If I, is empty, we let B2 := 32,1 > 0; otherwise, define

B2 = min <max (125 =7V sG]+ ¢ T5)) —min (|2 = Vif ()] :§ € TF) | T¥ € h) >0

and § := min(fa,1, f2,2) > 0.

Based on emptiness or non-emptiness of [» we consider two sub-cases as follows:

(i) Suppose I is empty. For this case define v := % > 0. Similar to case ||X||o = s, by observing
the fact that min (|Z;| : ¢ € supp(X)) > 0 and using the continuity of V f(-) and considering that
B2 = min (H’yVZf f&@| | 7* € ]I1>, one can can show that there exists a neighborhood N of
% such that for all x € N'N Cy, [|[Vz=f(x)[| > B—fy for any 7% € I;. Also, for all x € N' N Cs,
supp(x) = supp(X), and ZX = T* for some ZX. Therefore, for all x € N'N C, and any X, Z* € I
and [|Vz= f(x)]| > % Hence, following Corollaryone can write the following for all x € A" N C
and any y € Hy(x — vV f(x)):

2
~y
16 = 1) 2 3lIVz f I = = v
.. . . 383
(i) Suppose I is nonempty. Let v := 33y
that for all x € "N Cy, supp(x) = supp(x), each Z* equals to some Z%, V= f(x)|| > % for
every IX € Iy, and for all ZX € T, one can write the following:

> 0. In this case there exists a neighborhood A of X such

max (Ja; — 19,1 ()] 5 ¢ ) —min (o~ Vi ()] 11 € 7F) 2 222 50

Hence, for all x € A’'NC, and any I¥,either Y € I; or ¥ € I5. For the former, we see via the same
argument for sub-case (i) that for every y € H,(x — vV f(x)), f(x) — f(y) > 3IVz= f(x)[5 >
Bii < B2 363 _
8271 Z 5 3 =

that forany y € Hs(x — vV f (%)), f(y) < f(x) — % = v. This leads to the desired results. [J

v. For the latter, it follows from the similar argument for the case of ||X||o = s

A.7 PROOF OF THEOREM 3L

Proof. The proof of a) is given in (Beck & Eldar, 2013| Theorem 2.2). To show b) first one needs to
show x* is a HT-stable stationary point. To show that suppose it is not. Then, it is a HT-unstable
stationary point. According to Theorem [2] there exist > 0 and a neighborhood N of x* such
that f(y) < f(x) —vforallx e NNCsandany y € Po, (x — vV f(x)). Let x = x* to get
f(y) < f(x*) — v. This contradicts our assumption that x* is a global minimizer. Hence, x* is a

18
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HT-stable stationary point. Consequently, Vn(x=)f(x*) = 0. Now, let v = - and suppose that
[lx*|lo < s. Since x* is a HT-stable point, one can write the following:

min (|2}|:i € IZ‘) > ymax (|V; f(x")] : j ¢ supp(x")).

Because supp(x*) is a proper subset of ZX', min (|z}| : ¢ € I¥) = 0 which implies
V (supp(x))e f (x*) = 0. Together with Vypp ) f(x*) = 0, one can conclude V f(x*) = 0. Thus,
x* = x* — YV f(x*) = Ps(x* — vV f(x*)). Now suppose that ||x*||o = s. Thus, supp(x*) = Z* .
Since x* is a HT-stable stationary point Vzx- f(x*) = 0 and one can write the following:

min (|2} — YV f(x*)| 14 € IX) > max (|2} — yV,; f(x*)| 1 j ¢ I)
which implies the following that is definition of HT operator in Definition 5}
@ = AV ()| > |2 =V, f(x7)| VieTX ¢ Ty
Thus, x* € Py(x* —yV f(x*)). O

A.8 PROOF OF THEOREM [4}

Proof. Let~y € (0, -]. Since x* is an accumulation point, there exists a subsequence (x"7) of (x*)

k.
converging to x*. Also, there exists a subsequence (x"#1) of (x*) converging to x* such that Z*

is a constant set for all k. Let J = I;‘kjl . According to Corollary [2|one can write the following:

LIV rxbn) |3 < ki) — facknt).

