
A Path Formulations for Traditional Methods

Here we demonstrate our path formulation is capable of modeling traditional link prediction methods
like Katz index [30], personalized PageRank [42] and graph distance [37], as well as graph theory
algorithms like widest path [4] and most reliable path [4].

Recall the path formulation is defined as

hq(u, v) = hq(P1)⊕ hq(P2)⊕ ...⊕ hq(P|Puv|)|Pi∈Puv
,

⊕
P∈Puv

hq(P) (1)

hq(P = (e1, e2, ..., e|P |)) = wq(e1)⊗wq(e2)⊗ ...⊗wq(e|P |) ,
|P |⊗
i=1

wq(ei) (2)

which can be written in the following compact form

hq(u, v) =
⊕

P∈Puv

|P |⊗
i=1

wq(ei) (10)

A.1 Katz Index

The Katz index for a pair of nodes u, v is defined as a weighted count of paths between u and v,
penalized by an attenuation factor β ∈ (0, 1). Formally, it can be written as

Katz(u, v) =
∞∑
t=1

βte>uA
tev (11)

where A denotes the adjacency matrix and eu, ev denote the one-hot vector for nodes u, v respectively.
The term e>uA

tev counts all paths of length t between u, and v and shorter paths are assigned with
larger weights.

Theorem 1 Katz index is a path formulation with ⊕ = +, ⊗ = × and wq(e) = βwe.

Proof. We show that Katz(u, v) can be transformed into a summation over all paths between u and
v, where each path is represented by a product of damped edge weights in the path. Mathematically,
it can be derived as

Katz(u, v) =
∞∑
t=1

βt
∑

P∈Puv :|P |=t

∏
e∈P

we (12)

=
∑

P∈Puv

∏
e∈P

βwe (13)

Therefore, the Katz index can be viewed as a path formulation with the summation operator +, the
multiplication operator × and the edge representations βwe. �

A.2 Personalized PageRank

The personalized PageRank (PPR) for u computes the stationary distribution over nodes generated by
an infinite random walker, where the walker moves to a neighbor node with probability α and returns
to the source node u with probability 1− α at each step. The probability of a node v from a source
node u has the following closed-form solution [29]

PPR(u, v) = (1− α)
∞∑
t=1

αte>u (D
−1A)tev (14)

where D is the degree matrix and D−1A is the (random walk) normalized adjacency matrix. Note
that e>u (D

−1A)tev computes the probability of t-step random walks from u to v.

Theorem 2 Personalized PageRank is a path formulation with ⊕ = +, ⊗ = × and wq(e) =
αwuv/

∑
v′∈N (u) wuv′ .

16

Proof. We omit the coefficient 1− α, since it is always positive and has no effect on the ranking of
different node pairs. Then we have

PPR(u, v) ∝
∞∑
t=1

αt
∑

P∈Puv :|P |=t

∏
(a,b)∈P

wab∑
b′∈N (a) wab′

(15)

=
∑

P∈Puv

∏
(a,b)∈P

αwab∑
b′∈N (a) wab′

(16)

where the summation operator is +, the multiplication operator is × and edge representations are
random walk probabilities scaled by α. �

A.3 Graph Distance

Graph distance (GD) is defined as the minimum length of all paths between u and v.

Theorem 3 Graph distance is a path formulation with ⊕ = min, ⊗ = + and wq(e) = we.

Proof. Since the length of a path is the sum of edge lengths in the path, we have

GD(u, v) = min
P∈Puv

∑
e∈P

we (17)

Here the summation operator is min, the multiplication operator is + and the edge representations
are the lengths of edges. �

A.4 Widest Path

The widest path (WP), also known as the maximum capacity path, is aimed at finding a path between
two given nodes, such that the path maximizes the minimum edge weight in the path.

Theorem 4 Widest path is a path formulation with ⊕ = max, ⊗ = min and wq(e) = we.

Proof. Given two nodes u and v, we can write the widest path as

WP(u, v) = max
P∈Puv

min
e∈P

we (18)

Here the summation operator is max, the multiplication operator is min and the edge representations
are plain edge weights. �

A.5 Most Reliable Path

For a graph with non-negative edge probabilities, the most reliable path (MRP) is the path with
maximal probability from a start node to an end node. This is also known as Viterbi algorithm [61]
used in the maximum a posterior (MAP) inference of hidden Markov models (HMM).

Theorem 5 Most reliable path is a path formulation with ⊕ = max, ⊗ = × and wq(e) = we.

Proof. For a start node u and an end node v, the probaility of their most reliable path is

MRP(u, v) = max
P∈Puv

∏
e∈P

we (19)

Here the summation operator is max, the multiplication operator is × and the edge representations
are edge probabilities. �

B Generalized Bellman-Ford Algorithm

First, we prove that the path formulation can be efficiently solved by the generalized Bellman-Ford
algorithm when the operators 〈⊕,⊗〉 satisfy a semiring. Then, we show that traditional methods
satisfy the semiring assumption and therefore can be solved by the generalized Bellman-Ford
algorithm.

17

B.1 Preliminaries on Semirings

Semirings are algebraic structures with two operators, summation ⊕ and multiplication ⊗, that share
similar properties with the natural summation and the natural multiplication defined on integers.
Specifically, ⊕ should be commutative, associative and have an identity element 0©. ⊗ should be
associative and have an identity element 1©. Mathematically, the summation ⊕ satisfies

• Commutative Property. a⊕ b = b⊕ a
• Associative Property. (a⊕ b)⊕ c = a⊕ (b⊕ c)
• Identity Element. a⊕ 0© = a

The multiplication ⊗ satisfies

• Associative Property. (a⊗ b)⊗ c = a⊗ (b⊗ c)
• Absorption Property. a⊗ 0© = 0©⊗ a = 0©
• Identity Element. a⊗ 1© = 1©⊗ a = a

Additionally, ⊗ should be distributive over ⊕.

• Distributive Property (Left). a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c)
• Distributive Property (Right). (b⊕ c)⊗ a = (b⊗ a)⊕ (c⊗ a)

Note semirings differ from natural arithmetic operators in two aspects. First, the summation operator
⊕ does not need to be invertible, e.g., min or max. Second, the multiplication operator ⊗ does not
need to be commutative nor invertible, e.g., matrix multiplication.

B.2 Generalized Bellman-Ford Algorithm for Path Formulation

Now we prove that the generalized Bellman-Ford algorithm computes the path formulation when
the operators 〈⊕,⊗〉 satisfy a semiring. It should be stressed that the generalized Bellman-Ford
algorithm for path problems has been proved in [4], and not a contribution of this paper. Here we
apply the proof to our proposed path formulation.

The generalized Bellman-Ford algorithm computes the following iterations for all v ∈ V

h(0)
q (u, v)← 1q(u = v) (3)

h(t)
q (u, v)←

 ⊕
(x,r,v)∈E(v)

h(t−1)
q (u, x)⊗wq(x, r, v)

⊕ h(0)
q (u, v) (4)

Lemma 1 After t Bellman-Ford iterations, the intermediate representation h
(t)
q (u, v) aggregates all

path representations within a length of t edges for all v. That is

h(t)
q (u, v) =

⊕
P∈Puv :|P |≤t

|P |⊗
i=1

wq(ei) (20)

Proof. We prove Lemma 1 by induction. For the base case t = 0, there is a single path of length
0 from u to itself and no path to other nodes. Due to the product definition of path representa-
tions, a path of length 0 is equal to the multiplication identity 1©q. Similarly, a summation of

no path is equal to the summation identity 0©q. Therefore, we have h
(0)
q (u, v) = 1q(u = v) =⊕

P∈Puv :|P |=0

⊗|P |
i=1 wq(ei).

For the inductive case t > 0, we consider the second-to-last node x in each path if the path has a
length larger than 0. To avoid overuse of brackets, we use the convention that ⊗ and

⊗
have a higher

18

priority than ⊕ and
⊕

.

h(t)
q (u, v) =

 ⊕
(x,r,v)∈E(v)

h(t−1)
q (u, x)⊗wq(x, r, v)

⊕ h(0)
q (u, v) (21)

=

 ⊕
(x,r,v)∈E(v)

 ⊕
P∈Pux:|P |≤t−1

|P |⊗
i=1

wq(ei)

⊗wq(x, r, v)

⊕ h(0)
q (u, v) (22)

=

 ⊕
(x,r,v)∈E(v)

 ⊕
P∈Pux:|P |≤t−1

 |P |⊗
i=1

wq(ei)

⊗wq(x, r, v)

⊕ h(0)
q (u, v) (23)

=

 ⊕
P∈Puv :1≤|P |≤t

|P |⊗
i=1

wq(ei)

⊕
 ⊕

P∈Puv :|P |=0

|P |⊗
i=1

wq(ei)

 (24)

=
⊕

P∈Puv :|P |≤t

|P |⊗
i=1

wq(ei), (25)

where Equation 22 substitutes the inductive assumption for h
(t−1)
q (u, x), Equation 23 uses the

distributive property of ⊗ over ⊕. �

By comparing Lemma 1 and Equation 10, we can see the intermediate representation converges to
our path formulation limt→∞ h

(t)
q (u, v) = hq(u, v). More specifically, at most |V| iterations are

required if we only consider simple paths, i.e., paths without repeating nodes. In practice, for link
prediction we find it only takes a very small number of iterations (e.g., T = 6) to converge, since
long paths make negligible contribution to the task.

B.3 Traditional Methods

Theorem 6 Katz index, personalized PageRank, graph distance, widest path and most reliable path
can be solved via the generalized Bellman-Ford algorithm.

Proof. Given that the generalized Bellman-Ford algorithm solves the path formulation when 〈⊕,⊗〉
satisfy a semiring, we only need to show that the operators of the path formulations for traditional
methods satisfy semiring structures.

Katz index (Theorem 1) and personalized PageRank (Theorem 2) use the natural summation + and
the natural multiplication ×, which obviously satisfy a semiring.

Graph distance (Theorem 3) uses min for summation and + for multiplication. The corresponding
identities are 0© = +∞ and 1© = 0. It is obvious that + satisfies the associative property and has
identity element 0.

• Commutative Property. min(a, b) = min(b, a)
• Associative Property. min(min(a, b), c) = min(a,min(b, c))
• Identity Element. min(a,+∞) = a
• Absorption Property. a+∞ =∞+ a = +∞
• Distributive Property (Left). a+min(b, c) = min(a+ b, a+ c)
• Distributive Property (Right). min(b, c) + a = min(b+ a, c+ a)

Widest path (Theorem 4) uses max for summation and min for multiplication. The corresponding
identities are 0© = −∞ and 1© = +∞. We have

• Commutative Property. max(a, b) = max(b, a)
• Associative Property. max(max(a, b), c) = max(a,max(b, c))
• Identity Element. max(a,−∞) = a
• Associative Property. min(min(a, b), c) = min(a,min(b, c))
• Absorption Property. min(a,−∞) = min(−∞, a) = −∞
• Identity Element. min(a,+∞) = min(+∞, a) = a

19

• Distributive Property (Left). min(a,max(b, c)) = max(min(a, b),min(a, c))
• Distributive Property (Right). min(max(b, c), a) = max(min(b, a),min(c, a))

where the distributive property can be proved by enumerating all possible orders of a, b and c.

Most reliable path (Theorem 5) uses max for summation and× for multiplication. The corresponding
identities are 0© = 0 and 1© = 1, since all path representations are probabilities in [0, 1]. It is obvious
that × satisfies the associative property, the absorption property and has identity element 0.

• Commutative Property. max(a, b) = max(b, a)
• Associative Property. max(max(a, b), c) = max(a,max(b, c))
• Identity Element. max(a, 0) = a
• Distributive Property (Left). a×max(b, c) = max(a× b, a× c)
• Distributive Property (Right). max(b, c)× a = max(b× a, c× a)

where the identity element and the distributive property hold for non-negative elements. �

C Time Complexity of GNN Frameworks

Here we prove the time complexity for NBFNet and other GNN frameworks.

C.1 NBFNet

Lemma 2 The time complexity of one NBFNet run (Algorithm 1) is O(T (|E|d+ |V|d2)).

Proof. We break the time complexity by INDICATOR, MESSAGE and AGGREGATE functions.

INDICATOR is called |V| times, and a single call to INDICATOR takes O(d) time. MESSAGE is
called T (|E|+ |V|) times, and a single call to MESSAGE, i.e., a relation operator, takes O(d) time.
AGGREGATE is called T |V| times over a total of T |E| messages with d dimensions. Each call to
AGGREGATE additionally takes O(d2) time due to the linear transformations in the function.

Therefore, the total complexity is summed to O(T (|E|d+ |V|d2)). �

In practice, we find a small constant T works well for link prediction, and Lemma 2 can be reduced
to O(|E|d+ |V|d2) time.

Now consider applying NBFNet to infer the likelihood of all possible triplets. Without loss of
generality, assume we want to predict the tail entity for each head entity and relation p(v|u, q). We
group triplets with the same condition u, q together, where each group contains |V| triplets. For
triplets in a group, we only need to execute Algorithm 1 once to get their predictions. Therefore, the
amortized time for a single triplet is O

(
|E|d
|V| + d2

)
.

C.2 VGAE / RGCN

RGCN is a message-passing GNN applied to multi-relational graphs, with the message function
being a per-relation linear transformation. VGAE can be viewed as a special case of RGCN applied
to single-relational graphs. The time complexity of RGCN is similar to Lemma 2, except that
each call to the message function takes O(d2) time due to the linear transformation. Therefore, the
total complexity is O(T (|E|d2 + |V|d2)), where T refers to the number of layers in RGCN. Since
|V| ≤ |E|, the complexity is reduced to O(T |E|d2)11. In practice, T is a small constant and we get
O(|E|d2) complexity.

While directly executing RGCN once for each triplet is costly, a smart way to apply RGCN for
inference is to first compute all node representations, and then perform link prediction with the node
representations. The first step runs RGCN once for |V|2|R| triplets, while the second step takes O(d)

time. Therefore, the amortized time for a single triplet is O
(
|E|d2

|V|2|R| + d
)

. For large graphs and

reasonable choices of d, we have |E|d ≤ |V|2|R| and the amortized time can be reduced to O(d).
11By moving the linear transformations from the message function to the aggregation function, one can also

get an implementation of RGCN with O(T |V||R|d2) time, which is better for dense graphs but worse for sparse
graphs. For knowledge graph datasets used in this paper, the above O(T |E|d2) implementation is better.

20

C.3 NeuralLP / DRUM

DRUM can be viewed as a special case of NBFNet with MESSAGE being Hadamard product and
AGGREGATE being natural summation. NeuralLP is a special case of DRUM where the dimension d
equals to 1. Since there is no linear transformation in their AGGREGATE functions, the amortized
time complexity for the message passing part is O

(
T |E|d
|V|

)
. Both DRUM and NeuralLP additionally

use an LSTM to learn the edge weights for each layer, which additionally costs O(Td2) time for T
layers. T is small and can be ignored like in other methods. Therefore, the amortized time of two
parts is summed to O

(
|E|d
|V| + d2

)
.

C.4 SEAL / GraIL

GraIL first extracts a local subgraph surrounding the link, and then applies RGCN to the local
subgraph. SEAL can be viewed as a special case of GraIL applied to single-relational graphs.
Therefore, their amortized time is the same as that of one RGCN run, which is O(|E|d2).
Note that one may still run GraIL on large graphs by restricting the local subgraphs to be very
small, e.g., within 1-hop neighborhood of the query entities. However, this will severely harm the
performance of link prediction. Moreover, most real-world graphs are small-world networks, and a
moderate radius can easily cover a non-trivial number of nodes and edges, which costs a lot of time
for GraIL.

D Number of Parameters

Table 8: Number of parameters in NBFNet. The number of parameters only grows with the number
of relations |R|, rather than the number of nodes |V| or edges |E|. For FB15k-237 augmented with
flipped triplets, |R| is 474. Our best configuration uses T = 6, d = 32 and hidden dimension
m = 64.

#Parameter
Analytic Formula FB15k-237

INDICATOR |R|d 15,168
MESSAGE T |R|d(d+ 1) 3,003,264
AGGREGATE Td(13d+ 3) 80,448
f(·) m(2d+ 1) +m+ 1 4,225

Total 3,103,105

One advantage of NBFNet is that it requires much less parameters than embedding methods. For
example, on FB15k-237, NBFNet requires 3M parameters while TransE requires 30M parameters.
Table 8 shows a break down of number of parameters in NBFNet. Generally, the number of parameters
in NBFNet scales linearly w.r.t. the number of relations, regardless the number of entities in the
graph, which makes NBFNet more parameter-efficient for large graphs.

E Statistics of Datasets

Dataset statistics of two transductive settings, i.e., knowledge graph completion and homogeneous
graph link prediction, are summarized in Table 9 and 10. Dataset statistics of inductive relation
prediction is summarized in Table 11.

We use the standard transductive splits [56, 13] and inductive splits [55] for knowledge graphs.
For homogeneous graphs, we follow previous works [32, 12] and randomly split the edges into
train/validation/test sets with a ratio of 85:5:10. All the homogeneous graphs used in this paper
are undirected. Note that for inductive relation prediction, the original paper [55] actually uses a
transductive valid set that shares the same set of fact triplets as the training set for hyperparameter
tuning. The inductive test set contains entities, query triplets and fact triplets that never appear in the
training set. The same data split is adopted in this paper for a fair comparison.

21

Table 9: Dataset statistics for knowledge graph completion.

Dataset #Entity #Relation #Triplet
#Train #Validation #Test

FB15k-237 [56] 14,541 237 272,115 17,535 20,466
WN18RR [13] 40,943 11 86,835 3,034 3,134

Table 10: Dataset statistics for homoge-
neous link prediction.

Dataset #Node #Edge
#Train #Validation #Test

Cora [49] 2,708 4,614 271 544
CiteSeer [49] 3,327 4,022 236 474
PubMed [49] 19,717 37,687 2,216 4,435

Table 11: Dataset statistics for inductive relation prediction. Queries refer to the triplets that are used
as training or test labels, while facts are the triplets used as training or test inputs. In the training sets,
all queries are also provided as facts.

Dataset #Relation Train Validation Test
#Entity #Query #Fact #Entity #Query #Fact #Entity #Query #Fact

FB15k-237 [55]

v1 180 1,594 4,245 4,245 1,594 489 4,245 1,093 205 1,993
v2 200 2,608 9,739 9,739 2,608 1,166 9,739 1,660 478 4,145
v3 215 3,668 17,986 17,986 3,668 2,194 17,986 2,501 865 7,406
v4 219 4,707 27,203 27,203 4,707 3,352 27,203 3,051 1,424 11,714

WN18RR [55]

v1 9 2,746 5,410 5,410 2,746 630 5,410 922 188 1,618
v2 10 6,954 15,262 15,262 6,954 1,838 15,262 2,757 441 4,011
v3 11 12,078 25,901 25,901 12,078 3,097 25,901 5,084 605 6,327
v4 9 3,861 7,940 7,940 3,861 934 7,940 7,084 1,429 12,334

F Implementation Details

Table 12: Hyperparameter configurations of NBFNet on different datasets. Adv. temperature
corresponds to the temperature in self-adversarial negative sampling [52]. Note for FB15k-237 and
WN18RR, we use the same hyperparameters for their transductive and inductive settings. We find our
model configuration is robust across all datasets, therefore we only tune the learning hyperparameters
for each dataset. All the hyperparameters are chosen by the performance on the validation set.

Hyperparameter FB15k-237 WN18RR Cora CiteSeer PubMed

GNN #layer(T) 6 6 6 6 6
hidden dim. 32 32 32 32 32

MLP #layer 2 2 2 2 2
hidden dim. 64 64 64 64 64

Batch #positive 256 128 256 256 64
#negative/#positive(n) 32 32 1 1 1

Learning

optimizer Adam Adam Adam Adam Adam
learning rate 5e-3 5e-3 5e-3 5e-3 5e-3
#epoch 20 20 20 20 20
adv. temperature 0.5 1 - - -

Our implementation generally follows the open source codebases of knowledge graph completion12

and homogeneous graph link prediction13. Table 12 lists the hyperparameter configurations for
different datasets. Table 13 shows the wall time of training and inference on different datasets.

Data Augmentation. For knowledge graphs, we follow previous works [69, 46] and augment each
triplet 〈u, q, v〉 with a flipped triplet 〈v, q−1, u〉. For homogeneous graphs, we follow previous
works [33, 32] and augment each node u with a self loop 〈u, u〉.
Architecture Details. We apply Layer Normalization [2] and short cut connection to accelerate
the training of NBFNet. Layer Normalization is applied after each AGGREGATE function. The
feed-forward network f(·) is instantiated as a MLP. ReLU is used as the activation function for all
hidden layers. For undirected graphs, we symmetrize the pair representation by taking the sum of
hq(u, v) and hq(v, u).

12https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding. MIT license.
13https://github.com/tkipf/gae. MIT license.

22

https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding
https://github.com/tkipf/gae

Training Details. We train NBFNet on 4 Tesla V100 GPUs with standard data parallelism. During
training, we drop out edges that directly connect query node pairs to encourage the model to capture
longer paths and prevent overfitting. We select the best checkpoint for each model based on its
performance on the validation set. The selection criteria is MRR for knowledge graphs and AUROC
for homogeneous graphs.

Fused Message Passing. To reduce memory footprint and better utilize GPU hardware, we follow the
efficient implementation of GNNs [26] and implement customized PyTorch operators that combines
MESSAGE and AGGREGATE functions into a single operation, without creating all messages explicitly.
This reduces the memory complexity of NBFNet from O(|E|d) to O(|V|d).

Table 13: Wall time of NBFNet on different datasets and in different settings (Table 3, 4 and 5). For
inductive setting, the total time over 4 split versions is reported.

Wall Time Transductive Inductive
FB15k-237 WN18RR Cora CiteSeer PubMed FB15k-237 WN18RR

Training 9.7 hrs 4.4 hrs 5.5 mins 5.3 mins 5.6 hrs 23 mins 41 mins
Inference 4.0 mins 2.4 mins < 1 sec < 1 sec 25 secs 6 secs 20 secs

G Experimental Results on OGB Datasets

To demonstrate the effectiveness of NBFNet on large-scale graphs, we additionally evaluate our
method on two knowledge graph datasets from OGB [25], ogbl-biokg and WikiKG90M. We follow
the standard evaluation protocol of OGB link property prediction, and compute the mean reciprocoal
rank (MRR) of the true entity against 1,000 negative entities.

G.1 Results on ogbl-biokg

Ogbl-biokg is a large biomedical knowledge graph that contains 93,773 entities, 51 relations and
5,088,434 triplets. We compare NBFNet with 6 embedding methods on this dataset. Note by the time
of this work, only embedding methods are available for such large-scale datasets. Table 14 shows
the results on ogbl-biokg. NBFNet achieves the best result compared to all methods reported on the
official leaderboard14 with much fewer parameters. Note the previous best model AutoSF is based on
architecture search and requires more computation resource than NBFNet for training.

Table 14: Knowledge graph completion results on ogbl-biokg. Results of compared methods are
taken from the OGB leaderboard.

Class Method Test MRR Validation MRR #Params

Embeddings

TransE [6] 0.7452 0.7456 187,648,000
DistMult [68] 0.8043 0.8055 187,648,000
ComplEx [58] 0.8095 0.8105 187,648,000
RotatE [52] 0.7989 0.7997 187,597,000
AutoSF [75] 0.8309 0.8317 93,824,000
PairRE [7] 0.8164 0.8172 187,750,000

GNNs NBFNet 0.8317 0.8318 734,209

G.2 Results on WikiKG90M

WikiKG90M is an extremely large dataset used in OGB large-scale challenge [24], hold at KDD Cup
2021. It is a general-purpose knowledge graph containing 87,143,637 entities, 1,315 relations and
504,220,369 triplets.

To apply NBFNet to such a large scale, we use a bidirectional breath-first-search (BFS) algorithm to
sample a local subgraph for each query. Given a query, we generate a k-hop neighborhood for each

14https://ogb.stanford.edu/docs/leader_linkprop/#ogbl-biokg

23

https://ogb.stanford.edu/docs/leader_linkprop/#ogbl-biokg

(A) Original graph (B) Bidirectional BFS (C) Sampled graph

Figure 1: Illustration of bidirectional BFS sampling. For a head entity and multiple tail candidates,
we use BFS to sample a k-hop neighborhood around each entity, regardless of the direction of edges.
The neighborhood is denoted by dashed circles. The nodes and edges visited by the BFS algorithm
are extracted to generate the sampled graph. Best viewed in color.

of the head entity and the candidate tail entities, based on a BFS search. The union of all generated
neighborhoods is then collected as the sampled graph. With this sampling algorithm, any path within
a length of 2k between the head entity and any tail candidate is guaranteed to present in the sampled
graph. See Figure 1 for illustration. While a standard single BFS algorithm computing the 2k-hop
neighborhood of the head entity has the same guarantee, a bidirectional BFS algorithm significantly
reduces the number of nodes and edges in the sampled graph.

We additionally downsample the neighbors when expanding the neighbors of an entity, to tackle
entities with large degrees. For each entity visited during the BFS algorithm, we downsample its
outgoing neighbors and incoming neighbors to m entities respectively.

Table 16 shows the results of NBFNet on WikiKG90M validation set. Our best single model uses
k = 2 and m = 100. While the validation set requires to rank the true entity against 1,000 negative
entities, in practice it is not mandatory to draw 1,000 negative samples for each positive sample
during training. We find that reducing the negative samples from 1,000 to 20 and increasing the batch
size from 4 to 64 provides a better result, although it creates a distribution shift between sampled
graphs in training and validation. We leave further research of such distribution shift as a future work.

Table 15: Results of different MESSAGE and AGGREGATE
functions on FB15k-237.

MESSAGE AGGREGATE MR MRR H@1 H@3 H@10

TransE [6]

Sum 191 0.297 0.217 0.321 0.453
Mean 161 0.310 0.218 0.339 0.496
Max 135 0.377 0.282 0.415 0.565
PNA [9] 129 0.383 0.288 0.420 0.568

DistMult [68]

Sum 136 0.388 0.294 0.427 0.574
Mean 132 0.384 0.287 0.425 0.577
Max 136 0.374 0.279 0.412 0.563
PNA [9] 114 0.415 0.321 0.454 0.599

RotatE [52]

Sum 129 0.392 0.298 0.429 0.580
Mean 138 0.376 0.278 0.416 0.571
Max 139 0.385 0.290 0.423 0.572
PNA [9] 117 0.414 0.323 0.454 0.593

Table 16: Knowledge graph completion
results on WikiKG90M validation set.

Model Single Model 6 Model Ensemble

MRR 0.924 0.930

Table 17: Results of different number of
layers on FB15k-237.

#Layers (T) MR MRR H@1 H@3 H@10
2 191 0.345 0.261 0.377 0.510
4 119 0.409 0.315 0.450 0.592
6 114 0.415 0.321 0.454 0.599
8 115 0.416 0.322 0.457 0.599

H Ablation Study

Table 15 shows the full results of different MESSAGE and AGGREGATE functions. Table 17 shows
the full results of NBFNet with different number of layers.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

24

(b) Did you describe the limitations of your work? [Yes] See Section 5.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Section 5.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section 3.1
and Appendix B.

(b) Did you include complete proofs of all theoretical results? [Yes] See Appendix A, B
and C.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] See Footnote 2.
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes] See Section 4.1 and Appendix F.
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [No]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes] See Section 4.1 and Table 13 in
Appendix F.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 4.1.
(b) Did you mention the license of the assets? [Yes] See Footnote 5 and 6.
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

This work only uses existing data.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] This work only uses standard public datasets.
(e) Did you discuss whether the data you are using/curating contains personally identi-

fiable information or offensive content? [N/A] The knowledge graphs only contain
open knowledge like Wikipedia. The homogeneous graphs only contain anonymous
publications and citations.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

25

	Introduction
	Related Work
	Methodology
	Path Formulation for Link Prediction
	Neural Bellman-Ford Networks

	Experiment
	Experiment Setup
	Main Results
	Ablation Study
	Path Interpretations of Predictions

	Discussion and Conclusion
	Path Formulations for Traditional Methods
	Katz Index
	Personalized PageRank
	Graph Distance
	Widest Path
	Most Reliable Path

	Generalized Bellman-Ford Algorithm
	Preliminaries on Semirings
	Generalized Bellman-Ford Algorithm for Path Formulation
	Traditional Methods

	Time Complexity of GNN Frameworks
	NBFNet
	VGAE / RGCN
	NeuralLP / DRUM
	SEAL / GraIL

	Number of Parameters
	Statistics of Datasets
	Implementation Details
	Experimental Results on OGB Datasets
	Results on ogbl-biokg
	Results on WikiKG90M

	Ablation Study