We can sum over [ to get the following:

%i IV fenB < 37 (£ — Fckat)) < 3 (£ - £
=1 =1

where the second inequality follows the fact that (x*) is a subsequence of (x*) and (f(x*)) is
a nonincreasing sequence. Thus, 2> |[Vsf(x"1)|3 < f(x°) — f(x**1). By letting | go
to infinity, the right hand side would be bounded since f is bounded below on Cs. Therefore,
V7f(x*) = 0. Notice that XI(C; kjl) = 0 for all k;. Since J = I;ckﬂz’ one has xl}p =0
for all kj,. On the other hand, x*t — x* so x%. = 0. This shows supp(x*) C J. Since
supp(x ) C J, one has V5 f(x*) = 0. Now suppose to the contrary that x* is a HT-unstable.
Then, according to Theorem 2] there exists a constant v > 0 and a neighborhood A of x* such that
fly) < f(x)—vforalx e NN Csand any y € Hy(x — vV f(x)). Thus, there exists k¥ > N such
that (x*i) € "N O, and one can write f(x*:+1) < f(x"1) — v. Then one can sum over j5’s to
get f(xFit1) — f(x¥1) < —vj. By letting j go to infinity, we get f(x*T1) — oo which implies
f(x*) — oo. This contradicts the boundedness of f from below. Hence, x* is a HT-stable stationary
point. O

A.9 PROOF OF COROLLARY 4}

Proof. Let x* be a HT-unstable point associated with some y € (0, Li} Then, according to Theorem

there exists a constant v > 0 and a neighborhood N of x* such that f(y) < f(x) — v for all
x € NNCsandany y € Hyg(x — 7V f(x)). Let x = x* and « = f(x*). Thus, S = {x €
Cslf(x) < f(x*) = a} is nonempty since f(y) < f(x*) — v < f(x*). Also, let (xk)k>0 be an

. . . k . . .
k>0 18 nonincreasing, (X )kZO is in S. Because S is

bounded, there exists a subsequence (x"i) of (x*) converging to X*. Since X* is an accumulation
point of the IHT sequence, by virtue of Theorem[z_fjlt is a HT-stable stationary point. Hence, by the
continuity of f, one has f(x") — f(x*) <y < f(x*) which is the desired result. O

IHT sequence with x” = y. Since (f (Xk))

19
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A.10 PROOF OF COROLLARY [3}

Proof. Fix an arbitrary 0 < ~(0, L%] By virtue of the proof for Corollary 4| any IHT sequence
(xk) >0 is bounded and attains an accumulation point. Suppose A./ holds. To show the convergence
of (x*) w0+ We show that (x*) x>0 has a unique accumulation point. Note that due to Theorem (4any
accumulation point of IHT sequence is HT-stable stationary point. Now, suppose the accumulation
is not unique. Then, (x*), _ has (at least) two distinct accumulation points denoted by x* and
y*, respectively. And, there exist two subsequences (xkj) and (xkl) of (xk) converging to x*
and y*, respectively. Since f is continuous, (f(x")) and (f(x*')) converge to f(x*) and f(y*),
respectively. However, by invoking Corollary [3] one can observe that the sequence of the objective
function value (f(x*)), ., converges. Thus (f(x")), ., converges to both f(x*) and f(y*). This

implies that f(x*) = f(y*). a contradiction. Hence, (x*), _  has exactly one accumulation point

k>0
and is convergent. The convergence results under A.2 follows from ||x**1 — x*||; — 0 as k — oo
when 0 < v < % (Moré & Sorensen, 1983} Lemma 4.10).

A.11 PROOF OF COROLLARY [@]

Proof. According to Theorem [2] there exists a constant v > 0 and a neighborhood A of x* such that
fly) < f(x)—vforallx e NNCgandany y € Hs(x — vV f(x)). Then every IHT sequence
with an arbitrary x° € Cj has finitely many points in AN Cj. Otherwise there exists x° € C and an
IHT sequence starting from x0 such that for all N € N, there exists k¥ > N for which x* € ' N C,.
Then, there exists a subsequence (x*7) of (x*) that is in A" N Cj. Thus, f(x*+1) < f(x*/) — v for
all j > 1. Then one can sum over j’s to get f(x* 1) — f(x*) < —vj. By letting j go to infinity,
we get f(x**1) — oo which implies f(x*) — oo. This contradicts the boundedness of f from
below. Hence, the claim. O

A.12 PROOF OF PROPOSITION I}

Proof. Fix an arbitrary constant v € (0, 2-]. When x* is strictly HT-stable point, ||x*||o = s. Thus,
min (|z}| : i € ZX') > 0. Since ||x*|lo = s, ZX is unique and is given by supp(x*). Define
i tierr” — . . . *
01 1= % > 0. Due to the continuity of min function and uniqueness of 7Y , we know
. . . . i PleTs”
that there exists a neighborhood N; of x such that min (|z;| : i € IX) > % for all x
in V7 := {x € R" | ||x — x*||2 < 01 }. Also, using uniqueness of Z* one can define /(x) as the
following:

h(x) := min (|1;1 —Vif(x)| :iEI;‘*) — max (|xj -V f(x)] g ¢I§‘)

Moreover, ZX~ = supp(x*) implies Ve f(x*) =0, X’{Ix*)c =0, so h(x*) > 0 where

h(x*) = min (m— AV (x| i € z*) — max (\x; — V(X)) ¢ I;‘*) > 0.
Due to continuity of V f, min, and max functions, i (x) is a continuous function and there exists
d2 > 0 and a neighborhood NV := {x € R™ | ||x — x*||2 < d2} such that h(x) > @ Since
min (27| : i € I*) > 0, Ve f(x*) = 0, T*" is unique, and V£ is continuous there exists
d3 > 0 and a neighborhood N3 := {x € R" | [|x — x*||2 < d5} such that ||V e f(x*)[2 <
% Let B={x € R" | ||x — x*|2 < 0} where § = min(d1, d2,d3) > 0. Thus, for all
x € BN Cs, one has ||x||p = s, ZX = supp(x) = supp(x*) and

min <|ocZ -V f(x)]:i € I;‘) > max (|xj —Vf(x)]:j ¢ IZ,‘) (20)

By observing the fact that Z* = supp(x™*) for all x € BN Cs, let S be a subspace defined by Z%*.
As f is strictly convex on any Sz, f(x) > f(x*) for all x € BN Cj such that x* is a unique local
minimizer of Problem (2)) on B N C. Further, in light of [20] we obtain that for any given x € BN C,
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H(x — vV f(x)) has a unique solution y with supp(y) = £, and y, = x, — 7, f(x). Hence,
y € Sz. We claim that
[y =x"[l2 < llx = x"[fa.

Towards this end, we see viay € S, and the previous argument that f(y) > f(x ) Furthermore,
since y, = xz — ¢ f(x), we deduce from Corollary 2]and 7 = supp(x*) = L th

2IVF GOl < () = £(y)-

Due to the (strict) convexity of f on S and supp(x) = supp(x*) = S, and one has the following:

X") 2 f(x) + (Vf(x),x" = %) = f(x) + (Ve f(x), XL —x¢)
which yields f(x ) f(x*) <(Vof(x),xc —x5). We further have

0< J(y) = F(x') < fx) = f(x") = SIVLFOI3 < (Ve f(x).xe = xE) = SIVef()]3-

Using these results, we obtain
O< V X _1 V 2:i o * 12 _V o * 2
VS () xe = x2) = 5 IVET 03 = 5 (Ihee = X2~ xe = Vel () = x2 3

1 * *
= 5 (e = X2~ llye —xzl3)

This shows that ||y — x*||2 < ||x — x*||2 thus the claim holds.

In view of the above claim, we deduce via induction that for any x? e BNC,, x¥ € BN C, for
all k € N. Hence, the THT sequence (x*) is contained in B and thus is bounded such that it has
an accumulation point. As shown in Theorem [} all accumulation points X of an IHT sequence
are HT-stable and satisfy V() f(X) = 0 so does any accumulation point X of (x¥). Since

(x*) is contained in B N C,, I;‘k = supp(x*) for all k& > 0 and X satisfies supp(X) = S, and
Vef(x) = 0. Thus, Xz = xJ; otherwise, due to strict convexity of f, one can write f(X) >
PO+ (Vef(x"), %o — xz) = f(x*) and f(x*) > (%) + (Ve f (), x5 — %c) = f(X) which
are impossible. This shows that any THT sequence (x*) in 3 has exactly one accumulation point
given by x* and thus converges to x*.

To show Q-linearly convergence suppose that f is strongly convex on S for all index subsets J
with | 7. Then there exists a positive constant m 7 with 0 < m 7 < L such that

F(9) 2 J6) + (Vo f(0).y7 —x7) + 2|y = x[3, Vy.x €8y

The prior argument shows that V 7 f(x*) = 0. Since f is strongly convex on S 7, we have f(y) >
f(x) + 52 |ly — x||3 forall y € S. It follows from the similar argument as before that for every
x € BN Cs, Hy(x — vV f(x)) has a unique solution x with supp(y) = L and y. = xz — 2 f(x).
Hence, y € S7. As aresult, we obtain, in view of 0 < % < Ly,

1

oy =X < Fv) = 707) = o (e = X2 ~ e — Ve ()~ x213)

L * *

2 (e =13 = llyz = xz13)
L,

2 (I =13 = iy = x"113).

This give rise to

2

I3 < llx = x7|I3

Obviously, this implies that any IHT sequence (x*) in B Q-linearly converges to x*. O

21



	Introduction
	Related work
	Definitions
	Results
	Gradient descent property
	Optimality condition based on the HT properties
	HT stationary points


	Simulation
	Conclusion
	Appendix
	Proof of Claim 1:
	Proof of Theorem 1:
	Proof of Corollary 1:
	Proof of Corollary 2:
	Proof of Corollary 3:
	Proof of Theorem 2:
	Proof of Theorem 3:
	Proof of Theorem 4:
	Proof of Corollary 4:
	Proof of Corollary 5:
	Proof of Corollary 6:
	Proof of Proposition 1:


