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Abstract
We study reinforcement learning with linear func-
tion approximation and adversarially changing
cost functions, a setup that has mostly been con-
sidered under simplifying assumptions such as
full information feedback or exploratory condi-
tions. We present a computationally efficient pol-
icy optimization algorithm for the challenging
general setting of unknown dynamics and ban-
dit feedback, featuring a combination of mirror-
descent and least squares policy evaluation in
an auxiliary MDP used to compute exploration
bonuses. Our algorithm obtains an 𝑂 (𝐾6/7) re-
gret bound, improving significantly over previous
state-of-the-art of 𝑂 (𝐾14/15) in this setting. In ad-
dition, we present a version of the same algorithm
under the assumption a simulator of the environ-
ment is available to the learner (but otherwise no
exploratory assumptions are made), and prove it
obtains state-of-the-art regret of 𝑂 (𝐾2/3).

1 Introduction

Reinforcement Learning (RL; Sutton & Barto, 2018; Man-
nor et al., 2022) studies online decision making problems in
which an agent learns through experience within a dynamic
environment, with the goal to minimize a loss function asso-
ciated with the agent-environment interaction. Modern ap-
plications of RL such as robotics (Schulman et al., 2015; Lil-
licrap et al., 2015; Akkaya et al., 2019), game playing (Mnih
et al., 2013; Silver et al., 2018) and autonomous driving (Ki-
ran et al., 2021), almost invariably consist of large scale
environments where function approximation techniques are
necessary to allow the agent to generalize across different
states. Furthermore, some form of agent robustness is usu-
ally required to cope with environment irregularities that

1Blavatnik School of Computer Science, Tel Aviv University,
Tel Aviv, Israel 2Google Research, Tel Aviv, Israel. Correspon-
dence to: Uri Sherman <urisherman@mail.tau.ac.il>.

Proceedings of the 40𝑡ℎ International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

cannot be faithfully represented by stochasticity assump-
tions (see e.g., Dulac-Arnold et al., 2021).

Theoretical foundations for RL with function approximation
(e.g., Jiang et al., 2017; Yang & Wang, 2019; Jin et al.,
2020b; Agarwal et al., 2020) have been steadily coming into
fruition. The influential work of Jin et al. (2020b) has set the
ground for the de facto standard of linearly realizable RL;
the linear Markov Decision Process (linear MDP), and has
lead to a range of algorithmic approaches in this setting or
variants thereof (e.g., Zanette et al., 2020a; Agarwal et al.,
2020; Wagenmaker et al., 2022b, see also Agarwal et al.,
2019). Likewise, a growing line of work studies RL with
adversarial interventions, such as non-stationary dynamics
(Mao et al., 2021), adversarial corruptions (Lykouris et al.,
2021), delayed feedback (Lancewicki et al., 2022; Jin et al.,
2022), and adversarial costs (Even-Dar et al., 2009; Neu
et al., 2012; Rosenberg & Mansour, 2019; 2020; Jin et al.,
2020a). The latter is, arguably, the more fundamental and
well studied setting in the scope of adversarial RL.

The present paper aims at advancing state-of-the-art algorith-
mic methods for computationally and statistically efficient
RL in the linear MDP setup, under the challenging setting
of adversarially changing costs, unknown dynamics, and
bandit feedback. At this time, there exist only a handful of
papers that consider RL in a setup that combines function
approximation and adversarial costs, with most prior works
adopting one or more assumptions that alleviate the chal-
lenge of exploration. Cai et al. (2020) was the first work
to establish 𝑂 (

√
𝐾) regret over 𝐾 episodes in the related

model of linear mixture MDP, yet considered full informa-
tion feedback. Later, Neu & Olkhovskaya (2021) obtain the
same minimax optimal rates in terms of 𝐾 for linear MDPs
and bandit feedback, but with full knowledge of the environ-
ment dynamics, and an additional factor depending on the
coverage of the initial state-action distribution. Finally, the
recent work of Luo et al. (2021) establishes an 𝑂 (𝐾14/15)
guarantee in the linear MDP setup without any simplifying
assumptions, and an 𝑂 (𝐾2/3) regret bound in the more gen-
eral linear-𝑄 setting but with simulator access (albeit with a
computationally inefficient algorithm). Notably, to the best
of our knowledge, Luo et al. (2021) is the only prior work
to consider the adversarial linear MDP with bandit feedback
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in its full generality.

Contributions. Our main contribution significantly im-
proves over the existing prior art (Luo et al., 2021) in a
number of respects. We present a computationally efficient
algorithm for the most general setup without any exploratory
assumptions, and prove a regret bound of𝑂 (𝐾6/7) establish-
ing a substantial advancement with respect to the previous
𝑂 (𝐾14/15). In addition, we present a version of the same
algorithm under the assumption a simulator is available to
the learner, and prove it obtains an 𝑂 (𝐾2/3) bound match-
ing the state-of-the-art in this setup given by the linear-𝑄
algorithm of Luo et al. (2021) (which, notably, also applies
in a more general setup). However, our algorithm improves
upon that of Luo et al. (2021) in being computationally ef-
ficient, 1 and in requiring a weaker simulator, which we
use only to generate agent policy rollouts from the initial
state. Also noteworthy in this context is the algorithm of
Neu & Olkhovskaya (2021), which obtains an 𝑂 (

√
𝐾) re-

gret bound, though requires not only a simulator but also
perfect knowledge of the transition function.

Overview of techniques. Our work combines elements
from Jin et al. (2020b); Shani et al. (2020); Neu &
Olkhovskaya (2021); Luo et al. (2021) with a novel algorith-
mic approach towards exploration bonuses in linear MDPs.
We follow the insightful work of Luo et al. (2021) and con-
sider a regret decomposition and bonus design that at a
high level are similar to those presented in their work, but
reframed and extended to incorporate optimistic approxi-
mations of the bonus-to-go; the bonus function that drives
exploration. Our central observation is that the bonus-to-
go may be optimistically approximated using least squares
regression in the auxiliary full information bonus MDP,
in a manner that is efficient, and to an extent decoupled
from estimation of the cost function. The (non-linear) re-
ward function in this MDP is the immediate bonus function
that compensates for uncertainty in the instantaneous 𝑄-
estimates; importantly, while this is not a linear MDP, it is
still amenable to least squares value backups (e.g., Jin et al.,
2020b) owed to the linear structure in the dynamics.

During value backups in the bonus MDP, we incorporate
an additional bonus in order to maintain (w.h.p.) Bellman
consistency errors that are positive across the entire state
action space. This is a form of optimism employed in policy
optimization algorithms (e.g., Cai et al., 2020; Shani et al.,
2020), where the long term reward of the policy in each
value backup step is overestimated (as opposed to optimiz-
ing a value function that is an overestimate of the reward of
a benchmark policy). Unlike previous approaches that apply

1In order to compute a single action probability of the agent
policy, the algorithm of Luo et al. (2021) requires exponentially
many simulator samples, generated by traversing the tree structure
implicitly defined by the recursive bonus-policy-bonus relation.

this directly towards the loss (or reward) optimization, here
we utilize it solely for bonus calculation. Finally, through
a refined analysis, we simplify the framework of Luo et al.
(2021), remove the necessity of the dilation component, and
show we can use an immediate bonus function that is sig-
nificantly smaller than that used in Luo et al. (2021). In
particular, we keep the immediate bonus bounded (almost
surely) by a constant across the entire state-action space, a
property that is essential to arrive at a tighter bound for the
least squares estimation procedure.

1.1 Additional Related Work

Tabular RL with stationary and adversarial losses. Tab-
ular RL with stationary losses is perhaps the most fundamen-
tal and well studied framework, beginning with the works
of Auer & Ortner (2006); Tewari & Bartlett (2007); Jaksch
et al. (2010), and with many important advances more re-
cently (Dann & Brunskill, 2015; Azar et al., 2017; Dann
et al., 2017; Fruit et al., 2018; Jin et al., 2018). In the context
of policy optimization methods in particular, most of the
recent works consider the pure optimization perspective or
under simplifying exploratory assumptions (e.g., Bhandari
& Russo, 2019; Agarwal et al., 2021; Zhan et al., 2021; Lan,
2022), with the exception of Shani et al. (2020) that study
the exploration setting and will be discussed momentarily.

The study of adversarially changing costs was initiated in
the works of Even-Dar et al. (2009); Yu et al. (2009), and
can be largely divided into policy optimization (PO) based
methods (Neu et al., 2010; Shani et al., 2020) and algorithms
that optimize over the set of occupancy measures (Zimin &
Neu, 2013; Rosenberg & Mansour, 2019; Jin et al., 2020a),
where both approaches ultimately involve a mirror descent
(Nemirovskij & Yudin, 1983; Beck & Teboulle, 2003) opti-
mization component with online guarantees. In the context
of PO methods, which are more relevant to our work, Neu
et al. (2010) initially achieve 𝑂 (𝐾2/3) regret for the known
dynamics setup with bandit feedback. In a later paper, Shani
et al. (2020) present PO algorithms based on value backups
for the stochastic and adversarial settings with unknown dy-
namics and bandit feedback, establishing an 𝑂 (

√
𝐾) bound

in the stochastic case and 𝑂 (𝐾2/3) in the adversarial case.
The recent work of Luo et al. (2021) presents, for the tab-
ular case, a PO algorithm and prove it obtains the opti-
mal 𝑂 (

√
𝐾) bound. Their algorithm, as opposed to that of

Shani et al. (2020), is not based on value backups but rather
stochastic estimates of the cumulative cost. The algorithm
we present here combines both approaches.

RL with function approximation. The study of function
approximation in RL goes back a long way (e.g., Schweitzer
& Seidmann, 1985; Barto, 1990; Bradtke & Barto, 1996; see
also Sutton & Barto, 2018 and references therein), although
these earlier works did not provide polynomial sample effi-
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ciency. More recently, a line of work initiated by Yang &
Wang (2019; 2020); Jin et al. (2020b), studies MDPs with
linear structure and focuses on computationally and statisti-
cally efficient algorithms (e.g., Zanette et al., 2020b; Modi
et al., 2020; Wei et al., 2021; Wagenmaker et al., 2022a).
The linear MDP model we adopt here was introduced by Jin
et al. (2020b). Also noteworthy is the linear mixture MDP
(Modi et al., 2020; Ayoub et al., 2020; Zhou et al., 2021a;b),
which is a different model that in general is incomparable
with the linear MDP (Zhou et al., 2021b). Finally, there is a
rich line of works studying statistical properties of RL with
more general function approximation (e.g., Munos, 2005;
Jiang et al., 2017; Dong et al., 2020; Jin et al., 2021; Du
et al., 2021), although these usually do not provide compu-
tationally efficient algorithms.

Policy optimization with function approximation. For-
mulation of policy optimization methods that incorporate
function approximation was given in classical works such
as Sutton et al. (1999); Kakade (2001), although these did
not study convergence rates nor learning in the exploration
setting. More recently, several papers (e.g., Agarwal et al.,
2021; Liu et al., 2019) consider convergence properties of
policy optimization approaches from a pure optimization
perspective, or subject to exploratory assumptions such as
bounded concentrability coefficient (Munos, 2003; 2005;
Chen & Jiang, 2019), distribution mismatch coefficient or a
relative eigenvalue condition (Agarwal et al., 2021). More
relevant to our paper are works that consider policy opti-
mization in a setup that requires exploration be handled
algorithmically, such as Zanette et al. (2021) who improve
upon the prior work of Agarwal et al. (2020), both of which
consider stationary losses. The work of Cai et al. (2020) that
was mentioned earlier studies the adversarial setting, but in
the linear mixture MDP model and with full information
feedback.

Concurrent works on adversarial linear MDPs. Two
concurrent works study the same setup as ours; online linear
MDPs with adversarial costs, unknown dynamics, and ban-
dit feedback. Dai et al. (2023) propose a computationally ef-
ficient algorithm that obtains an𝑂 (𝐾8/9) regret bound using
an algorithmic approach similar to that of (Luo et al., 2021)
but with a different OMD regularizer, which contributes
as the main source of improvement. Dai et al. (2023) also
present a computationally inefficient algorithm for the more
general linear-Q setup that obtains a 𝑂 (

√
𝐾) bound when

given simulator access. The work of Kong et al. (2023) takes
a different approach; namely, a linear bandits blackbox algo-
rithm, and obtains a 𝑂 (𝐾4/5 + 1/𝜆★min)

2 regret bound, albeit
with a computationally inefficient algorithm. At a high level,
the algorithm proposed by Kong et al. (2023) first learns

2Here, 𝜆★min denotes the minimum eigenvalue of the best ex-
ploratory policy’s 2nd moment matrix.

approximations to the expected feature occupancies of a
class of sufficiently expressive policies, then runs a variant
of geometric-hedge (Dani et al., 2007) for the rest of the
game.

2 Problem Setup

Episodic MDPs. A finite horizon episodic MDP is defined
by the tuple M = (S,A, 𝐻,ℙ, ℓ, 𝑠1), where S denotes
the state space, A the action set, 𝐻 ∈ ℤ+ the length of
the horizon, ℙ = {ℙℎ}𝐻−1

ℎ=1 the time dependent transition
function, ℓ = {ℓℎ}𝐻ℎ=1 a sequence of loss functions, and
𝑠1 ∈ S the initial state that we assume to be fixed w.l.o.g.
The transition density given the agent is at state 𝑠 ∈ S at
time ℎ and takes action 𝑎 is given by ℙℎ (·|𝑠, 𝑎) ∈ Δ(S).
After the agent takes an action on the last time step 𝐻, the
episode terminates immediately. We assume the state space
S is measurable space (which may contain uncountably
many states) and the action set A is finite with 𝐴 B |A|. A
policy is defined by a mapping 𝜋 : S× [𝐻] → Δ(A), where
Δ(A) denotes the probability simplex over the action setA.
We let 𝜋ℎ (·|𝑠) ∈ Δ(A) denote the distribution over actions
given by 𝜋 at 𝑠, ℎ. Finally, we use the convention that for
any function 𝑉 : S → ℝ, we interpret ℙℎ𝑉 : S×A → ℝ as
the result of applying the conditional expectation operator
ℙℎ; ℙℎ𝑉 (𝑠, 𝑎) B 𝔼𝑠′∼ℙℎ ( · |𝑠,𝑎)𝑉 (𝑠′) (see Appendix A for
comments regarding this notation).

Episodic Linear MDPs with adversarial costs. We con-
sider the adversarial online learning setup, with unknown
dynamics and bandit feedback. In this setup, the agent in-
teracts with the MDP over the course of 𝐾 ≥ 1 episodes,
where in each episode, the loss function associated with the
MDP changes as chosen by an adversary that observes the
current and past player policies. The feedback provided
to the learner consists of the instantaneous scalar loss as-
sociated with the state-action pairs she has visited during
episode rollout. Our central structural assumption is that the
combination of transition function and adversarial losses
form a linear MDP (Jin et al., 2020b) in each episode.

Assumption 1 (Linear MDP with changing costs). The
learner interacts with a sequence of MDPs

{
M𝑘

}𝐾
𝑘=1,

M𝑘 = (S,A, 𝐻,ℙ, ℓ𝑘 , 𝑠1) that share all elements other
than the loss functions, such that the following holds.
There is a feature mapping 𝜙 : S × A → ℝ𝑑 that is
known to the learner, and for every ℎ ∈ [𝐻], 𝑑 un-
known signed measures 𝜓ℎ,1, . . . , 𝜓ℎ,𝑑 ∈ S → ℝ forming
𝜓ℎ (·) B

(
𝜓ℎ,1 (·), . . . , 𝜓ℎ,𝑑 (·)

)
∈ S → ℝ𝑑 , such that for

all ℎ, 𝑠, 𝑎, 𝑠′ ∈ [𝐻 − 1] × S × A × S:

ℙℎ (𝑠′ |𝑠, 𝑎) = 𝜙(𝑠, 𝑎)⊤𝜓ℎ (𝑠′). (1)

W.l.o.g., we assume ∥𝜙(𝑠, 𝑎)∥ ≤ 1 for all 𝑠, 𝑎, and that for
any measurable function 𝑓 : S → ℝ with ∥ 𝑓 ∥∞ ≤ 1, it
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holds that
∫ 𝜓ℎ (𝑠′) 𝑓 (𝑠′)d𝑠′ ≤ √𝑑 for all ℎ ∈ [𝐻]. In

addition, for all 𝑘;

ℓ𝑘ℎ (𝑠, 𝑎) = 𝜙(𝑠, 𝑎)
⊤c𝑘ℎ, (2)

where
{
c𝑘
ℎ

}
are adversarially chosen cost vectors. W.l.o.g.,

we assume
��𝜙(𝑠, 𝑎)⊤c𝑘

ℎ

�� ≤ 1 for all 𝑠, 𝑎, ℎ, 𝑘 , and
c𝑘
ℎ

 ≤ √𝑑
for all ℎ, 𝑘 .

The pseudocode for learner environment interaction is pro-
vided below in Protocol 1.

Protocol 1 Learner-Environment Interaction
parameters: (S,A, 𝐻,ℙ, 𝜙, 𝑠1;𝐾)
for 𝑘 = 1, . . . , 𝐾 do

agent decides on a policy 𝜋𝑘

adversary chooses 𝐻 cost vectors
{
c𝑘
ℎ

}
∈ ℝ𝑑

define ℓ𝑘
ℎ

: S × A → ℝ by ℓ𝑘
ℎ
(𝑠, 𝑎) = 𝜙(𝑠, 𝑎)⊤c𝑘

ℎ
.

environment resets to 𝑠𝑘1 = 𝑠1
for ℎ = 1, . . . , 𝐻 do

agent observes 𝑠𝑘
ℎ
∈ S

agent chooses 𝑎𝑘
ℎ
∼ 𝜋𝑘

ℎ
(·|𝑠𝑘

ℎ
)

agent observes and incurs loss ℓ𝑘
ℎ
= ℓ𝑘

ℎ
(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
)

if ℎ < 𝐻:
environment transitions to 𝑠𝑘

ℎ+1 ∼ ℙℎ (·|𝑠, 𝑎)
end for

end for

We make the following additional notes with regards to
the model we consider: (1) for any 𝑠, 𝑎 ∈ S × A, the
agent may evaluate 𝜙(𝑠, 𝑎) in 𝑂 (1) time; (2) we assume
an oblivious and deterministic adversary (but in fact our
results hold more generally for the case that the adversary is
random, and observes the agent’s policies, but not trajectory
realizations); (3) with slight overloading of notation, we
let ℓ𝑘

ℎ
= ℓ𝑘

ℎ
(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
) denote the random loss incurred by the

agent on episode 𝑘 time step ℎ.

Learning objective. The expected loss of a policy 𝜋 when
starting from state 𝑠 ∈ S at time step ℎ ∈ [𝐻] is given by
the value function;

𝑉 𝜋ℎ (𝑠; ℓ) B 𝔼

[
𝐻∑︁
𝑡=ℎ

ℓ𝑡 (𝑠𝑡 , 𝑎𝑡 ) | 𝑠ℎ = 𝑠, 𝜋, ℓ
]
, (3)

where we use the extra (; ℓ) notation to emphasize the spe-
cific loss function considered. The expected loss condi-
tioned on the agent taking action 𝑎 ∈ A on time step ℎ at
𝑠 and then continuing with 𝜋 is given by the action-value
function;

𝑄 𝜋ℎ (𝑠, 𝑎; ℓ) B 𝔼

[
𝐻∑︁
𝑡=ℎ

ℓ𝑡 (𝑠𝑡 , 𝑎𝑡 ) | 𝑠ℎ = 𝑠, 𝑎ℎ = 𝑎, 𝜋, ℓ
]
. (4)

The value and action-value functions of a policy 𝜋 in the
MDP

(
S,A, 𝐻,ℙ, ℓ𝑘 , 𝑠1

)
associated with episode 𝑘 ∈ [𝐾]

are denoted by, respectively;

𝑉
𝑘, 𝜋

ℎ
(𝑠) B 𝑉 𝜋ℎ (𝑠; ℓ

𝑘); 𝑄𝑘, 𝜋
ℎ
(𝑠, 𝑎) B 𝑄 𝜋ℎ (𝑠, 𝑎; ℓ𝑘),

where 𝑉 𝜋
ℎ
(𝑠; ℓ𝑘) and 𝑄 𝜋

ℎ
(𝑠, 𝑎; ℓ𝑘) have been defined in

Equations (3) and (4).

We let 𝜋★ denote the best policy in hindsight;

𝜋★ B arg min
𝜋

{
𝐾∑︁
𝑘=1

𝑉
𝑘, 𝜋

1 (𝑠1)
}
,

and seek to minimize the pseudo regret of the agent policy
sequence 𝜋1, . . . , 𝜋𝐾 ;

Regret B
𝐾∑︁
𝑘=1

𝑉
𝑘, 𝜋𝑘

1 (𝑠1) −𝑉 𝑘, 𝜋
★

1 (𝑠1). (5)

Finally, we note that 𝜋★ may depend on player decisions, as
the adversary is adaptive.

Additional notation and definitions. We let ∥·∥ = ∥·∥2
denote the standard Euclidean norm, and for a positive
definite matrix Λ ∈ ℝ𝑑×𝑑 , we let ∥𝑣∥Λ =

√
𝑣⊤Λ𝑣 de-

note the weighted norm induced by Λ. Further, we let
∥Λ∥ = ∥Λ∥op = max𝑣, ∥𝑣 ∥=1 𝑣

⊤Λ𝑣 denote the operator norm
of Λ. Finally, we use clip [x]ab B max {min {x, a} , b} to
denote clipping of a real scalar 𝑥 between 𝑎 ∈ ℝ and 𝑏 ∈ ℝ.

3 Algorithm and Main Result

The pseudocode for our main algorithm; Policy
Optimization with Least Squares Bonus Exploration, is
provided in Algorithm 1. The high level algorithmic tem-
plate is relatively simple; (1) Rollout 𝜋𝑘 in the environment;
(2) Obtain a (nearly) unbiased estimate 𝑄𝑘 of 𝑄𝑘 ; (3) Con-
struct a bonus-to-go estimate 𝐵𝑘 through least squares pol-
icy evaluation in an auxiliary bonus MDP; (4) Perform a
mirror-descent update step using the optimistic 𝑄𝑘 function
estimate given by 𝑄𝑘 − 𝐵𝑘 .

The bonus-to-go estimate is obtained by the least squares
policy evaluation subroutine Algorithm 2 (discussed in Sec-
tion 3.1), which outputs an approximation that is optimistic
and with bias that can be controlled efficiently. This pro-
vides for the major contributing factor in the final regret
guarantee; specifically, this approach along with a refined
instantaneous 𝑄-bonus design allows us to avoid the pol-
icy cover used in Luo et al. (2021), and leads to a simpler
algorithm that explores more efficiently. The final bonus
function 𝐵𝑘 encompasses two bonus types; one to compen-
sate for uncertainty in the 𝑄𝑘 estimates (𝑏𝑘 in Equation (9)),
and the other (𝑏ℙ,𝑘 in Algorithm 2) to compensate for un-
certainty in the estimation of the dynamics in the policy
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evaluation procedure. Intuitively speaking, given the agent
is at state 𝑠ℎ, her bonus for taking action 𝑎ℎ will be high
when the expected rollout following 𝑎ℎ traverses state action
pairs (𝑠𝑡 , 𝑎𝑡 ) for which (1) we have poor next state informa-
tion 𝑠𝑡+1, and (2) their feature vector 𝜙(𝑠𝑡 , 𝑎𝑡 ) points in a
direction in the state-action space for which we have poor
knowledge of past 𝑄-cost vectors q1

𝑡 , . . . , q𝑘𝑡 (these are the
low dimensional representations of the 𝑄 functions; see
Lemma 1). On a conceptual level, 𝑏ℙ,𝑘 drives exploration
for the purpose of learning the dynamics, and 𝑏𝑘 for the
sake of cost function information.

Algorithm parameters. Algorithm 1 takes as arguments
the mirror descent step-size 𝜂, the 2nd-moment regulariza-
tion parameter 𝛾, the bonus coefficients 𝛽 (for instantaneous
loss estimation) and 𝛽ℙ (for value backup estimation), and fi-
nally 𝜖, 𝜎2 which control respectively, the bias and variance
of the inverse 2nd-moment estimation procedure.

Two-way partitioned blocking. In order to estimate fea-
ture occupancy covariance matrices and Bellman backup
operators, Algorithm 1 plays each policy multiple times. For
a given parameter 𝜏 ≥ 1, we divide episodes 𝑘 ∈ [𝐾] into
⌈𝐾/(2𝜏)⌉ blocks, and assume for simplicity of exposition
that 𝐾/(2𝜏) is an integer. We define for all 𝑗 ∈ [𝐾/(2𝜏)];

𝑇𝑗 ,1 B {( 𝑗 − 1)𝜏 + 1, . . . , 𝑗𝜏} , (6)
𝑇𝑗 ,2 B { 𝑗𝜏 + 1, . . . , ( 𝑗 + 1)𝜏} , (7)
𝑇𝑗 B 𝑇𝑗 ,1 ∪ 𝑇𝑗 ,2. (8)

For all episodes 𝑘 ∈ 𝑇𝑗 (which we call block 𝑗), the policy
is held fixed and denoted 𝜋 ( 𝑗 ) . We let 𝜋𝑘 denote the policy
played on episode 𝑘 throughout, thus 𝜋𝑘 = 𝜋 ( 𝑗 ) for all
𝑘 ∈ 𝑇𝑗 . The two-way partitioning of each block described
above is motivated by the need to keep Q-function estimates
(nearly) unbiased.

These estimates build on multiplying the inverse covari-
ance estimator Σ̂+

𝑘ℎ𝛾
with the state-action feature vector

𝜙(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
) and the scalar cumulative loss

∑𝐻
𝑡=ℎ ℓ

𝑘
𝑡 . In order

to show (near) unbiasedness, we need to argue the inverse
covariance estimator is independent of the other factors.
The two way partitioning is a simple mechanism to ensure
the estimator Σ̂+

𝑘ℎ𝛾
does not involve samples from the k’th

episode (to which 𝜙(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
) and the cumulative loss belong).

Thus, the desired independence follows immediately (see
Lemma 2). Specifically, for 𝑘 ∈ 𝑇𝑗 ,1, we construct the
inverse-covariance estimator from the collection of samples
in 𝑇𝑗 ,2, which does not contain 𝑘 (note the estimation pro-
cedure takes place at the end of the block, hence this is
possible). Similarly, for for 𝑘 ∈ 𝑇𝑗 ,2, we use samples from
𝑇𝑗 ,1. Throughout, we let D𝑘 = {D𝑘

ℎ
}𝐻
ℎ=1 denote the dataset

used for estimations of episode 𝑘 , and slightly abuse nota-
tion by referring to it as either containing episode indices,
or transition tuples (𝑠𝑖

ℎ
, 𝑎𝑖
ℎ
, 𝑠𝑖
ℎ+1).

Algorithm 1 PO-LSBE
input: (𝜂, 𝛾, 𝛽, 𝛽ℙ, 𝜖 , 𝜎2)
Set 𝑀 = 48𝑑

𝛾𝜎
log 72𝑑

𝛾2𝜎
, 𝑁 = 2

𝛾
log 1

𝛾𝜖
, 𝜏 = 𝑀𝑁 .

Initialize 𝜋 (1) to take actions uniformly at random.
for 𝑗 = 1, . . . , ⌈𝐾/(2𝜏)⌉ do

Play 𝜋𝑘 = 𝜋 ( 𝑗 ) for the 2𝜏 episodes 𝑘 ∈ 𝑇𝑗 (defined in
Equation (8)), and collect (𝑠𝑘

ℎ
, 𝑎𝑘
ℎ
, ℓ𝑘
ℎ
)ℎ∈[𝐻 ],𝑘∈𝑇𝑗

for 𝑘 ∈ 𝑇𝑗 do
if 𝑘 ∈ 𝑇𝑗 ,1 populate D𝑘 with 𝑇𝑗 ,2 rollouts
otherwise (𝑘 ∈ 𝑇𝑗 ,2) populate D𝑘 with 𝑇𝑗 ,1 rollouts

Σ̂+
𝑘ℎ𝛾
← MGR(D𝑘

ℎ
; 𝑁, 𝑀, 𝛾) (see Algorithm 3)

q̂𝑘
ℎ
← Σ̂+

𝑘ℎ𝛾
𝜙(𝑠𝑘

ℎ
, 𝑎𝑘
ℎ
)∑𝐻

𝑡=ℎ ℓ
𝑘
𝑡

𝑄𝑘
ℎ
(𝑠, 𝑎) = 𝜙(𝑠, 𝑎)⊤q̂𝑘

ℎ

Define the 𝑄-bonus by

𝑏𝑘ℎ (𝑠, 𝑎) = (9)

𝛽

(
∥𝜙(𝑠, 𝑎)∥

Σ̂+
𝑘ℎ𝛾

+
〈
𝜋𝑘ℎ (·|𝑠), ∥𝜙(𝑠, ·)∥Σ̂+

𝑘ℎ𝛾

〉)
Compute the bonus-to-go with Algorithm 2;

𝐵𝑘 ← OLSPE(D𝑘 , 𝑏𝑘 ; 𝛽ℙ, 𝛽, 𝛾)

end for
Policy improvement step:

𝜋
( 𝑗+1)
ℎ
(𝑎 |𝑠) ∝ exp

(
−𝜂

𝑗∑︁
𝑖=1
L (𝑖)
ℎ
(𝑠, 𝑎)

)
where L ( 𝑗 )

ℎ
(𝑠, 𝑎) = 1

𝜏

∑︁
𝑘∈𝑇𝑗

𝑄𝑘ℎ (𝑠, 𝑎) − 𝐵
𝑘
ℎ (𝑠, 𝑎)

end for

Our main result stated below establishes the regret bound
for Algorithm 1.

Theorem 1. With an appropriate choice of parameters (see
Appendix B for details) and assuming 𝐾 = Ω((𝑑 log 𝑑)2),
Algorithm 1 obtains an expected regret guarantee of

𝔼 [Regret] = 𝑂
(
𝑑𝐻2𝐾6/7 + 𝑑3/2𝐻4𝐾5/7

)
,

where big-𝑂 hides constant and logarithmic factors.

3.1 Least Squares Policy Evaluation in Bonus MDPs

The Optimistic-Least-Squares-Policy-Evaluation (OLSPE)
procedure given in Algorithm 2 is a variant of LSVI-UCB
(Jin et al., 2020b, see also Agarwal et al., 2019) that is aimed
at policy evaluation, and tasked with the computation of the
bonus-to-go estimates 𝐵𝑘 . Unlike prior works, we evalu-
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ate the policy’s bonus (i.e., exploration) coverage, rather
than its loss performance (which is estimated separately, in
Algorithm 1) in an auxiliary full information bonus MDP.
Given the immediate 𝑄-bonus 𝑏𝑘 of episode 𝑘 , we consider
the bonus MDP

(
S,A, 𝐻,ℙ, 𝑏𝑘 , 𝑠1

)
, which should be in-

terpreted as a reward MDP, as the agent will be trying to
collect higher bonus values. It is immediate to see that this
is not a linear MDP, as the reward function 𝑏𝑘 is non-linear.
Nonetheless, the dynamics do admit a linear factorization
(as per Assumption 1), which allows the use of least squares
regression to approximate the value and action-value func-
tions in this MDP.

For any policy 𝜋, we denote the true value and action-value
functions in the bonus MDP of episode 𝑘 , respectively, by

𝐵
𝑘, 𝜋

ℎ
(𝑠, 𝑎) B 𝑄 𝜋ℎ (𝑠, 𝑎; 𝑏𝑘), (10)

𝑊
𝑘, 𝜋

ℎ
(𝑠) B 𝑉 𝜋ℎ (𝑠; 𝑏

𝑘). (11)

Algorithm 2 computes optimistic versions of the above func-
tions for the policy passed as input, which on episode 𝑘 is
always the agent’s policy 𝜋𝑘 . These are denoted by 𝐵𝑘 and
𝑊 𝑘 , and defined by the algorithm in Equations (14) and (15).
In accordance, we let ℙ̃𝑘

ℎ
defined in Equation (13) denote the

optimistic estimate of the conditional expectation operator
given by the dataset D𝑘

ℎ
. Our notation here is motivated

by the true conditional expectation operator ℙℎ; recall we
adopt the convention that ℙℎ𝑊 (𝑠, 𝑎) = 𝔼𝑠′∼ℙℎ ( · |𝑠,𝑎)𝑊 (𝑠′)
for any function𝑊 : S → ℝ.

Algorithm 2 OLSPE(D𝑘 , 𝑏𝑘 ; 𝛽ℙ, 𝛽, 𝛾)
Set 𝜆 = 1
𝑊 𝑘
𝐻+1 (·) = 0

for ℎ = 𝐻, . . . , 1 do

Λ𝑘ℎ ← 𝜆𝐼 +
∑︁

𝑖∈D𝑘
ℎ

𝜙(𝑠𝑖ℎ, 𝑎
𝑖
ℎ)𝜙(𝑠

𝑖
ℎ, 𝑎

𝑖
ℎ)
⊤

ŵ𝑘ℎ ←
(
Λ𝑘ℎ

)−1 ∑︁
𝑖∈D𝑘

ℎ

𝜙(𝑠𝑖ℎ, 𝑎
𝑖
ℎ)𝑊

𝑘
ℎ+1 (𝑠

𝑖
ℎ+1)

𝑏
ℙ,𝑘
ℎ
(𝑠, 𝑎) = 𝛽ℙ ∥𝜙(𝑠, 𝑎)∥(Λ𝑘

ℎ)−1 (12)

ℙ̃𝑘ℎ𝑊
𝑘
ℎ+1 (𝑠, 𝑎) = 𝜙(𝑠, 𝑎)

⊤ŵ𝑘ℎ + 𝑏
ℙ,𝑘
ℎ
(𝑠, 𝑎) (13)

𝐵max
ℎ = 2𝛽(𝐻 − ℎ + 1)/√𝛾

𝐵𝑘ℎ (𝑠, 𝑎) = clip
[
𝑏𝑘ℎ (𝑠, 𝑎) + ℙ̃

𝑘
ℎ𝑊

𝑘
ℎ+1 (𝑠, 𝑎)

]𝐵max
ℎ

0
(14)

𝑊 𝑘
ℎ (𝑠) =

〈
𝜋𝑘 (·|𝑠), 𝐵𝑘ℎ (𝑠, ·)

〉
(15)

end for
return 𝐵𝑘 =

{
𝐵𝑘
ℎ

}
ℎ∈[𝐻 ]

3.2 Obtaining unbiased 𝑄 estimates

In order to construct estimates of the loss vector associ-
ated with the action-value function of episode 𝑘 time step

ℎ, 𝑄𝑘, 𝜋
𝑘

ℎ
, we follow prior works and use a linear bandit

type estimation procedure (e.g., Dani et al., 2007). Unlike
the linear bandit setting, here we do not know the feature
occupancy covariance matrix, and moreover it may not be
well conditioned. We address both of these issues in the
same natural manner as did Luo et al. (2021); we estimate
a 𝛾-regularized version of the inverse covariance using the
Matrix Geometric Resampling (MGR) procedure of Neu &
Olkhovskaya (2020a) (see also Neu & Olkhovskaya, 2021).
Like Luo et al. (2021), we employ a version of MGR given
in Algorithm 3 that averages over multiple estimators to get
better control of the variance of the final output, however
we obtain tighter bounds owed to a refined analysis (see
Lemma 3).

Algorithm 3 MGR (D, 𝑁, 𝑀, 𝛾)
Set 𝑐 = 1/2
Enumerate samples in D by

{
𝜙𝑚,𝑛

}
𝑚∈[𝑀 ],𝑛∈[𝑁 ]

Let 𝐴𝑚,𝑛 = 𝛾𝐼 + 𝜙𝑚,𝑛𝜙⊤𝑚,𝑛 ∀𝑚, 𝑛
for 𝑚 = 1, . . . , 𝑀 do

for 𝑛 = 1, . . . , 𝑁 do
Σ̂
(𝑛)
𝑚,𝛾 ←

∏𝑛
𝑖=1 (𝐼 − 𝑐𝐴𝑚,𝑖)

end for
Σ̂+𝑚,𝛾 ← 𝑐𝐼 + 𝑐∑𝑁

𝑛=1 Σ̂
(𝑛)
𝑚,𝛾

end for
return Σ̂+𝛾 = 1

𝑀

∑𝑀
𝑚=1 Σ̂

+
𝑚,𝛾

4 The Simulator Setting

The pseudocode for the simulator version of our method
is given in Algorithm 4 below. It has the same structure
as the simulator based algorithm proposed by Luo et al.
(2021) for the linear-𝑄 setting, only that our bonus-to-go is
computed using optimistic approximations via Algorithm 2.
Notably, the simulator required by our algorithm is weaker
than that of Luo et al. (2021); we only need to execute agent
policies from the initial state 𝑠1, but do not require next state
samples from arbitrarily chosen state action pairs. Formally,
we make the following assumption in this section.

Assumption 2 (simulator access). The learner has access
to a simulator, which takes a policy 𝜋 as input and returns
a trajectory (𝑠ℎ, 𝑎ℎ)𝐻ℎ=1 sampled from the MDP using 𝜋;
𝑎ℎ ∼ 𝜋(·|𝑠ℎ), and 𝑠ℎ+1 ∼ ℙℎ (·|𝑠ℎ, 𝑎ℎ).

We note that Algorithm 4 follows the exact same algorith-
mic design as Algorithm 1; only that instead of blocking,
the version presented here executes simulator rollouts. The
significance of the result presented next is two-fold. First,
it establishes the state-of-the-art regret bound for the sim-
ulator setting with a computationally efficient algorithm.
Second, it demonstrates the guarantee our approach would
yield without the limiting factor of the number of online
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samples; specifically, that given𝑂 (𝐾4/3) additional samples
per episode, we arrive at a 𝑂 (𝐾2/3) regret bound.

Theorem 2. With an appropriate choice of parameters and
assuming 𝐾 = Ω((𝑑 log 𝑑)2), under Assumption 2, Algo-
rithm 4 obtains an expected regret guarantee of

𝔼 [Regret] = 𝑂
(
𝐻2 (𝑑𝐾)2/3 + 𝐻4 (𝑑𝐾)1/3

)
,

where big-𝑂 hides constant and logarithmic factors. Fur-
thermore, the number of simulator rollouts required per
episode is 𝑂 (𝐾4/3).

Algorithm 4 PO-LSBE (simulator version)
input: (𝜂, 𝛾, 𝛽, 𝛽ℙ, 𝜖 , 𝜎2), and a simulator
Set 𝑀 = 48𝑑

𝛾𝜎
log 72𝑑

𝛾2𝜎
, 𝑁 = 2

𝛾
log 1

𝛾𝜖
, 𝜏 = 𝑑2𝑀𝑁 .

Initialize 𝜋1 to take actions uniformly at random.
for 𝑘 = 1, . . . , 𝐾 do

Rollout 𝜋𝑘 in and collect
{
(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
, ℓ𝑘
ℎ
)
}𝐻
ℎ=1

Populate D𝑘 with 𝜏 simulator rollouts of 𝜋𝑘

Σ̂+
𝑘ℎ𝛾
← MGR(D𝑘

ℎ
; 𝑁, 𝑀, 𝛾) (see Algorithm 3)

q̂𝑘
ℎ
← Σ̂+

𝑘ℎ𝛾
𝜙(𝑠𝑘

ℎ
, 𝑎𝑘
ℎ
)∑𝐻

𝑡=ℎ ℓ
𝑘
𝑡

𝑄𝑘
ℎ
(𝑠, 𝑎) = 𝜙(𝑠, 𝑎)⊤q̂𝑘

ℎ

Define the 𝑄-bonus as in Equation (9)
Compute the bonus-to-go with Algorithm 2;

𝐵𝑘 ← OLSPE(D𝑘 , 𝑏𝑘 ; 𝛽ℙ, 𝛽, 𝛾)

Policy improvement step:

𝜋𝑘+1ℎ (𝑎 |𝑠) ∝ exp

(
−𝜂

𝑘∑︁
𝑖=1

𝑄𝑖ℎ (𝑠, 𝑎) − 𝐵
𝑖
ℎ (𝑠, 𝑎)

)
end for

5 Analysis of Main Algorithm

In this section, we present an overview of the proof of
Theorem 1. We will make use of some additional no-
tation described next. The state-action occupancy mea-
sure induced by a policy 𝜋 on time step ℎ is denoted
𝑑 𝜋
ℎ
(𝑠, 𝑎) = Pr(𝑠ℎ = 𝑠, 𝑎ℎ = 𝑎 | 𝜋), and with slight over-

loading 𝑑 𝜋
ℎ
(𝑠) = ∑

𝑎 𝑑
𝜋
ℎ
(𝑠, 𝑎) denotes the state occupancy

measure. In sake of conciseness, we let

𝑑𝑘ℎ B 𝑑 𝜋
𝑘

ℎ , 𝑑★ℎ B 𝑑 𝜋
★

ℎ , (16)

denote the occupancy measures of, respectively, the agent’s
policy on episode 𝑘 and the benchmark policy 𝜋★. We let
𝔼𝑘 [·] = 𝔼

[
·|𝜋𝑘 , . . . , 𝜋1] denote the expected value of ran-

dom variables conditioned on the sequence of agent policies

up to and including episode 𝑘; and note this only indicates
conditioning on policies and not trajectory rollouts. Finally,
we may also use the more compact notation

𝑄𝑘ℎ B 𝑄
𝑘, 𝜋𝑘

ℎ
, (17)

to refer to the true action-value function of the agent’s policy
𝜋𝑘 in the MDP of episode 𝑘 .

In what follows, we present the high level components of the
analysis and provide a proof sketch for Theorem 1; for the
full technical details, see Appendix B. Our high level proof
structure is an extended (and slightly reframed) version of
the one proposed by Luo et al. (2021). We consider the
following regret decomposition;

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

𝔼𝑠∼𝑑★
ℎ

[〈
𝑄𝑘ℎ (𝑠, ·) −𝑄

𝑘
ℎ (𝑠, ·), 𝜋

𝑘
ℎ (·|𝑠)

〉]
︸                                                       ︷︷                                                       ︸

BIAS1

+
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

𝔼𝑠∼𝑑★
ℎ

[〈
𝑄𝑘ℎ (𝑠, ·) −𝑄

𝑘
ℎ (𝑠, ·), 𝜋

★
ℎ (·|𝑠)

〉]
︸                                                       ︷︷                                                       ︸

BIAS2

+
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

𝔼𝑠∼𝑑★
ℎ

[〈
𝑄𝑘ℎ (𝑠, ·), 𝜋

𝑘
ℎ (·|𝑠) − 𝜋

★
ℎ (·|𝑠)

〉]
︸                                                      ︷︷                                                      ︸

OMD

+
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

𝔼𝑠∼𝑑★
ℎ

[〈
𝐵𝑘ℎ (𝑠, ·), 𝜋

𝑘
ℎ (·|𝑠) − 𝜋

★
ℎ (·|𝑠)

〉]
︸                                                     ︷︷                                                     ︸

EXPLORATION

,

where 𝑄𝑘
ℎ
(𝑠, 𝑎) B 𝑄𝑘

ℎ
(𝑠, 𝑎) − 𝐵𝑘

ℎ
(𝑠, 𝑎). An important ob-

servation made in Luo et al. (2021) was that with an ap-
propriate bonus design, the bias and OMD terms contribute∑
𝑘 𝑉

𝜋★ (𝑠1; 𝑏𝑘), while the exploration term contributes the
exact negative of this quantity. Fortunately, what we will
pay for exploration (with a positive term), are the bonuses
collected along trajectories of the agent’s policy, which may
be bounded efficiently.

Bounding the exploration term. We begin by establish-
ing confidence bounds on the bonus-to-go estimations com-
puted by Algorithm 2 and defined in Equations (14) and (15).

Lemma (simplified statement of Lemma 4). For any 𝛿 > 0,
an appropriate choice of parameters ensures that w.p. ≥ 1−𝛿
the following holds for all 𝑘, ℎ, 𝑠, 𝑎;

𝐵𝑘ℎ (𝑠, 𝑎) ≥ 𝑏
𝑘
ℎ (𝑠, 𝑎) + ℙℎ𝑊

𝑘
ℎ+1 (𝑠, 𝑎) (18)

𝐵𝑘ℎ (𝑠, 𝑎) ≤ 𝑏
𝑘
ℎ (𝑠, 𝑎) + ℙℎ𝑊

𝑘
ℎ+1 (𝑠, 𝑎) + 2𝑏ℙ,𝑘

ℎ
(𝑠, 𝑎) (19)

The proof follows from uniform concentration of the least
squares estimates over the class of bonus value functions
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explored by the algorithm; the arguments are similar in
spirit to those made in the work of Jin et al. (2020b). Next,
we use the confidence bounds to deduce a bound on the
exploration term. The lemma below contains a part that is
implicit in Luo et al. (2021) Lemma B.1, and an extension
to incorporate the effect of the bonus-to-go approximations.
We note our proof below provides a simpler argument than
the original of Luo et al. (2021), by offloading most of the
technicalities to the extended value difference Lemma 26.

Lemma (compact restatement of Lemma 10). Assume that
both Equations (18) and (19) hold. Then, we have that
EXPLORATION ≤

2
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

𝔼𝑠,𝑎∼𝑑𝑘
ℎ

[
𝑏
ℙ,𝑘
ℎ
(𝑠, 𝑎) + 𝑏𝑘ℎ (𝑠, 𝑎)

]
−

𝐾∑︁
𝑘=1

𝑉
𝑘, 𝜋★

1 (𝑠1; 𝑏𝑘). (20)

Proof sketch. By the lower bound on 𝐵𝑘
ℎ
(𝑠, 𝑎) Equation (18),

we have EXPLORATION ≤

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

𝔼𝑠∼𝑑★
ℎ

[〈
𝐵𝑘ℎ (𝑠, ·), 𝜋

𝑘
ℎ (·|𝑠) − 𝜋

★
ℎ (·|𝑠)

〉]
+

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

𝔼𝑠,𝑎∼𝑑★
ℎ

[
𝐵𝑘ℎ (𝑠, 𝑎) − 𝑏

𝑘
ℎ (𝑠, 𝑎) − ℙℎ𝑊

𝑘
ℎ+1 (𝑠, 𝑎)

]
=

𝐾∑︁
𝑘=1

𝑊 𝑘
1 −𝑊

𝑘, 𝜋★

1 ,

where the inequality is since we only add non-negative
terms, and the equality follows from the extended value
difference Lemma 26 with 𝑉 𝜋1 = 𝑊 𝑘

1 = 𝑊
𝑘, 𝜋𝑘

1 and
𝑉 𝜋

′

1 = 𝑊
𝑘, 𝜋★

1 (and we recall definitions in Equations (11)
and (15)). Next, using Lemma 26 again and our upper
bound on 𝐵𝑘

ℎ
(𝑠, 𝑎) given by Equation (19), establishes

that
∑𝐾
𝑘=1𝑊

𝑘
1 −𝑊

𝑘, 𝜋𝑘

1 ≤ 2
∑𝐾
𝑘=1

∑𝐻
ℎ=1 𝔼𝑠,𝑎∼𝑑𝑘

ℎ

[
𝑏
ℙ,𝑘
ℎ
(𝑠, 𝑎)

]
.

Therefore,

𝐾∑︁
𝑘=1

𝑊 𝑘
1 −𝑊

𝑘, 𝜋★

1 =

𝐾∑︁
𝑘=1

𝑊 𝑘
1 −𝑊

𝑘, 𝜋𝑘

1 +
𝐾∑︁
𝑘=1

𝑊
𝑘, 𝜋𝑘

1 −𝑊 𝑘, 𝜋★

1

≤ 2
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

𝔼𝑠,𝑎∼𝑑𝑘
ℎ

[
𝑏
ℙ,𝑘
ℎ
(𝑠, 𝑎)

]
+

𝐾∑︁
𝑘=1

𝑊
𝑘, 𝜋𝑘

1 −𝑊 𝑘, 𝜋★

1 ,

which completes the proof after substituting for the defini-
tion of true bonus value functions Equation (11). □

From this point, it is not hard to obtain an in expectation

bound;

𝔼 [EXPLORATION]

≲ 𝔼

[
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

𝔼𝑑𝑘
ℎ

[
𝑏
ℙ,𝑘
ℎ
(𝑠, 𝑎) + 𝑏𝑘ℎ (𝑠, 𝑎)

] ]
− 𝔼

[
𝐾∑︁
𝑘=1

𝑉
𝑘, 𝜋★

1 (𝑠1; 𝑏𝑘)
]
. (21)

Notably, the arguments thus far do not depend on the particu-
lar form of the immediate bonuses 𝑏𝑘 , suggesting we would
like to choose the bonus so that as much of BIAS1, BIAS2
and OMD can be expressed as 𝑉 𝑘, 𝜋

★

1 (𝑠1; 𝑏𝑘).

Bounding BIAS1 + BIAS2. To bound these terms, we
employ relatively standard arguments in similar nature to
those of Luo et al. (2021). However, we aim for a different
immediate bonus function, earning important savings in the
policy evaluation procedure. Henceforth, we let

Σ𝑘ℎ B 𝔼𝑠,𝑎∼𝑑𝑘
ℎ

[
𝜙(𝑠, 𝑎)𝜙(𝑠, 𝑎)⊤

]
(22)

denote the true covariance matrix of the feature occupancy
induced by 𝜋𝑘 on time step ℎ, and denote by Σ𝑘ℎ𝛾 B 𝛾𝐼 +
Σ𝑘ℎ the 𝛾-regularized version of it.
Lemma (simplified restatement of Lemma 7). For the im-
mediate bonus function 𝑏𝑘 defined in Equation (9) and an
appropriate choice of parameters, we have that the expected
bias terms are bounded as

𝔼 [BIAS1 + BIAS2] ≤(√︃
𝛾𝑑𝐻2

)
𝔼

[
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

𝔼𝑠∼𝑑★
ℎ

[∑︁
𝑎

𝑢𝑘ℎ (𝑠, 𝑎)
] ]
+ 4𝜖𝐻2𝐾,

where 𝑢𝑘
ℎ
(𝑠, 𝑎) B

(
𝜋𝑘
ℎ
(𝑎 |𝑠) + 𝜋★

ℎ
(𝑎 |𝑠)

)
∥𝜙(𝑠, 𝑎)∥

Σ̂+
𝑘ℎ𝛾

.

Proof sketch. Since the MDPs on each episode are linear,
we have 𝑄𝑘, 𝜋

𝑘

ℎ
(𝑠, 𝑎) = 𝜙(𝑠, 𝑎)⊤q𝑘

ℎ
for some q𝑘

ℎ
∈ ℝ𝑑 of

bounded norm. In addition,

𝔼𝑘
[
q̂𝑘ℎ

]
= 𝔼𝑘

[
Σ̂+𝑘ℎ𝛾

]
Σ𝑘ℎq𝑘ℎ,

and with an appropriate choice of parameters, our inverse
covariance estimator is only 𝜖-biased (see Lemma 3), which
can be used to show that

𝔼𝑘

[
𝑄𝑘ℎ (𝑠, 𝑎) −𝑄

𝑘
ℎ (𝑠, 𝑎)

]
= 𝔼𝑘

[
𝜙(𝑠, 𝑎)⊤

(
q𝑘ℎ − q̂𝑘ℎ

)]
≤ 𝛾𝜙(𝑠, 𝑎)⊤Σ−1

𝑘ℎ𝛾q𝑘ℎ + 𝜖𝐻.

Using standard algebraic manipulations, we can
further bound the first term on the RHS by√︁
𝛾𝑑𝐻𝔼𝑘

[
∥𝜙(𝑠, 𝑎)∥

Σ̂+
𝑘ℎ𝛾

]
+ 𝜖𝐻, which leads to

𝔼𝑘

[
𝑄𝑘ℎ (𝑠, 𝑎) −𝑄

𝑘
ℎ (𝑠, 𝑎)

]
≤

√︁
𝛾𝑑𝐻𝔼𝑘

[
∥𝜙(𝑠, 𝑎)∥

Σ̂+
𝑘ℎ𝛾

]
+ 2𝜖𝐻.
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The proof is complete by summing the appropriate terms in
BIAS1 and BIAS2, and adding them together. □

From this point, it is not hard to show that owed to our
choice of bonus function 𝑏𝑘 , the result of the above lemma
becomes;

𝔼 [BIAS1 + BIAS2] ≲ 1
2
𝔼

[
𝐾∑︁
𝑘=1

𝑉 𝜋
★

1 (𝑠1; 𝑏𝑘)
]
+ 𝜖𝐻2𝐾.

(23)

Bounding OMD term. The variance of our estimators
Σ̂+
𝑘ℎ𝛾

comes into play in the second moment bound derived
on the basic mirror-descent guarantee. Using a refined anal-
ysis, we show in Lemma 3 that 𝜏 = 𝑂 (1/𝛾2) samples are
sufficient to ensure, for 𝜎 = 1/4;

𝔼
[
Σ̂+𝑘ℎ𝛾Σ𝑘ℎ𝛾Σ̂

+
𝑘ℎ𝛾

]
⪯ 2𝔼

[
Σ̂+𝑘ℎ𝛾

]
+ 𝜎𝐼,

Using the above, we prove;
Lemma (simplified restatement of Lemma 6). Upon execut-
ing Algorithm 1 with an appropriate choice of parameters,
we have for any 𝑠, ℎ;

𝔼

[
𝐾∑︁
𝑘=1

〈
𝑄𝑘ℎ (𝑠, ·), 𝜋

𝑘
ℎ (·|𝑠) − 𝜋

★
ℎ (·|𝑠)

〉]
≲
𝜂𝐻2
√
𝛾
𝔼

[
𝐾∑︁
𝑘=1

∑︁
𝑎

𝜋𝑘ℎ (𝑎 |𝑠) ∥𝜙(𝑠, 𝑎)∥Σ̂+
𝑘ℎ𝛾

]
+ 𝜏
𝜂
+ 𝜂𝛽

2𝐻2𝐾

𝛾
+ 𝜂(1 + 𝜎)𝐻2𝐾.

Taken together, these, along with our choice of bonus func-
tion 𝑏𝑘 , establish that

𝔼 [OMD] ≲ 1
2
𝔼

[
𝐾∑︁
𝑘=1

𝑉 𝜋
★

1 (𝑠1; 𝑏𝑘)
]
+ 𝐻

𝜂𝛾2 + 𝜂𝐻
3𝐾. (24)

Concluding the proof. Combining Equations (21), (23)
and (24), and focusing on dependence on 𝐾 , we obtain

𝔼 [Regret] ≲ 𝔼

[
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

𝔼𝑑𝑘
ℎ

[
𝑏
ℙ,𝑘
ℎ
(𝑠, 𝑎) + 𝑏𝑘ℎ (𝑠, 𝑎)

] ]
+ 1
𝜂𝛾2 + 𝜂𝐾 + 𝜖𝐾.

We bound the bonus terms collected along the agent’s tra-
jectories above using standard arguments in Lemmas 11
and 13, arriving at

𝔼 [Regret] ≲ √𝛾𝐾 + 1
𝜂𝛾2 + 𝜂𝐾 + 𝜖𝐾.

We can easily rid of the bias term 𝜖𝐾 as 𝜏 depends on it
only logarithmically. Finally, the first two terms dominate
the regret at 𝑂 (𝐾6/7) for the setting of 𝜂 = 𝛾/(2𝐻), and
𝛾 = 𝐾−2/7, and the proof is complete.
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A Analysis Preliminaries

For convenience, the table below summarizes most of the notation used throughout the analysis.

ℙℎ (·|𝑠, 𝑎) The probability density function of the next state given the agent is at 𝑠 and takes action 𝑎

ℙℎ𝑉 : S × A → ℝ For any function 𝑉 : S → ℝ, defined by ℙℎ𝑉 (𝑠, 𝑎) = 𝔼𝑠′∼ℙℎ ( · |𝑠,𝑎)𝑉 (𝑠′)

𝔼𝑘 [·] Expectation conditioned on past policies; 𝔼𝑘 [·] B 𝔼
[
·|𝜋1, . . . , 𝜋𝑘

]
𝑑𝑘
ℎ
, 𝑑★
ℎ

State and state-action occupancy measures of 𝜋𝑘 , 𝜋★.

𝐷𝑘 =
{
D𝑘
ℎ

}
The dataset used to compute 𝐵𝑘 and Σ̂+

𝑘ℎ𝛾
. Contains episode indices / tuples

(
𝑠𝑖
ℎ
, 𝑎𝑖
ℎ
, 𝑠𝑖
ℎ+1

)
c𝑘
ℎ
∈ ℝ𝑑 The adversarially chosen cost vector of episode 𝑘

ℓ𝑘
ℎ
(𝑠, 𝑎) The loss function of episode 𝑘 applied to 𝑠, 𝑎; ℓ𝑘

ℎ
(𝑠, 𝑎) = 𝜙(𝑠, 𝑎)⊤c𝑘

ℎ

ℓ𝑘
ℎ
∈ ℝ Loss of the agent on episode 𝑘 time ℎ; ℓ𝑘

ℎ
= ℓ𝑘

ℎ
(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
) (slight notation overloading here)

𝑄𝑘, 𝜋 The 𝑄 function of policy 𝜋 in the MDP of episode 𝑘

𝑄𝑘 The true 𝑄 function of policy 𝜋𝑘 in the MDP of episode 𝑘

q𝑘
ℎ
∈ ℝ𝑑 The low dimensional representation of 𝑄𝑘, 𝜋

𝑘

ℎ

q̂𝑘
ℎ
∈ ℝ𝑑 (nearly) unbiased estimate of q𝑘

ℎ
, see Algorithm 1

𝑄𝑘
ℎ

(nearly) unbiased estimate of 𝑄𝑘, 𝜋
𝑘

ℎ
; 𝑄𝑘

ℎ
(𝑠, 𝑎) = 𝜙(𝑠, 𝑎)⊤q̂𝑘

ℎ
; see Algorithm 1

𝑏𝑘
ℎ

Immediate bonus (also referred to as 𝑄-bonus) function; see Algorithm 1

𝑏
ℙ,𝑘
ℎ

Dynamics bonus function, used for bonus-to-go optimism; see Algorithm 2

𝐵
𝑘, 𝜋

ℎ
True action-value function in the bonus MDP 𝐵𝑘, 𝜋

ℎ
(𝑠, 𝑎) = 𝑄 𝜋

ℎ
(𝑠, 𝑎; 𝑏𝑘) (aka bonus-to-go)

𝑊
𝑘, 𝜋

ℎ
True value function in the bonus MDP;𝑊 𝑘, 𝜋

ℎ
= 𝑉 𝜋

ℎ
(𝑠; 𝑏𝑘)

𝐵𝑘
ℎ

The optimistic approximation of 𝐵𝑘, 𝜋
𝑘

ℎ
(aka bonus-to-go approximation) ; see Algorithm 2

𝑊 𝑘
ℎ

The optimistic approximation of𝑊 𝑘, 𝜋𝑘

ℎ
; see Algorithm 2

𝑃𝑘
ℎ
𝑊 𝑘
ℎ+1 : S × A → ℝ The optimistic approximation of ℙℎ𝑊 𝑘

ℎ+1; see Algorithm 2

Λ𝑘
ℎ
∈ ℝ𝑑×𝑑 Empirical non-normalized covariance of 𝑑𝑘

ℎ
; see Algorithm 2

ŵ𝑘
ℎ
∈ ℝ𝑑 Estimate of the low dimensional representation of ℙℎ𝑊 𝑘

ℎ+1 : S × A → ℝ see Algorithm 2

Σ𝑘ℎ ∈ ℝ𝑑×𝑑 Feature occupancy covariance; Σ𝑘ℎ = 𝔼𝑠,𝑎∼𝑑𝑘
ℎ
[𝜙(𝑠, 𝑎)𝜙(𝑠, 𝑎)⊤]

Σ𝑘ℎ𝛾 ∈ ℝ𝑑×𝑑 𝛾-regularized feature occupancy covariance; Σ𝑘ℎ𝛾 = 𝛾𝐼 + Σ𝑘ℎ
Σ̂+
𝑘ℎ𝛾
∈ ℝ𝑑×𝑑 (nearly) unbiased estimate of Σ−1

𝑘ℎ𝛾
, computed by Algorithm 3

𝜆 Regularization parameter for least squares backups in Algorithm 2, it is set to 𝜆 = 1 throughout.

𝛾 Regularization parameter for inverse covariance estimation, used in Algorithm 3

𝛽 𝑄-bonus function factor (see Equation (9))

𝛽ℙ Dynamics bonus function factor (see Equation (12))

Notation for conditional expectation operators. We use the convention that for any function 𝑉 : S → ℝ, the conditional
expectation operator is denoted by ℙℎ;

ℙℎ𝑉 (𝑠, 𝑎) B 𝔼𝑠′∼ℙℎ ( · |𝑠,𝑎)𝑉 (𝑠′). (25)

13
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We note the motivation for this notation comes from considering (when the state space is finite) the matrix ℙℎ ∈ ℝ𝑆𝐴×𝑆
where 𝑆 = |S|, and the vector 𝑉 ∈ ℝ𝑆 . Then the result of multiplying them is indeed a vector ℙℎ𝑉 ∈ ℝ𝑆𝐴 with ℙℎ𝑉 (𝑠, 𝑎) =∑
𝑠′ ℙℎ (𝑠′ |𝑠, 𝑎)𝑉 (𝑠′) = 𝔼𝑠′∼ℙℎ ( · |𝑠,𝑎)𝑉 (𝑠′). In similar spirit and with slight abuse of notation, we let ℙ̃𝑘

ℎ
: ℝ𝑆 → ℝ𝑆𝐴 denote

an optimistic conditional expectation that is not a linear operator, but rather defined by;

ℙ̃𝑘ℎ𝑊 (𝑠, 𝑎) B (ℙ̃
𝑘
ℎ𝑊) (𝑠, 𝑎) B ℙ̂𝑘ℎ𝑊 (𝑠, 𝑎) + 𝑏

ℙ,𝑘
ℎ
(𝑠, 𝑎), where ℙ̂𝑘ℎ B

(
Λ𝑘ℎ

)−1 ∑︁
𝑖∈D𝑘

ℎ

𝜙(𝑠𝑖ℎ, 𝑎
𝑖
ℎ)e[𝑠

𝑖
ℎ+1]

⊤,

where e[𝑠] denotes the 𝑠’th standard basis vector in ℝ𝑆 . Thus, the ℙ̃𝑘
ℎ

operator is composed from a linear one ℙ̂𝑘
ℎ

plus a
bonus term. The above decomposition is discussed to motivate our notation, but otherwise is not needed anywhere in our
proofs as we always apply ℙ̃𝑘

ℎ
to𝑊 𝑘

ℎ+1.

Bellman consistency equations. The value and action-value functions, in any MDP, satisfy;

𝑄 𝜋ℎ = ℓℎ + ℙℎ𝑉 𝜋ℎ+1 (26)

𝑉 𝜋ℎ (𝑠) =
〈
𝜋(·|𝑠), 𝑄 𝜋ℎ (𝑠, ·)

〉
(27)

Preliminary lemmas.
Lemma 1. LetM = (S,A, 𝐻,ℙ, ℓ) be any linear MDP (see Assumption 1) with ℓℎ (𝑠, 𝑎) = 𝜙(𝑠, 𝑎)⊤cℎ for cost vectors
{cℎ}𝐻ℎ=1 ⊂ ℝ𝑑 . Then, for any policy 𝜋 and time step ℎ, there exists q𝜋

ℎ
∈ ℝ𝑑 such that 𝑄 𝜋

ℎ
(𝑠, 𝑎) = 𝜙(𝑠, 𝑎)⊤q𝜋

ℎ
. Furthermore,q𝜋

ℎ

 ≤ 𝐻√𝑑.

Proof. Observe;

𝑄 𝜋ℎ (𝑠, 𝑎) = ℓℎ (𝑠, 𝑎) + 𝔼
[
𝑉 𝜋ℎ+1 (𝑠ℎ+1) | 𝑠ℎ = 𝑠, 𝑎ℎ = 𝑎

]
= 𝜙(𝑠, 𝑎)⊤

(
cℎ +

∫
𝜓ℎ (𝑠′)𝑉 𝜋ℎ+1 (𝑠

′)d𝑠′
)
,

thus the first claim follows with q𝜋
ℎ
B cℎ +

∫
𝜓ℎ (𝑠′)𝑉 𝜋ℎ+1 (𝑠

′)d𝑠′. For the second part, note thatq𝜋ℎ  = cℎ + ∫
𝜓ℎ (𝑠′)𝑉 𝜋ℎ+1 (𝑠

′)d𝑠′
 ≤ √𝑑 + √𝑑 𝑉 𝜋ℎ+1∞ ≤ √𝑑 + √𝑑 (𝐻 − 1) = 𝐻

√
𝑑,

where the first inequality follows by assumption (see Assumption 1). □

In what follows we will refer to the true low dimensional 𝑄-vector on episode 𝑘 time step ℎ;

q𝑘ℎ B q𝑘, 𝜋
𝑘

ℎ
B c𝑘ℎ +

∫
𝜓ℎ (𝑠′)𝑉 𝑘, 𝜋

𝑘

ℎ+1 (𝑠
′)d𝑠′. (28)

By Lemma 1, we have that
q𝑘
ℎ

 ≤ 𝐻√𝑑, and

𝑄
𝑘, 𝜋𝑘

ℎ
(𝑠, 𝑎) = 𝜙(𝑠, 𝑎)⊤q𝑘ℎ,

for all 𝑠, 𝑎, ℎ, 𝑘 .
Lemma 2. In both Algorithms 1 and 4, it holds that for all ℎ ∈ [𝐻], 𝑘 ∈ [𝐾], conditioned on 𝜋1, . . . , 𝜋𝑘 , we have that q𝑘

ℎ
is

fixed, and that Σ̂+
𝑘ℎ𝛾

and
(
𝑠𝑘𝑡 , 𝑎

𝑘
𝑡 , ℓ

𝑘
𝑡

)𝐻
𝑡=1 are independent.

Proof. First note that a-priori q𝑘
ℎ

is a random variable determined by the adversary’s choice of cost vectors on episode
𝑘 , which may depend on 𝜋1, . . . , 𝜋𝑘 . However, when conditioning on 𝜋1, . . . , 𝜋𝑘 the adversary’s (which we assume is
deterministic) is clearly fixed.

For the second part in the claim, consider first Algorithm 4, where Σ̂+
𝑘ℎ𝛾

is computed from samples generated by the

simulator. Thus it immediately follows that Σ̂+
𝑘ℎ𝛾

and
(
𝑠𝑘𝑡 , 𝑎

𝑘
𝑡 , ℓ

𝑘
𝑡

)𝐻
𝑡=1 are indeed independent conditioned on 𝜋𝑘 , for all ℎ, 𝑘 .

For Algorithm 1, let 𝑘, ℎ, such that 𝑘 ∈ 𝑇𝑗 , and note that
{
𝜋1, . . . , 𝜋𝑘

}
are in fact just

{
𝜋 (1) , . . . , 𝜋 ( 𝑗 )

}
. Conditioning on 𝜋𝑘 ,

all rollouts in block 𝑗 are independent. In addition, transitions of episode 𝑘 are not contained in D𝑘
ℎ

(by the two-way block
partitioning Equation (8)). Thus, conditioning on 𝜋𝑘 = 𝜋 ( 𝑗 ) , this immediately implies Σ̂+

𝑘ℎ𝛾
(which is computed only from

samples in D𝑘
ℎ

) and
(
𝑠𝑘𝑡 , 𝑎

𝑘
𝑡 , ℓ

𝑘
𝑡

)𝐻
𝑡=1 are indeed independent, and completes the proof. □
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B Theorem Proofs

The analysis begins by considering a slightly reframed version of the regret decomposition proposed by (Luo et al., 2021);

Regret =
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

𝔼𝑠∼𝑑★
ℎ

[〈
𝑄𝑘ℎ (𝑠, ·), 𝜋

𝑘
ℎ (·|𝑠) − 𝜋

★
ℎ (·|𝑠)

〉]
=

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

𝔼𝑠∼𝑑★
ℎ

[〈
𝑄𝑘ℎ (𝑠, ·) −𝑄

𝑘
ℎ (𝑠, ·), 𝜋

𝑘
ℎ (·|𝑠)

〉]
︸                                                       ︷︷                                                       ︸

BIAS1

+
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

𝔼𝑠∼𝑑★
ℎ

[〈
𝑄𝑘ℎ (𝑠, ·) −𝑄

𝑘
ℎ (𝑠, ·), 𝜋

★
ℎ (·|𝑠)

〉]
︸                                                       ︷︷                                                       ︸

BIAS2

+
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

𝔼𝑠∼𝑑★
ℎ

[〈
𝑄𝑘ℎ (𝑠, ·) − 𝐵

𝑘
ℎ (𝑠, ·), 𝜋

𝑘
ℎ (·|𝑠) − 𝜋

★
ℎ (·|𝑠)

〉]
︸                                                                    ︷︷                                                                    ︸

OMD

+
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

𝔼𝑠∼𝑑★
ℎ

[〈
𝐵𝑘ℎ (𝑠, ·), 𝜋

𝑘
ℎ (·|𝑠) − 𝜋

★
ℎ (·|𝑠)

〉]
︸                                                     ︷︷                                                     ︸

EXPLORATION

(29)

Next, we will state the relevant lemmas used to bound each of the terms, and then proceed to the main proof. All subsequent
arguments hinge on peroperties of our inverse covariance estimators, which are stated in the below lemma, and proved in
Appendix E.

Lemma 3 (MGR). Let 𝜖, 𝜎, 𝛾 > 0 be three parameters and assume also 𝜎 ≤ 1/4, 𝜖 ≤ 𝜎/6 and that 𝛾 < 1/2. Assume D
contains 𝑀𝑁 i.i.d. samples {𝜙} ⊂ ℝ𝑑 , ∥𝜙∥ ≤ 1, from some distribution 𝑝, and let Σ𝛾 B 𝔼𝜙∼𝑝 [𝜙𝜙⊤] + 𝛾𝐼. Then invoking
Algorithm 3 with arguments (D, 𝑀, 𝑁, 𝛾), for 𝑀 = 48𝑑

𝛾𝜎
log 72𝑑

𝛾2𝜎
and 𝑁 = 2

𝛾
log 1

𝛾𝜖
, we haveΣ̂+𝛾 ≤ 1

𝛾
almost surely, (30)𝔼 [

Σ̂+𝛾

]
− Σ−1

𝛾

 ≤ 𝜖, (31)

𝔼
[
Σ̂+𝛾Σ𝛾Σ̂

+
𝛾

]
⪯ 2𝔼

[
Σ̂+𝛾

]
+ 𝜎𝐼. (32)

To bound the exploration term, we intially establish confidence bounds on our approximate bouns-to-go functions.

Lemma 4 (Bonus backup confidence bounds). Assume 𝛽 = 2𝐻
√︁
𝛾𝑑, 𝜆 ≥ 1, 𝛾 ≥ 1/𝐾 , |D𝑘

ℎ
| = 𝑂 ((𝑑𝐻𝐾)4), and

Σ̂+
𝑘ℎ𝛾

 ≤
1/𝛾 for all 𝑘, ℎ. Then, there exists a universal constant 𝐶1, such that for any 𝛿 > 0, setting 𝛽ℙ ≥ 𝐶1𝐻

2𝑑3/2 log (𝑑𝛽𝐾𝐻/𝛿)
ensures that w.p. ≥ 1 − 𝛿 the following holds for all 𝑘, ℎ, 𝑠, 𝑎;

𝑏𝑘ℎ (𝑠, 𝑎) + ℙℎ𝑊
𝑘
ℎ+1 (𝑠, 𝑎) ≤ 𝐵

𝑘
ℎ (𝑠, 𝑎) ≤ 𝑏

𝑘
ℎ (𝑠, 𝑎) + ℙℎ𝑊

𝑘
ℎ+1 (𝑠, 𝑎) + 2𝑏ℙ,𝑘

ℎ
(𝑠, 𝑎), (33)

where 𝐵𝑘
ℎ
,𝑊 𝑘

ℎ
are defined in Equations (14) and (15).

The proof of Lemma 4 follows from uniform concentration over the class of bonus value functions explored by our algorithm.
The arguments are in the spirit of those given in (Jin et al., 2020b), and is deferred to Appendix D. With the above confidence
bounds in place, the exploration term bound follows from the next lemma (for proof see Appendix C.2).

Lemma 5. Assume the backup confidence bounds Equation (33) hold with probability at least 1 − 𝛿, where 𝛿 ≤
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(7𝐾𝐻2 (𝛽/√𝛾 + 𝛽ℙ/
√
𝜆))−1. Then expected exploration term is bounded as

𝔼

[
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

𝔼𝑠∼𝑑★
ℎ

[〈
𝐵𝑘ℎ (𝑠, 𝑎), 𝜋

𝑘
ℎ (·|𝑠) − 𝜋

★
ℎ (·|𝑠)

〉]]
≤ 2𝔼

[∑︁
𝑘

𝐻∑︁
ℎ=1

𝔼𝑠,𝑎∼𝑑𝑘
ℎ

[
𝑏
ℙ,𝑘
ℎ
(𝑠, 𝑎) + 𝑏𝑘ℎ (𝑠, 𝑎)

] ]
− 𝔼

[
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

𝔼𝑠,𝑎∼𝑑★
ℎ

[
𝑏𝑘ℎ (𝑠, 𝑎)

] ]
+ 1.

The two final important lemmas we state before turning to the proof are given next; these bound, respectively, the OMD and
bias terms. We defer proofs of both to Appendix C.1.

Lemma 6 (Algorithm 1 OMD term bound). Assume that Algorithm 1 is executed with 𝜂 ≤ 𝛾/(2𝐻), 𝛽 ≤ 1/2√𝛾, and 𝛾 ≤ 1.

Further, assume that for all 𝑘, ℎ; 𝔼
[
Σ̂+
𝑘ℎ𝛾

Σ𝑘ℎ𝛾Σ̂
+
𝑘ℎ𝛾

]
⪯ 2𝔼

[
Σ̂+
𝑘ℎ𝛾

]
+ 𝜎𝐼, and

Σ̂+
𝑘ℎ𝛾

 ≤ 1/𝛾 almost surely.

Then, we have for any 𝑠, ℎ;

𝔼

[
𝐾∑︁
𝑘=1

〈
𝑄𝑘ℎ (𝑠, ·) − 𝐵

𝑘
ℎ (𝑠, ·), 𝜋

𝑘
ℎ (·|𝑠) − 𝜋

★
ℎ (·|𝑠)

〉]
≤ 𝜏 log 𝐴

𝜂
+ 8𝜂𝛽2𝐻2𝐾

𝛾
+ 2𝜂𝐻2
√
𝛾

𝔼

[
𝐾∑︁
𝑘=1

∑︁
𝑎

𝜋𝑘ℎ (𝑎 |𝑠) ∥𝜙(𝑠, 𝑎)∥Σ̂+
𝑘ℎ𝛾

]
+ 2𝜂(1 + 𝜎)𝐻2𝐾 + 2𝜏𝐻

𝛾
.

Lemma 7 (Bias bound). Assuming
𝔼𝑘 [

Σ̂+
𝑘ℎ𝛾

]
− Σ−1

𝑘ℎ𝛾

 ≤ 𝜖 ,
Σ̂+

𝑘ℎ𝛾

 ≤ 1/𝛾 for all ℎ, 𝑘 , and 𝛾 ≤ 1/
√
𝑑, we have

𝔼 [BIAS1 + BIAS2] ≤
(√︃
𝛾𝑑𝐻2

)
𝔼

[
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

𝔼𝑠∼𝑑★
ℎ

[∑︁
𝑎

(
𝜋𝑘ℎ (𝑎 |𝑠) + 𝜋

★
ℎ (𝑎 |𝑠)

)
∥𝜙(𝑠, 𝑎)∥

Σ̂+
𝑘ℎ𝛾

] ]
+ 4𝜖𝐻2𝐾.

B.1 Theorem 1 proof

Proof of Theorem 1. We shall use the following set of parameters; 𝜎 = 1/4, 𝛽 = 2𝐻
√︁
𝑑𝛾, 𝜖 = 1/𝐾, 𝜂 = 𝛾/(2𝐻), 𝛾 = 𝐾−2/7,

and 𝛽ℙ = 10𝐶1𝐻
2𝑑3/2 log (28𝐶1𝑑𝛽𝐾𝐻), where the constant 𝐶1 is that specified by Lemma 4.

By our setting of 𝜏 = 𝑀𝑁 in the algorithm, each estimation dataset is of size |D𝑘
ℎ
| = 48𝑑

𝛾𝜎
log 72𝑑

𝛾2𝜎
× 2
𝛾

log 1
𝛾𝜖

. This, as
well as Lemma 2 and our parameter choices imply the conditions for Lemma 3 are met, thus it follows that for all ℎ, 𝑘
Equations (30) to (32) hold for Σ̂+𝛾 = Σ̂+

𝑘ℎ𝛾
, Σ𝛾 = Σ𝑘ℎ𝛾 .

Proceeding, we begin by bounding the bias and OMD terms of Equation (29). From Lemma 6, we immediately get that

𝔼 [OMD] ≤ 𝜏𝐻 log 𝐴
𝜂

+ 8𝜂𝛽2𝐻3𝐾

𝛾
+ 2𝜂𝐻2
√
𝛾

𝔼

[
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

𝔼𝑠∼𝑑★
ℎ

[∑︁
𝑎

𝜋𝑘ℎ (𝑎 |𝑠) ∥𝜙(𝑠, 𝑎)∥Σ̂+
𝑘ℎ𝛾

] ]
+ 2𝜂(1 + 𝜎)𝐻3𝐾 + 2𝜏𝐻2

𝛾
.

Combining the above with Lemma 7 and setting

E B 𝜏𝐻 log 𝐴
𝜂

+ 4𝜖𝐻2𝐾 + 8𝜂𝛽2𝐻3𝐾

𝛾
+ 2𝜂𝐻3𝐾 (1 + 𝜎) + 2𝜏𝐻2

𝛾
, (34)
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we have,

𝔼 [BIAS1 + BIAS2 + OMD] ≤
(√︃
𝛾𝑑𝐻2

)
𝔼

[
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

𝔼𝑠∼𝑑★
ℎ

[∑︁
𝑎

(
𝜋𝑘ℎ (𝑎 |𝑠) + 𝜋

★
ℎ (𝑎 |𝑠)

)
∥𝜙(𝑠, 𝑎)∥

Σ̂+
𝑘ℎ𝛾

] ]
+ 2𝜂𝐻2
√
𝛾

𝔼

[
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

𝔼𝑠∼𝑑★
ℎ

[∑︁
𝑎

𝜋𝑘ℎ (𝑎 |𝑠) ∥𝜙(𝑠, 𝑎)∥Σ̂+
𝑘ℎ𝛾

] ]
+ E

≤
(√︃
𝛾𝑑𝐻2 + 2𝜂𝐻2

√
𝛾

)
𝔼

[
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

𝔼𝑠∼𝑑★
ℎ

[∑︁
𝑎

(
𝜋𝑘ℎ (𝑎 |𝑠) + 𝜋

★
ℎ (𝑎 |𝑠)

)
∥𝜙(𝑠, 𝑎)∥

Σ̂+
𝑘ℎ𝛾

] ]
+ E

≤ 𝛽𝔼
[
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

𝔼𝑠∼𝑑★
ℎ

[∑︁
𝑎

(
𝜋𝑘ℎ (𝑎 |𝑠) + 𝜋

★
ℎ (𝑎 |𝑠)

)
∥𝜙(𝑠, 𝑎)∥

Σ̂+
𝑘ℎ𝛾

] ]
+ E,

where the last inequality follows from our setting of 𝜂 and 𝛽;√︃
𝛾𝑑𝐻2 + 2𝜂𝐻2

√
𝛾

=

√︃
𝛾𝑑𝐻2 + √𝛾𝐻 ≤ 2𝐻

√︁
𝛾𝑑 = 𝛽.

Further, note that by our 𝑄-bonus definition (see Equation (9)),

𝛽
∑︁
𝑎

(
𝜋𝑘ℎ (𝑎 |𝑠) + 𝜋

★
ℎ (𝑎 |𝑠)

)
∥𝜙(𝑠, 𝑎)∥

Σ̂+
𝑘ℎ𝛾

= 𝛽
∑︁
𝑎

𝜋★ℎ (𝑎 |𝑠) ∥𝜙(𝑠, 𝑎)∥Σ̂+
𝑘ℎ𝛾

+ 𝛽
∑︁
𝑎

𝜋𝑘ℎ (𝑎 |𝑠) ∥𝜙(𝑠, 𝑎)∥Σ̂+
𝑘ℎ𝛾

= 𝛽
∑︁
𝑎

𝜋★ℎ (𝑎 |𝑠)
(
∥𝜙(𝑠, 𝑎)∥

Σ̂+
𝑘ℎ𝛾

+
∑︁
𝑎′
𝜋𝑘ℎ (𝑎

′ |𝑠) ∥𝜙(𝑠, 𝑎′)∥
Σ̂+
𝑘ℎ𝛾

)
=

∑︁
𝑎

𝜋★ℎ (𝑎 |𝑠)𝑏
𝑘
ℎ (𝑠, 𝑎),

therefore,

𝔼 [BIAS1 + BIAS2 + OMD] ≤ 𝔼

[
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

𝔼(𝑠,𝑎)∼𝑑★
ℎ

[
𝑏𝑘ℎ (𝑠, 𝑎)

] ]
+ E .

Next, for the exploration term in Equation (29), first observe our choice of 𝛽ℙ is such that 𝛽ℙ ≥ 𝐶1𝐻
2𝑑3/2 log (𝑑𝛽𝐾𝐻/𝛿)

for 𝛿 = (28𝐶1𝐾𝐻𝑑)−9. In addition, our choice of parameters is such that 𝛿 ≤
(
7𝐾𝐻2 (𝛽/√𝛾 + 𝛽ℙ/

√
𝜆)

)−1, and for all
ℎ, 𝑘; |D𝑘

ℎ
| = 𝑂 (𝑑𝐾). Thus, we may invoke Lemma 4 which ensures the backup confidence bounds Equation (33) hold

w.p. ≥ 1 − 𝛿, and by Lemma 5, this now implies that

𝔼 [EXPLORATION] ≤ 2𝔼

[∑︁
𝑘

𝐻∑︁
ℎ=1

𝔼𝑠,𝑎∼𝑑𝑘
ℎ

[
𝑏
ℙ,𝑘
ℎ
(𝑠, 𝑎) + 𝑏𝑘ℎ (𝑠, 𝑎)

] ]
− 𝔼

[
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

𝔼𝑠,𝑎∼𝑑★
ℎ

[
𝑏𝑘ℎ (𝑠, 𝑎)

] ]
+ 1. (35)

Combining the the last two displays, we obtain;

𝔼 [Regret] ≤ 2𝔼

[∑︁
𝑘

𝐻∑︁
ℎ=1

𝔼𝑠,𝑎∼𝑑𝑘
ℎ

[
𝑏
ℙ,𝑘
ℎ
(𝑠, 𝑎) + 𝑏𝑘ℎ (𝑠, 𝑎)

] ]
+ E + 1.

To finish the proof, by Lemma 12, and that |D𝑘
ℎ
| = 𝜏;

𝔼

[∑︁
𝑘

𝐻∑︁
ℎ=1

𝔼𝑠,𝑎∼𝑑𝑘
ℎ

[
𝑏
ℙ,𝑘
ℎ
(𝑠, 𝑎)

] ]
≤ 20𝛽ℙ

√
𝑑 log (𝜏)
√
𝜏

≲
𝐻3𝑑2 log(𝑑𝐻𝐾)

√
𝜏

.
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Combining this with the bound on the 𝑄-bonus given by Lemma 13 and replacing E for its definition Equation (34), we
finally get

𝔼 [Regret] ≲ 𝐻3𝑑2𝐾 log(𝑑𝐻𝐾)
√
𝜏

+ 𝛽(
√
𝑑 +
√
𝜖)𝐻𝐾 + 𝜏𝐻 log 𝐴

𝜂
+ 𝜖𝐻2𝐾 + 𝜂𝛽

2𝐻3𝐾

𝛾
+ 𝜂(1 + 𝜎)𝐻3𝐾 + 𝜏𝐻

2

𝛾

≲ 𝛾𝐻3𝑑3/2𝐾 + √𝛾𝑑𝐻2𝐾 + 𝑑𝐻
2

𝛾3 + 𝛾𝑑𝐻
4𝐾,

where the second relation follows from 𝜎 = 1/4, 𝛽 = 2𝐻
√︁
𝑑𝛾, 𝜖 = 1/𝐾, 𝜂 = 𝛾/(2𝐻), and 𝜏 ≈ 𝑑/(𝜎𝛾2). Balancing the two

middle terms by setting 𝛾 = 𝐾−2/7 leads to,

𝔼 [Regret] ≲ 𝑑𝐻2𝐾6/7 + 𝑑3/2𝐻4𝐾5/7,

which concludes the proof. □

B.2 Theorem 2 proof

Most of the proof below follows the exact same steps as that of Theorem 1. We avoid repeating arguments that are completely
identical, and refer the reader to the proof of Theorem 1 for the full details.

Proof of Theorem 2. We shall use the following parameter settings; 𝜂 = 𝛾/(2𝐻), 𝜎 = 1/4, 𝜖 = 𝐾−1, 𝛽 = 2𝐻
√︁
𝛾𝑑,

𝛾 = 2
(𝑑𝐾 )2/3 , and 𝛽ℙ = 10𝐶1𝐻

2𝑑3/2 log (28𝐶1𝑑𝛽𝐾𝐻), where the constant 𝐶1 is that specified by Lemma 4.

Similarly to the beginning of Theorem 1 we observe that Lemma 2, our parameter choices and the setting of 𝜏 imply the
conditions for Lemma 3 are met, thus it follows that for all ℎ, 𝑘 Equations (30) to (32) hold for Σ̂+𝛾 = Σ̂+

𝑘ℎ𝛾
, Σ𝛾 = Σ𝑘ℎ𝛾 . We

note that we use here slightly larger datasets |D𝑘
ℎ
| = 𝜏 = 𝑑2𝑀𝑁 than needed for Lemma 3; this is done in order to obtain

sharper bounds for the dynamics estimation which enter later in the proof.

Proceeding, we combine Lemmas 7 and 9 and set

E B 𝐻 log 𝐴
𝜂

+ 4𝜖𝐻2𝐾 + 8𝜂𝛽2𝐻3𝐾

𝛾
+ 2𝜂(1 + 𝜎)𝐻3𝐾, (36)

to obtain

𝔼 [BIAS1 + BIAS2 + OMD] ≤ 𝔼

[
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

𝔼(𝑠,𝑎)∼𝑑★
ℎ

[
𝑏𝑘ℎ (𝑠, 𝑎)

] ]
+ E .

This last argument followed in exactly the same manner as in the proof of Theorem 1, with the only difference being the
improved bound of the OMD term 𝐻 log 𝐴/𝜂, that does not have 𝜏 in the numerator (and without the extra 𝜏𝐻/𝛾 term
introduced by the last block).

Next, again in the same manner of Theorem 1, we claim our choice of parameters are such that conditions of Lemma 4 are
satisfied (in particular, we have for all ℎ, 𝑘; |D𝑘

ℎ
| = 𝑂 ((𝑑𝐻𝐾)4)) with a 𝛿 > 0 sufficiently small so that Lemma 5 gives;

𝔼 [EXPLORATION] ≤ 2𝔼

[∑︁
𝑘

𝐻∑︁
ℎ=1

𝔼𝑠,𝑎∼𝑑𝑘
ℎ

[
𝑏
ℙ,𝑘
ℎ
(𝑠, 𝑎) + 𝑏𝑘ℎ (𝑠, 𝑎)

] ]
− 𝔼

[
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

𝔼𝑠,𝑎∼𝑑★
ℎ

[
𝑏𝑘ℎ (𝑠, 𝑎)

] ]
+ 1. (37)

Adding together our two bounds on the regret terms, we get

𝔼 [Regret] ≤ 2𝔼

[∑︁
𝑘

𝐻∑︁
ℎ=1

𝔼𝑠,𝑎∼𝑑𝑘
ℎ

[
𝑏
ℙ,𝑘
ℎ
(𝑠, 𝑎) + 𝑏𝑘ℎ (𝑠, 𝑎)

] ]
+ E + 1.
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Bounding the first term using Lemmas 11 and 13, and replacing E for its definition, leads to

𝔼 [Regret] ≤ 40𝐻𝛽ℙ
√
𝑑 log

(
2|D𝑘

ℎ
|
)

|D𝑘
ℎ
|

𝐾 + 5𝐻
√
𝑑𝛽𝐾 + 𝐻 log 𝐴

𝜂
+ 4𝜖𝐻2𝐾 + 8𝜂𝛽2𝐻3𝐾

𝛾
+ 2𝜂(𝜎 + 1)𝐻3𝐾 + 1

≲ 𝐻3𝑑3/2
√
𝑑√︁

𝑑3/𝛾2
𝐾 + 𝐻

√
𝑑𝛽𝐾 + 𝐻 log 𝐴

𝜂
+ 𝜂𝛽

2𝐻3𝐾

𝛾
+ 𝜂𝐻3𝐾 (𝜎, 𝜖, |𝐷𝑘

ℎ
|, 𝛽ℙ)

≲
√
𝛾𝑑𝐻2𝐾 + 𝐻

2

𝛾
+ 𝛾𝑑𝐻4𝐾 + 𝛾𝐻2𝐾, (𝜂, 𝛽)

≲ 𝐻2 (𝑑𝐾)2/3 + 𝐻4 (𝑑𝐾)1/3. (𝛾)

In the second relation above, we replace 𝜎 = 1/4, 𝜖 = 1/𝐾, |𝐷𝑘
ℎ
| = Θ̃(𝑑3/𝛾2), 𝛽ℙ = 𝑂 (𝐻2𝑑3/2), and in the third

𝜂 = 𝛾/(2𝐻), 𝛽 = 2𝐻
√︁
𝛾𝑑, simplify and absorb the first term 𝛾

√
𝑑𝐻3𝐾 in the 𝛾𝑑𝐻4𝐾 term. Finally, we replace 𝛾 = 2

(𝑑𝐾 )2/3 ,
which completes the proof.

□

C Regret Terms Proofs

C.1 Bias and OMD Terms

Proof of Lemma 7. Recall the low dimensional representation q𝑘
ℎ
∈ ℝ𝑑 of 𝑄𝑘

ℎ
= 𝑄

𝑘, 𝜋𝑘

ℎ
defined in Equation (28) , and note

that

𝔼𝑘

[
𝐻∑︁
𝑡=ℎ

ℓ𝑘𝑡

]
= 𝔼𝑘

[
𝑄𝑘ℎ (𝑠

𝑘
ℎ, 𝑎

𝑘
ℎ)

]
= 𝔼𝑘

[
𝜙(𝑠𝑘ℎ, 𝑎

𝑘
ℎ)
⊤q𝑘ℎ

]
.

Therefore,

𝔼𝑘
[
q̂𝑘ℎ

]
= 𝔼𝑘

[
Σ̂+𝑘ℎ𝛾𝜙(𝑠

𝑘
ℎ, 𝑎

𝑘
ℎ)𝜙(𝑠

𝑘
ℎ, 𝑎

𝑘
ℎ)
⊤q𝑘ℎ

]
= 𝔼𝑘

[
Σ̂+𝑘ℎ𝛾

]
Σ𝑘ℎq𝑘ℎ (independence, Lemma 2)

= Σ−1
𝑘ℎ𝛾Σ𝑘ℎq

𝑘
ℎ +

(
𝔼𝑘

[
Σ̂+𝑘ℎ𝛾

]
− Σ−1

𝑘ℎ𝛾

)
Σ𝑘ℎq𝑘ℎ

= q𝑘ℎ − 𝛾Σ
−1
𝑘ℎ𝛾q𝑘ℎ +

(
𝔼𝑘

[
Σ̂+𝑘ℎ𝛾

]
− Σ−1

𝑘ℎ𝛾

)
Σ𝑘ℎq𝑘ℎ,

so for any 𝑠, 𝑎;

𝔼𝑘
[
𝜙(𝑠, 𝑎)⊤q̂𝑘ℎ

]
= 𝜙(𝑠, 𝑎)⊤q𝑘ℎ − 𝛾𝜙(𝑠, 𝑎)

⊤Σ−1
𝑘ℎ𝛾q𝑘ℎ + 𝜙(𝑠, 𝑎)

⊤
(
𝔼

[
Σ̂+𝑘ℎ𝛾

]
− Σ−1

𝑘ℎ𝛾

)
Σ𝑘ℎq𝑘ℎ .

To bound the contribution of the third term above, observe that;𝜙(𝑠, 𝑎)⊤ (
𝔼

[
Σ̂+𝑘ℎ𝛾

]
− Σ−1

𝑘ℎ𝛾

)
Σ𝑘ℎq𝑘ℎ

 ≤ 𝔼 [
Σ̂+𝑘ℎ𝛾

]
− Σ−1

𝑘ℎ𝛾

 Σ𝑘ℎq𝑘ℎ
≤ 𝜖

Σ𝑘ℎq𝑘ℎ
= 𝜖

𝔼𝑑𝑘
ℎ

[
𝜙(𝑠𝑘ℎ, 𝑎

𝑘
ℎ)𝜙(𝑠

𝑘
ℎ, 𝑎

𝑘
ℎ)
⊤q𝑘ℎ

]
≤ 𝜖𝐻𝔼𝑑𝑘

ℎ

[𝜙(𝑠𝑘ℎ, 𝑎𝑘ℎ)]
≤ 𝜖𝐻.
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Therefore, using Lemma 1;

𝔼𝑘

[
𝑄𝑘ℎ (𝑠, 𝑎) −𝑄

𝑘
ℎ (𝑠, 𝑎)

]
= 𝔼𝑘

[
𝜙(𝑠, 𝑎)⊤

(
q𝑘ℎ − q̂𝑘ℎ

)]
≤ 𝛾𝜙(𝑠, 𝑎)⊤Σ−1

𝑘ℎ𝛾q𝑘ℎ + 𝜖𝐻

= 𝛾𝜙(𝑠, 𝑎)⊤𝔼𝑘
[
Σ̂+𝑘ℎ𝛾

]
q𝑘ℎ + 𝛾𝜙(𝑠, 𝑎)

⊤
(
Σ−1
𝑘ℎ𝛾 − 𝔼

[
Σ̂+𝑘ℎ𝛾

] )
q𝑘ℎ + 𝜖𝐻

≤ 𝛾𝜙(𝑠, 𝑎)⊤𝔼𝑘
[
Σ̂+𝑘ℎ𝛾

]
q𝑘ℎ + 𝛾𝜖

√
𝑑𝐻 + 𝜖𝐻 (

q𝑘
ℎ

 ≤ 𝐻√𝑑)

≤ 𝛾𝔼𝑘
[
𝜙(𝑠, 𝑎)⊤Σ̂+𝑘ℎ𝛾q𝑘ℎ

]
+ 2𝜖𝐻 (𝛾 ≤ 1/

√
𝑑)

≤ 𝛾𝔼𝑘
[
∥𝜙(𝑠, 𝑎)∥

Σ̂+
𝑘ℎ𝛾

q𝑘ℎΣ̂+
𝑘ℎ𝛾

]
+ 2𝜖𝐻

≤
√︁
𝛾𝑑𝐻𝔼𝑘

[
∥𝜙(𝑠, 𝑎)∥

Σ̂+
𝑘ℎ𝛾

]
+ 2𝜖𝐻. (

Σ̂+
𝑘ℎ𝛾

 ≤ 1/𝛾,
q𝑘
ℎ

 ≤ 𝐻√𝑑)

Now,

𝔼

[
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

𝔼𝑠∼𝑑★
ℎ

[∑︁
𝑎

𝜋𝑘ℎ (𝑎 |𝑠)
(
𝑄𝑘ℎ (𝑠, 𝑎) −𝑄

𝑘
ℎ (𝑠, 𝑎)

)] ]
= 𝔼

[
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

𝔼𝑠∼𝑑★
ℎ

[∑︁
𝑎

𝜋𝑘ℎ (𝑎 |𝑠)𝔼𝑘
[
𝑄𝑘ℎ (𝑠, 𝑎) −𝑄

𝑘
ℎ (𝑠, 𝑎)

] ] ]
≤

√︁
𝛾𝑑𝐻𝔼

[
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

𝔼𝑠∼𝑑★
ℎ

[∑︁
𝑎

𝜋𝑘ℎ (𝑎 |𝑠) ∥𝜙(𝑠, 𝑎)∥Σ̂+
𝑘ℎ𝛾

] ]
+ 2𝜖𝐻2𝐾.

The argument for BIAS2 is identical, apart from summing in the last step over probabilities given by 𝜋★
ℎ
(𝑎 |𝑠). The result

follows by summing the two bounds. □

Lemma 8 (OMD term bound base). Assume that 𝜂 ≤ 𝛾/(2𝐻), 𝛽 ≤ 1/2√𝛾, and 𝛾 ≤ 1. Further, assume that for all 𝑘, ℎ;

𝔼
[
Σ̂+
𝑘ℎ𝛾

Σ𝑘ℎ𝛾Σ̂
+
𝑘ℎ𝛾

]
⪯ 2𝔼

[
Σ̂+
𝑘ℎ𝛾

]
+ 𝜎𝐼, and

Σ̂+
𝑘ℎ𝛾

 ≤ 1/𝛾 almost surely. Then, for both Algorithms 1 and 4, it holds that;

∀𝑠, 𝑎;
���𝑄𝑘ℎ (𝑠, 𝑎) − 𝐵𝑘ℎ (𝑠, 𝑎)��� ≤ 2𝐻

𝛾
(38)

∀𝑠, ℎ; 𝔼

[
𝐾∑︁
𝑘=1

∑︁
𝑎

𝜋𝑘ℎ (𝑎 |𝑠)
(
𝑄𝑘ℎ (𝑠, 𝑎) − 𝐵

𝑘
ℎ (𝑠, 𝑎)

)2
]
≤

2𝐻2
√
𝛾
𝔼

[
𝐾∑︁
𝑘=1

∑︁
𝑎

𝜋𝑘ℎ (𝑎 |𝑠) ∥𝜙(𝑠, 𝑎)∥Σ̂+
𝑘ℎ𝛾

]
+ 2(𝜎 + 1)𝐻2𝐾 + 8𝛽2𝐻2𝐾

𝛾
. (39)

Proof. Note that for any 𝑠, 𝑎, by definition, we have 𝑄𝑘
ℎ
(𝑠, 𝑎) = 𝜙(𝑠, 𝑎)⊤q̂𝑘

ℎ
and

���𝐵𝑘ℎ (𝑠, 𝑎)��� ≤ 𝐵max
1 (by the clipping in

Equation (14)). Thus;���𝑄𝑘ℎ (𝑠, 𝑎) − 𝐵𝑘ℎ (𝑠, 𝑎)��� ≤ 𝜙(𝑠, 𝑎)⊤q̂𝑘ℎ
 + 𝐵max

1 ≤
Σ̂+𝑘ℎ𝛾𝜙(𝑠𝑘ℎ, 𝑎𝑘ℎ) 𝐻∑︁

𝑡=ℎ

ℓ𝑘𝑡

 + 2𝛽𝐻
√
𝛾

≤ 𝐻
Σ̂+𝑘ℎ𝛾 + 2𝛽𝐻

√
𝛾

≤ 𝐻
(
1
𝛾
+ 2𝛽
√
𝛾

)
≤ 2𝐻

𝛾
,

where the second to last and last inequalities follow from our assumptions
Σ̂+

𝑘ℎ𝛾

 ≤ 1/𝛾 and 𝛽 ≤ 1/(2√𝛾). For the second
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part, observe that for all 𝑠, ℎ;

𝔼

[
𝐾∑︁
𝑘=1

∑︁
𝑎

𝜋𝑘ℎ (𝑎 |𝑠)
(
𝑄𝑘ℎ (𝑠, 𝑎) − 𝐵

𝑘
ℎ (𝑠, 𝑎)

)2
]
≤ 2𝔼

[
𝐾∑︁
𝑘=1

∑︁
𝑎

𝜋𝑘ℎ (𝑎 |𝑠)𝑄
𝑘
ℎ (𝑠, 𝑎)

2

]
+ 2𝔼

[
𝐾∑︁
𝑘=1

∑︁
𝑎

𝜋𝑘ℎ (𝑎 |𝑠)𝐵
𝑘
ℎ (𝑠, 𝑎)

2

]
≤ 2𝔼

[
𝐾∑︁
𝑘=1

∑︁
𝑎

𝜋𝑘ℎ (𝑎 |𝑠)𝑄
𝑘
ℎ (𝑠, 𝑎)

2

]
+ 8𝛽2𝐻2𝐾

𝛾
, (40)

where the last transition uses again our bound on 𝐵𝑘
ℎ
(𝑠, 𝑎). Further, for any 𝑠, 𝑎, ℎ, 𝑘 , using independence of Σ̂+

𝑘ℎ𝛾
and

(𝑠𝑘
ℎ
, 𝑎𝑘
ℎ
, ℓ𝑘
ℎ
)𝐻
ℎ=1 conditioned on 𝜋1, . . . , 𝜋𝑘 (Lemma 2), we have;

𝔼𝑘

[
𝑄𝑘ℎ (𝑠, 𝑎)

2
]
= 𝔼𝑘

[
𝜙(𝑠, 𝑎)⊤q̂𝑘ℎ

(
q̂𝑘ℎ

)⊤
𝜙(𝑠, 𝑎)

]
= 𝔼𝑘

[
𝜙(𝑠, 𝑎)⊤

(
Σ̂+𝑘ℎ𝛾𝜙(𝑠

𝑘
ℎ, 𝑎

𝑘
ℎ)𝐿

𝑘
ℎ

) (
Σ̂+𝑘ℎ𝛾𝜙(𝑠

𝑘
ℎ, 𝑎

𝑘
ℎ)𝐿

𝑘
ℎ

)⊤
𝜙(𝑠, 𝑎)

]
(𝐿𝑘
ℎ
B

∑𝐻
𝑡=ℎ ℓ

𝑘
𝑡 )

= 𝔼𝑘

[(
𝐿𝑘ℎ

)2
𝜙(𝑠, 𝑎)⊤

(
Σ̂+𝑘ℎ𝛾𝜙(𝑠

𝑘
ℎ, 𝑎

𝑘
ℎ)𝜙(𝑠

𝑘
ℎ, 𝑎

𝑘
ℎ)
⊤Σ̂+𝑘ℎ𝛾

)
𝜙(𝑠, 𝑎)

]
≤ 𝐻2𝔼𝑘

[
𝜙(𝑠, 𝑎)⊤Σ̂+𝑘ℎ𝛾𝜙(𝑠

𝑘
ℎ, 𝑎

𝑘
ℎ)𝜙(𝑠

𝑘
ℎ, 𝑎

𝑘
ℎ)
⊤Σ̂+𝑘ℎ𝛾𝜙(𝑠, 𝑎)

]
= 𝐻2𝔼𝑘

[
𝜙(𝑠, 𝑎)⊤Σ̂+𝑘ℎ𝛾𝔼(𝑠𝑘

ℎ
,𝑎𝑘

ℎ
)∼Alg

[
𝜙(𝑠𝑘ℎ, 𝑎

𝑘
ℎ)𝜙(𝑠

𝑘
ℎ, 𝑎

𝑘
ℎ)
⊤] Σ̂+𝑘ℎ𝛾𝜙(𝑠, 𝑎)] (independence)

= 𝐻2𝔼𝑘

[
𝜙(𝑠, 𝑎)⊤Σ̂+𝑘ℎ𝛾Σ𝑘ℎΣ̂

+
𝑘ℎ𝛾𝜙(𝑠, 𝑎)

]
≤ 𝐻2𝔼𝑘

[
𝜙(𝑠, 𝑎)⊤Σ̂+𝑘ℎ𝛾 (𝛾𝐼 + Σ𝑘ℎ) Σ̂

+
𝑘ℎ𝛾𝜙(𝑠, 𝑎)

]
≤ 2𝐻2𝔼𝑘

[
𝜙(𝑠, 𝑎)⊤Σ̂+𝑘ℎ𝛾𝜙(𝑠, 𝑎)

]
+ 𝜎𝐻2 (𝔼

[
Σ̂+
𝑘ℎ𝛾

Σ𝑘ℎ𝛾Σ̂
+
𝑘ℎ𝛾

]
⪯ 2𝔼

[
Σ̂+
𝑘ℎ𝛾

]
+ 𝜎𝐼)

≤ 2𝐻2
√
𝛾
𝔼𝑘

[
∥𝜙(𝑠, 𝑎)∥

Σ̂+
𝑘ℎ𝛾

]
+ 𝜎𝐻2. (∥𝜙(𝑠, 𝑎)∥

Σ̂+
𝑘ℎ𝛾

≤ 1√
𝛾

)

Now,

2𝔼

[
𝐾∑︁
𝑘=1

∑︁
𝑎

𝜋𝑘ℎ (𝑎 |𝑠)𝑄
𝑘
ℎ (𝑠, 𝑎)

2

]
≤ 2𝐻2
√
𝛾
𝔼

[
𝐾∑︁
𝑘=1

∑︁
𝑎

𝜋𝑘ℎ (𝑎 |𝑠) ∥𝜙(𝑠, 𝑎)∥Σ̂+
𝑘ℎ𝛾

]
+ 2𝜎𝐻2𝐾 + 2𝐻2𝐾,

and the result follows by plugging the above back into Equation (40). □

Lemma 9 (Algorithm 4 OMD term bound). Assume that Algorithm 4 is executed with 𝜂 ≤ 𝛾/(2𝐻), 𝛽 ≤ 1/2√𝛾, and 𝛾 ≤ 1.

Further, assume that for all 𝑘, ℎ; 𝔼
[
Σ̂+
𝑘ℎ𝛾

Σ𝑘ℎ𝛾Σ̂
+
𝑘ℎ𝛾

]
⪯ 2𝔼

[
Σ̂+
𝑘ℎ𝛾

]
+ 𝜎𝐼, and

Σ̂+
𝑘ℎ𝛾

 ≤ 1/𝛾 almost surely. Then for any
𝑠, ℎ, we have;

𝔼

[
𝐾∑︁
𝑘=1

〈
𝑄𝑘ℎ (𝑠, ·) − 𝐵

𝑘
ℎ (𝑠, ·), 𝜋

𝑘
ℎ (·|𝑠) − 𝜋

★
ℎ (·|𝑠)

〉]
≤ log 𝐴

𝜂
+ 8𝜂𝛽2𝐻2𝐾

𝛾
+ 2𝜂𝐻2
√
𝛾

𝔼

[
𝐾∑︁
𝑘=1

∑︁
𝑎

𝜋𝑘ℎ (𝑎 |𝑠) ∥𝜙(𝑠, 𝑎)∥Σ̂+
𝑘ℎ𝛾

]
+ 2𝜂𝐻2𝐾 (1 + 𝜎).

Proof. By Equation (38) of Lemma 8 and our condition of 𝜂 ≤ 𝛾

2𝐻 , we may apply the OMD bound Lemma 27, which gives
for all 𝑠, ℎ;

𝔼

[
𝐾∑︁
𝑘=1

〈
𝑄𝑘ℎ (𝑠, ·) − 𝐵

𝑘
ℎ (𝑠, ·), 𝜋

𝑘
ℎ (·|𝑠) − 𝜋

★
ℎ (·|𝑠)

〉]
≤ log 𝐴

𝜂
+ 𝜂𝔼

[
𝐾∑︁
𝑘=1

∑︁
𝑎

𝜋𝑘ℎ (𝑎 |𝑠)
(
𝑄𝑘ℎ (𝑠, 𝑎) − 𝐵

𝑘
ℎ (𝑠, 𝑎)

)2
]
.

The result now follows by bounding the secon term above with Equation (39) given by Lemma 8. □
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Next, we give the proof of Lemma 6 that combines the blocking OMD regret bound Lemma 28 with Lemma 8.

Proof of Lemma 6. By Equation (38) of Lemma 8 and our assumption that 𝜂 ≤ 𝛾

2𝐻 , the conditions for blocking OMD regret
bound Lemma 28 are met. Thus, for all 𝑠, ℎ;

𝔼

[
𝐾∑︁
𝑘=1

〈
𝑄𝑘ℎ (𝑠, ·) − 𝐵

𝑘
ℎ (𝑠, ·), 𝜋

𝑘
ℎ (·|𝑠) − 𝜋

★
ℎ (·|𝑠)

〉]
≤ 𝜏 log 𝐴

𝜂
+ 2𝜏𝐻

𝛾
+ 𝜂𝔼

[
𝐾∑︁
𝑘=1

∑︁
𝑎

𝜋𝑘ℎ (𝑎 |𝑠)
(
𝑄𝑘ℎ (𝑠, 𝑎) − 𝐵

𝑘
ℎ (𝑠, 𝑎)

)2
]
.

The result now follows by bounding the second term above with Equation (39) given by Lemma 8. □

C.2 Exploration Terms

Proof of Lemma 5. By our assumption and Lemma 10, the random variable

𝑍 B −
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

𝔼𝑠∼𝑑★
ℎ

[〈
𝐵𝑘ℎ (𝑠, 𝑎), 𝜋

𝑘
ℎ (·|𝑠) − 𝜋

★
ℎ (·|𝑠)

〉]
+ 2

∑︁
𝑘

𝐻∑︁
ℎ=1

𝔼𝑠,𝑎∼𝑑𝑘
ℎ

[
𝑏
ℙ,𝑘
ℎ
(𝑠, 𝑎) + 𝑏𝑘ℎ (𝑠, 𝑎)

]
−

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

𝔼𝑠,𝑎∼𝑑★
ℎ

[
𝑏𝑘ℎ (𝑠, 𝑎)

]
.

is non-negative w.p. ≥ 1 − 𝛿. In addition, it is not hard to verify that

|𝑍 | ≤ 2𝐾𝐻 (2𝛽𝐻/√𝛾) + 2𝐾𝐻 (𝛽/√𝛾 + 𝛽ℙ/
√
𝜆) + 𝐾𝐻𝛽/√𝛾 ≤ 7𝐾𝐻2 (𝛽/√𝛾 + 𝛽ℙ/

√
𝜆) ≤ 𝛿−1.

Thus, 𝑍 is supported on [−𝐷, 𝐷] for 𝐷 B 7𝐾𝐻2 (𝛽/√𝛾 + 𝛽ℙ/
√
𝜆), which implies

𝔼𝑍 ≥ −𝛿𝐷 = −𝛿7𝐾𝐻2 (𝛽/√𝛾 + 𝛽ℙ/
√
𝜆) ≥ −1,

which completes the proof after rearranging the terms. □

The next lemma is partially implicit in (Luo et al., 2021) Lemma B.1, but extends it to incorporate the affect of the
bonus-to-go approximations. In addition, we provide a simpler argument owed to the removal of the dilation term, and by
letting the extended value difference Lemma 26 handle most of the technicalities.

Lemma 10. Assume that the approximate bonus-to-go functions 𝐵𝑘
ℎ+1 : S × A → ℝ computed by the algorithm satisfy for

all 𝑠, 𝑎, ℎ, 𝑘;

𝑏𝑘ℎ (𝑠, 𝑎) + ℙℎ𝑊
𝑘
ℎ+1 (𝑠, 𝑎) ≤ 𝐵

𝑘
ℎ (𝑠, 𝑎) ≤ 𝑏

𝑘
ℎ (𝑠, 𝑎) + ℙℎ𝑊

𝑘
ℎ+1 (𝑠, 𝑎) + 2𝑏ℙ,𝑘

ℎ
(𝑠, 𝑎)

Then the exploration term is bounded as

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

𝔼𝑠∼𝑑★
ℎ

[〈
𝐵𝑘ℎ (𝑠, 𝑎), 𝜋

𝑘
ℎ (·|𝑠) − 𝜋

★
ℎ (·|𝑠)

〉]
≤ 2

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

𝔼𝑠,𝑎∼𝑑𝑘
ℎ

[
𝑏
ℙ,𝑘
ℎ
(𝑠, 𝑎) + 𝑏𝑘ℎ (𝑠, 𝑎)

]
−

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

𝔼𝑠,𝑎∼𝑑★
ℎ

[
𝑏𝑘ℎ (𝑠, 𝑎)

]
.

Proof. By assumption, for any 𝑠, 𝑎, ℎ, 𝑘; 0 ≤ 𝐵𝑘
ℎ
(𝑠, 𝑎) − 𝑏𝑘

ℎ
(𝑠, 𝑎) − ℙℎ𝑊 𝑘

ℎ+1 (𝑠, 𝑎), thus,

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

𝔼𝑠∼𝑑★
ℎ

[〈
𝐵𝑘ℎ (𝑠, ·), 𝜋

𝑘
ℎ (·|𝑠) − 𝜋

★
ℎ (·|𝑠)

〉]
≤

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

𝔼𝑠∼𝑑★
ℎ

[〈
𝐵𝑘ℎ (𝑠, 𝑎), 𝜋

𝑘
ℎ (·|𝑠) − 𝜋

★
ℎ (·|𝑠)

〉]
+

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

𝔼𝑠,𝑎∼𝑑★
ℎ

[
𝐵𝑘ℎ (𝑠, 𝑎) − 𝑏

𝑘
ℎ (𝑠, 𝑎) − ℙℎ𝑊

𝑘
ℎ+1 (𝑠, 𝑎)

]
=

𝐾∑︁
𝑘=1

𝑊 𝑘
1 −𝑊

𝑘, 𝜋★

1 ,
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where the equality follows from the extended value difference Lemma 26 with 𝑉 𝜋1 = 𝑊 𝑘
1 and 𝑉 𝜋

′

1 = 𝑊
𝑘, 𝜋★

1 (and we recall
definitions in Equations (11) and (15)). Further, again by Lemma 26 and our upper bound on 𝐵𝑘

ℎ
;

𝐾∑︁
𝑘=1

𝑊 𝑘
1 −𝑊

𝑘, 𝜋𝑘

1 =

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

𝔼𝑠,𝑎∼𝑑𝑘
ℎ

[
𝐵𝑘ℎ (𝑠, 𝑎) − 𝑏

𝑘
ℎ (𝑠, 𝑎) − ℙℎ𝑊

𝑘
ℎ+1 (𝑠, 𝑎)

]
≤ 2

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

𝔼𝑠,𝑎∼𝑑𝑘
ℎ

[
𝑏
ℙ,𝑘
ℎ
(𝑠, 𝑎)

]
.

In addition, by definition of the true bonus value functions,

𝐾∑︁
𝑘=1

𝑊
𝑘, 𝜋𝑘

1 −𝑊 𝑘, 𝜋★

1 =

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

𝔼𝑠,𝑎∼𝑑𝑘
ℎ

[
𝑏𝑘ℎ (𝑠, 𝑎)

]
−

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

𝔼𝑠,𝑎∼𝑑★
ℎ

[
𝑏𝑘ℎ (𝑠, 𝑎)

]
,

thus we see that,

𝐾∑︁
𝑘=1

𝑊 𝑘
1 −𝑊

𝑘, 𝜋★

1 =

𝐾∑︁
𝑘=1

𝑊 𝑘
1 −𝑊

𝑘, 𝜋𝑘

1 +
𝐾∑︁
𝑘=1

𝑊
𝑘, 𝜋𝑘

1 −𝑊 𝑘, 𝜋★

1

≤ 2
𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

𝔼𝑠,𝑎∼𝑑𝑘
ℎ

[
𝑏
ℙ,𝑘
ℎ
(𝑠, 𝑎)

]
+

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

𝔼𝑠,𝑎∼𝑑𝑘
ℎ

[
𝑏𝑘ℎ (𝑠, 𝑎)

]
−

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

𝔼𝑠,𝑎∼𝑑★
ℎ

[
𝑏𝑘ℎ (𝑠, 𝑎)

]
≤ 2

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

𝔼𝑠,𝑎∼𝑑𝑘
ℎ

[
𝑏
ℙ,𝑘
ℎ
(𝑠, 𝑎) + 𝑏𝑘ℎ (𝑠, 𝑎)

]
−

𝐾∑︁
𝑘=1

𝐻∑︁
ℎ=1

𝔼𝑠,𝑎∼𝑑★
ℎ

[
𝑏𝑘ℎ (𝑠, 𝑎)

]
,

which completes the proof. □

C.3 Bonus Terms

Lemma 11. The dynamics bonus functions 𝑏ℙ,𝑘
ℎ

samples in D𝑘
ℎ

, satisfy for all episodes 𝑘 and all time steps ℎ;

𝔼
[
𝔼𝑠,𝑎∼𝑑𝑘

ℎ

[
𝑏
ℙ,𝑘
ℎ
(𝑠, 𝑎)

] ]
≤

10𝛽ℙ
√
𝑑 log

(
2|D𝑘

ℎ
|
)√︃

|D𝑘
ℎ
|

.

Proof. Follows immediately by Lemma 12 with 𝛿 = |D𝑘
ℎ
|−2, and noting that |𝑏ℙ,𝑘

ℎ
(𝑠, 𝑎) | ≤ 𝛽ℙ almost surely. □

Lemma 12. Assume 𝜆 ≥ 1, and let ℎ, 𝑘 . For all 𝛿 > 0, we have that the following holds w.p. ≥ 1 − 𝛿:

𝔼𝑠,𝑎∼𝑑𝑘
ℎ

[
𝑏
ℙ,𝑘
ℎ
(𝑠, 𝑎)

]
≤

5𝛽ℙ
√
𝑑 log

(
2|D𝑘

ℎ
|/𝛿

)√︃
|D𝑘

ℎ
|

.

Proof. Let 𝑁 B |D𝑘
ℎ
|, and observe;

𝔼𝑠,𝑎∼𝑑𝑘
ℎ

[
𝑏
ℙ,𝑘
ℎ
(𝑠, 𝑎)

]
= 𝛽ℙ𝔼𝑠ℎ ,�̃�ℎ∼𝑑𝑘ℎ

[
∥𝜙(𝑠, �̃�)∥(Λ𝑘

ℎ)−1

]
=
𝛽ℙ

𝑁
𝔼(𝑠1

ℎ
,�̃�1

ℎ
) ,..., (𝑠𝑁

ℎ
,�̃�𝑁

ℎ
)∼𝑑𝑘

ℎ

[
𝑁∑︁
𝑖=1

𝜙(𝑠𝑖ℎ, �̃�𝑖ℎ)(Λ𝑘
ℎ)−1

]
. (41)

Further, let Λ𝑘,𝑖
ℎ

= 𝜆𝐼 +∑𝑖−1
𝑡=1 𝜙(𝑠𝑡ℎ, 𝑎

𝑡
ℎ
)𝜙(𝑠𝑡

ℎ
, 𝑎𝑡
ℎ
)⊤ for some arbitrary ordering (𝑠𝑖

ℎ
, 𝑎𝑖
ℎ
)𝑁
𝑖=1 of the elements in D𝑘

ℎ
. Then,

𝔼𝑑𝑘
ℎ

[
𝑁∑︁
𝑖=1

𝜙(𝑠𝑖ℎ, �̃�𝑖ℎ)(Λ𝑘
ℎ)−1

]
≤ 𝔼𝑑𝑘

ℎ

[
𝑁∑︁
𝑖=1

𝜙(𝑠𝑖ℎ, �̃�𝑖ℎ)(
Λ
𝑘,𝑖

ℎ

)−1

]
.

23



Improved Regret for Efficient Online RL with Linear Function Approximation

Now, by Lemma 24 with 𝑋𝑖 B
𝜙(𝑠𝑖

ℎ
, �̃�𝑖
ℎ
)
(

Λ
𝑘,𝑖

ℎ

)−1 ;

𝔼𝑑𝑘
ℎ

[
𝑁∑︁
𝑖=1

𝜙(𝑠𝑖ℎ, �̃�𝑖ℎ)(
Λ
𝑘,𝑖

ℎ

)−1

]
≤ 2

𝑁∑︁
𝑖=1

𝜙(𝑠𝑖ℎ, 𝑎𝑖ℎ)(
Λ
𝑘,𝑖

ℎ

)−1 + 4
√
𝜆

log
2𝑁
𝛿

≤ 2
𝑁∑︁
𝑖=1

𝜙(𝑠𝑖ℎ, 𝑎𝑖ℎ)(
Λ
𝑘,𝑖

ℎ

)−1 + 4 log
2𝑁
𝛿

≤ 2

√√√
𝑁

𝑁∑︁
𝑖=1

𝜙(𝑠𝑖
ℎ
, 𝑎𝑖
ℎ
)
2(

Λ
𝑘,𝑖

ℎ

)−1 + 4 log
2𝑁
𝛿
.

By Lemma 25, we can further bound this by

2

√︄
2𝑁𝑑 log

(
1 + 𝑁

𝑑𝜆

)
+ 4 log

2𝑁
𝛿
≤ 5
√
𝑁𝑑 log

2𝑁
𝛿
.

Combining the derived inequality with Equation (41), we get

𝔼𝑠,𝑎∼𝑑𝑘
ℎ

[
𝑏
ℙ,𝑘
ℎ
(𝑠, 𝑎)

]
≤ 5𝛽ℙ

√
𝑑 log (2𝑁/𝛿)
√
𝑁

,

which completes the proof. □

Lemma 13. Assuming
𝔼𝑘 [

Σ̂+
𝑘ℎ𝛾

]
− Σ−1

𝑘ℎ𝛾

 ≤ 𝜖 , it holds that

𝔼𝑘

[
𝔼𝑠,𝑎∼𝑑𝑘

ℎ

[
𝑏𝑘ℎ (𝑠, 𝑎)

] ]
≤ 2𝛽(

√
𝑑 +
√
𝜖)

Proof. Note that

𝔼𝑠,𝑎∼𝑑𝑘
ℎ

[
𝑏𝑘ℎ (𝑠, 𝑎)

]
= 𝛽𝔼𝑠,𝑎∼𝑑𝑘

ℎ

[
∥𝜙(𝑠, 𝑎)∥

Σ̂+
𝑘ℎ𝛾

+
∑︁
𝑎

𝜋𝑘ℎ (𝑎
′ |𝑠) ∥𝜙(𝑠, 𝑎′)∥

Σ̂+
𝑘ℎ𝛾

]
= 2𝛽𝔼𝑠,𝑎∼𝑑𝑘

ℎ

[
∥𝜙(𝑠, 𝑎)∥

Σ̂+
𝑘ℎ𝛾

]
(42)

Further, for any 𝑠, 𝑎,

𝔼𝑘

[
∥𝜙(𝑠, 𝑎)∥

Σ̂+
𝑘ℎ𝛾

]
= 𝔼𝑘

[√︂
𝜙(𝑠, 𝑎)⊤Σ−1

𝑘ℎ𝛾
𝜙(𝑠, 𝑎) + 𝜙(𝑠, 𝑎)⊤

(
Σ̂+
𝑘ℎ𝛾
− Σ−1

𝑘ℎ𝛾

)
𝜙(𝑠, 𝑎)

]
≤

√︂
𝜙(𝑠, 𝑎)⊤Σ−1

𝑘ℎ𝛾
𝜙(𝑠, 𝑎) + 𝜙(𝑠, 𝑎)⊤

(
𝔼𝑘

[
Σ̂+
𝑘ℎ𝛾

]
− Σ−1

𝑘ℎ𝛾

)
𝜙(𝑠, 𝑎) (Jensen’s inequality)

≤
√︃
𝜙(𝑠, 𝑎)⊤Σ−1

𝑘ℎ𝛾
𝜙(𝑠, 𝑎) +

√︂
𝜙(𝑠, 𝑎)⊤

(
𝔼𝑘

[
Σ̂+
𝑘ℎ𝛾

]
− Σ−1

𝑘ℎ𝛾

)
𝜙(𝑠, 𝑎)

≤
√︃
𝜙(𝑠, 𝑎)⊤Σ−1

𝑘ℎ𝛾
𝜙(𝑠, 𝑎) +

√︂𝔼𝑘 [
Σ̂+
𝑘ℎ𝛾

]
− Σ−1

𝑘ℎ𝛾


op

≤
√︃
𝜙(𝑠, 𝑎)⊤Σ−1

𝑘ℎ𝛾
𝜙(𝑠, 𝑎) +

√
𝜖 .
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Now, conditioning on 𝜋𝑘 , we have;

𝔼𝑘

[
𝔼𝑠,𝑎∼𝑑𝑘

ℎ

[
𝑏𝑘ℎ (𝑠, 𝑎)

] ]
= 2𝛽𝔼𝑘

[
𝔼𝑠,𝑎∼𝑑𝑘

ℎ

[
∥𝜙(𝑠, 𝑎)∥

Σ̂+
𝑘ℎ𝛾

] ]
(Equation (42))

= 2𝛽𝔼𝑠,𝑎∼𝑑𝑘
ℎ

[
𝔼𝑘

[
∥𝜙(𝑠, 𝑎)∥

Σ̂+
𝑘ℎ𝛾

] ]
(𝑑𝑘
ℎ
⊥ Σ̂+

𝑘ℎ𝛾
| 𝜋𝑘)

≤ 2𝛽𝔼𝑠,𝑎∼𝑑𝑘
ℎ

[√︃
𝜙(𝑠, 𝑎)⊤Σ−1

𝑘ℎ𝛾
𝜙(𝑠, 𝑎)

]
+ 2𝛽
√
𝜖 (previous inequality)

≤ 2𝛽
√︂
𝔼𝑠,𝑎∼𝑑𝑘

ℎ

[
𝜙(𝑠, 𝑎)⊤Σ−1

𝑘ℎ𝛾
𝜙(𝑠, 𝑎)

]
+ 2𝛽
√
𝜖 (Jensen)

≤ 2𝛽
√︃
𝔼𝑠,𝑎∼𝑑𝑘

ℎ

[
𝜙(𝑠, 𝑎)⊤Σ−1

𝑘ℎ
𝜙(𝑠, 𝑎)

]
+ 2𝛽
√
𝜖 (Σ−1

𝑘ℎ𝛾
⪯ Σ−1

𝑘ℎ
)

= 2𝛽
√︂
𝔼𝑠,𝑎∼𝑑𝑘

ℎ

[
tr

(
Σ−1
𝑘ℎ
𝜙(𝑠, 𝑎)𝜙(𝑠, 𝑎)⊤

)]
+ 2𝛽
√
𝜖

= 2𝛽
√︂

tr
(
Σ−1
𝑘ℎ
𝔼𝑠,𝑎∼𝑑𝑘

ℎ
[𝜙(𝑠, 𝑎)𝜙(𝑠, 𝑎)⊤]

)
+ 2𝛽
√
𝜖

= 2𝛽
√︂

tr
(
Σ−1
𝑘ℎ
Σ𝑘ℎ

)
+ 2𝛽
√
𝜖

= 2𝛽
(√
𝑑 +
√
𝜖

)
,

which completes the proof. □

D Approximate bonus-to-go confidence bounds

In this section, we establish optimism / bonus-bias confidence bounds on our approximate bonus action-value functions (aka
bonus-to-go). These follow from uniform concentration over the estimated bonus value function backup operator which is
computed by the least squares regression procedure in Algorithm 2. The arguments given here, at a conceptual level, follow
those of (Jin et al., 2020b).

Bonus value functions explored by the algorithm. Define

𝐵(𝑠, 𝑎; 𝛽, Σ+, 𝛽ℙ,Λ, 𝑤, 𝐵max, 𝜋)

= clip

[
𝛽

(
∥𝜙(𝑠, 𝑎)∥Σ+ +

∑︁
𝑎

𝜋(𝑎′ |𝑠) ∥𝜙(𝑠, 𝑎′)∥Σ+
)
+ 𝜙(𝑠, 𝑎)⊤𝑤 + 𝛽ℙ ∥𝜙(𝑠, 𝑎)∥Λ−1

]𝐵max

0

and

B(𝛽, 𝜆Σ+ , 𝛽ℙ, 𝜆Λ, 𝐿, 𝐵max, 𝜋) (43)

=
{
𝐵(𝑠, 𝑎; 𝛽, Σ, 𝛽ℙ,Λ, 𝑤, 𝜋) | 𝜆max (Σ+) ≤ 𝜆Σ+ , 𝜆min (Λ) ≥ 𝜆Λ, ∥𝑤∥ ≤ 𝐿

}
W(𝛽, 𝜆Σ+ , 𝛽ℙ, 𝜆Λ, 𝐿, 𝐵max, 𝜋) (44)

=
{
𝑊 : S → ℝ;𝑊 (𝑠) = ⟨𝜋(·|𝑠), 𝐵(𝑠, ·)⟩ | 𝐵 ∈ B(𝛽, 𝜆Σ+ , 𝛽ℙ, 𝜆Λ, 𝐿, 𝜋)

}
.

We note that with appropriate parameter choices, 𝐵𝑘
ℎ
∈ B and𝑊 𝑘

ℎ
∈ W for 𝐵𝑘

ℎ
,𝑊 𝑘

ℎ
computed by Algorithm 2 and defined

in Equations (14) and (15). This will be made rigorous in the proof of Lemma 4 below.
Proof of Lemma 4. By Lemma 16, our choice of 𝛽, 𝜆 ≥ 1, and that |D𝑘

ℎ
| = 𝑂 ((𝐻𝑑𝐾)4), we have

ŵ𝑘
ℎ

 ≤ 𝑎𝐻5𝑑4𝐾4 log(𝑑𝐾)
for some constant 𝑎. Further, again by our choice of 𝛽, 2𝛽𝐻/√𝛾 = 4𝐻2√𝑑, thus by algorithm definition and our assumptions,
it is readily verified that;

𝑊 𝑘
ℎ+1 ∈ W BW(𝛽, 1/𝛾, 𝛽ℙ, 𝜆, 𝑳 = 𝑎𝐻5𝑑4𝐾4 log(𝑑𝐾), 𝑩max = 4𝐻2√𝑑, 𝜋𝑘)

Hence, by Lemma 19, there exist 𝑐 > 0 such that for any 𝜖 > 0,

logN𝜖 (W) ≤ 𝑐𝑑2 log
(
4𝛽ℙ𝛽𝐻𝐾𝑑

𝛾𝜆𝜖

)
≤ 𝑐cov𝑑

2 log
(
𝑑𝛽ℙ𝛽𝐻𝐾

𝜖

)
,
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where the second inequality follows from our assumptions that 𝛾 ≥ 1/𝐾, 𝜆 ≥ 1 and the appropriate choice of
constant 𝑐cov. Thus we may apply Lemma 14, to obtain that for the constant 𝐶 specified by the lemma, with
𝛽ℙ ≥ 8𝐶𝐻2𝑑3/2 log (𝑑𝛽𝐾𝐻/𝛿) ≥ 𝐶 (4𝐻2√𝑑)𝑑 log

(
𝑑𝛽𝐾2𝐻/𝛿

)
, we have w.p. ≥ 1 − 𝛿 that for all 𝑠, 𝑎, ℎ, 𝑘;���𝜙(𝑠, 𝑎)⊤ŵ𝑘ℎ − ℙℎ𝑊

𝑘
ℎ+1 (𝑠, 𝑎)

��� ≤ 𝛽ℙ ∥𝜙(𝑠, 𝑎)∥(Λ𝑘
ℎ)−1 = 𝑏

ℙ,𝑘
ℎ
(𝑠, 𝑎). (45)

This establishes that 0 ≤ (ℙ̃𝑘
ℎ
− ℙℎ)𝑊 𝑘

ℎ+1 (𝑠, 𝑎) ≤ 2𝑏ℙ,𝑘
ℎ
(𝑠, 𝑎) holds for all 𝑠, 𝑎, ℎ, 𝑘 , leaving us only with the task to verify

the truncations defined in Equation (14) do not interfere with the desired conclusion. First, we show that;

𝐵𝑘ℎ (𝑠, 𝑎) ≤ 𝑏
𝑘
ℎ (𝑠, 𝑎) + ℙℎ𝑊

𝑘
ℎ+1 (𝑠, 𝑎) + 2𝑏ℙ,𝑘

ℎ
(𝑠, 𝑎). (46)

Indeed, by definition Equation (14);

𝐵𝑘ℎ (𝑠, 𝑎) = clip
[
𝑏𝑘ℎ (𝑠, 𝑎) + ℙ̃

𝑘
ℎ𝑊

𝑘
ℎ+1 (𝑠, 𝑎)

]2𝛽 (𝐻−ℎ+1)/√𝛾

0

≤ clip
[
𝑏𝑘ℎ (𝑠, 𝑎) + ℙ̃

𝑘
ℎ𝑊

𝑘
ℎ+1 (𝑠, 𝑎)

]∞
0
,

and when 𝐵𝑘
ℎ
(𝑠, 𝑎) = 0, Equation (46) holds trivially as all RHS terms are non-negative. Otherwise,

𝐵𝑘ℎ (𝑠, 𝑎) ≤ 𝑏
𝑘
ℎ (𝑠, 𝑎) + ℙ̃

𝑘
ℎ𝑊

𝑘
ℎ+1 (𝑠, 𝑎) = 𝑏

𝑘
ℎ (𝑠, 𝑎) + 𝜙(𝑠, 𝑎)

⊤ŵ𝑘ℎ + 𝑏
ℙ,𝑘
ℎ
(𝑠, 𝑎) (def. in Equation (13))

≤ 𝑏𝑘ℎ (𝑠, 𝑎) + ℙℎ𝑊
𝑘
ℎ+1 (𝑠, 𝑎) + 2𝑏ℙ,𝑘

ℎ
(𝑠, 𝑎). (Equation (45))

Next, to verify

𝐵𝑘ℎ (𝑠, 𝑎) ≥ 𝑏
𝑘
ℎ (𝑠, 𝑎) + ℙℎ𝑊

𝑘
ℎ+1 (𝑠, 𝑎), (47)

note that

𝑏𝑘ℎ (𝑠, 𝑎) + ℙℎ𝑊
𝑘
ℎ+1 (𝑠, 𝑎) ≤

2𝛽
√
𝛾
+ 2𝛽(𝐻 − ℎ)

√
𝛾

=
2𝛽(𝐻 − ℎ + 1)

√
𝛾

.

Thus, when 𝐵𝑘
ℎ
(𝑠, 𝑎) = 2𝛽(𝐻 − ℎ + 1)/√𝛾, Equation (47) holds trivially. Otherwise,

𝐵𝑘ℎ (𝑠, 𝑎) = clip
[
𝑏𝑘ℎ (𝑠, 𝑎) + ℙ̃

𝑘
ℎ𝑊

𝑘
ℎ+1 (𝑠, 𝑎)

]2𝛽 (𝐻−ℎ+1)/√𝛾

0

= clip
[
𝑏𝑘ℎ (𝑠, 𝑎) + ℙ̃

𝑘
ℎ𝑊

𝑘
ℎ+1 (𝑠, 𝑎)

]∞
0

≥ 𝑏𝑘ℎ (𝑠, 𝑎) + ℙ̃
𝑘
ℎ𝑊

𝑘
ℎ+1 (𝑠, 𝑎)

≥ 𝑏𝑘ℎ (𝑠, 𝑎) + 𝜙(𝑠, 𝑎)
⊤ŵ𝑘ℎ + 𝑏

ℙ,𝑘
ℎ
(𝑠, 𝑎)

≥ 𝑏𝑘ℎ (𝑠, 𝑎) + ℙℎ𝑊
𝑘
ℎ+1 (𝑠, 𝑎), (Equation (45))

which completes the proof. □

Lemma 14 (Approximate backup operator error bound). Let D𝑘
ℎ

be the dataset used for episode 𝑘 of size 𝑂 ((𝑑𝐻𝐾)4), and

Λ𝑘
ℎ
= 𝜆𝐼+∑𝑖∈D𝑘

ℎ
𝜙(𝑠𝑖

ℎ
, 𝑎𝑖
ℎ
)𝜙(𝑠𝑖

ℎ
, 𝑎𝑖
ℎ
)⊤, with 𝜆 ≥ 1. Further, letV be a function class with logN𝜖 (V) ≤ 𝑐cov𝑑

2 log
( 𝑑𝛽𝛽ℙ𝐾

𝜖

)
for any 𝜖 > 0, and ∥ 𝑓 ∥∞ ≤ 𝐵max for all 𝑓 ∈ V. Then there exists a constant 𝐶 > 0 depending only on 𝑐cov, such that letting

𝛽ℙ ≥ 𝐶𝐵max𝑑 log
(
𝑑𝛽𝐾𝐻

𝛿

)
,

ensures that with probability ≥ 1 − 𝛿 it holds that for all 𝑓 ∈ V and all 𝑠, 𝑎, ℎ, 𝑘;��𝜙(𝑠, 𝑎)⊤𝑤 𝑓 − ℙℎ 𝑓 (𝑠, 𝑎)�� ≤ 𝛽ℙ ∥𝜙(𝑠, 𝑎)∥(Λ𝑘
ℎ)−1 ,

where 𝑤 𝑓 =
(
Λ𝑘
ℎ

)−1 ∑
𝑖∈D𝑘

ℎ
𝜙(𝑠𝑖

ℎ
, 𝑎𝑖
ℎ
) 𝑓 (𝑠𝑖

ℎ+1).
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Proof. Fix 𝑘, ℎ, and define 𝑤★
𝑓

by

ℙℎ 𝑓 (𝑠, 𝑎) = 𝜙(𝑠, 𝑎)⊤
∫

𝜓ℎ (𝑠′) 𝑓 (𝑠′)d𝑠′ := 𝜙(𝑠, 𝑎)⊤𝑤★𝑓 .

Note that by normalization assumptions in Assumption 1, we have that
𝑤★𝑓  ≤ √𝑑𝐵max, thus, by Lemma 17;

𝑤 𝑓 − 𝑤★𝑓 
Λ𝑘
ℎ

≤

 ∑︁
𝑖∈D𝑘

ℎ

𝜙(𝑠𝑖ℎ, 𝑎
𝑖
ℎ)

(
𝑓 (𝑠𝑖ℎ+1) − 𝜙(𝑠

𝑖
ℎ, 𝑎

𝑖
ℎ)
⊤𝑤★𝑓

)
(Λ𝑘

ℎ)−1

+
√
𝜆𝑑𝐵max. (48)

In addition, by Lemma 20, we have that w.p. ≥ 1 − 𝑝; ∑︁
𝑖∈D𝑘

ℎ

𝜙(𝑠𝑖ℎ, 𝑎
𝑖
ℎ)

(
𝑓 (𝑠𝑖ℎ+1) − 𝜙(𝑠

𝑖
ℎ, 𝑎

𝑖
ℎ)
⊤𝑤★𝑓

)
2

(Λ𝑘
ℎ)−1

≤ 4𝐵2
max

(
𝑑

2
log

(
|D𝑘

ℎ
| + 𝜆
𝜆

)
+ log

N𝜖cov (V)
𝑝

)
+

8|D𝑘
ℎ
|2𝜖2

𝜆
,

≤ 2𝐵2
max𝑑 log

(
|D𝑘

ℎ
| + 𝜆
𝜆

)
+ 4𝑐cov𝐵

2
max𝑑

2 log
(
𝑑𝛽𝛽ℙ𝐾

𝜖cov𝑝

)
+

8|D𝑘
ℎ
|2𝜖2

𝜆

≤ 𝑐(𝜖cov |D𝑘
ℎ |𝐵max𝑑)2 log

(
𝑑𝛽𝛽ℙ𝐾

𝜖cov𝑝

)
,

for some constant 𝑐 ≥ 1 that depends only on 𝑐cov. Now, using that |D𝑘
ℎ
| = 𝑂 ((𝑑𝐻𝐾)4), with an appropriate choice of 𝜖cov

and we can further bound the last display by

𝑐′ (𝐵max𝑑)2 log
(
𝑑𝛽𝛽ℙ𝐾

𝑝

)
,

where 𝑐′ is another constant ≥ 1. Combining this with Equation (48), we get that w.p. 1 − 𝑝;𝑤 𝑓 − 𝑤★𝑓 
Λ𝑘
ℎ

≤ 2𝑐′𝐵max𝑑

√︄
log

(
𝑑𝛽𝛽ℙ𝐾

𝑝

)
.

By the union bound over 𝑘, ℎ, choosing 𝛿 = 𝑝/(𝐾𝐻), we have that w.p. 1 − 𝛿, it holds that for all 𝑘, ℎ;𝑤 𝑓 − 𝑤★𝑓 
Λ𝑘
ℎ

≤ 4𝑐′𝐵max𝑑

√︄
log

(
𝑑𝛽𝛽ℙ𝐿𝐾𝐻

𝛿

)
.

Now, by Lemma 15, setting

𝛽ℙ = 8𝑐′𝐵max𝑑 log
(
𝑑𝛽𝐾𝐻

𝛿

)
≥ 4𝑐′𝐵max𝑑 log

(
𝑑𝛽𝐾𝐻

𝛿
× 4𝑐′𝐵max𝑑

)
ensures that

𝑤 𝑓 − 𝑤★𝑓 
Λ𝑘
ℎ

≤ 𝛽ℙ. Finally, observe that for all 𝑠, 𝑎;

��𝜙(𝑠, 𝑎)⊤𝑤 𝑓 − ℙℎ 𝑓 (𝑠, 𝑎)�� = ���𝜙(𝑠, 𝑎)⊤ (
𝑤 𝑓 − 𝑤★𝑓

)��� ≤ ∥𝜙(𝑠, 𝑎)∥(Λ𝑘
ℎ)−1

𝑤 𝑓 − 𝑤★𝑓 
Λ𝑘
ℎ

≤ 𝛽ℙ ∥𝜙(𝑠, 𝑎)∥(Λ𝑘
ℎ)−1 ,

which complete the proof. □

Lemma 15. Let 𝑅, 𝑧 ≥ 1, and 𝑥 ≥ 2𝑧 log(𝑅𝑧). Then 𝑧 log(𝑅𝑥) ≤ 𝑥.
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Proof. If 𝑥 = 2𝑧 log(𝑅𝑧);

𝑧 log(𝑅𝑥) = 𝑧 log 𝑅 + 𝑧 log(2𝑧 log(𝑅𝑧))
= 𝑧 log 𝑅 + 𝑧 log(2𝑧) + 𝑧 log log(𝑅𝑧)
≤ 𝑧 log 𝑅 + 𝑧 log 𝑧 + 𝑧 log(𝑅𝑧)
= 2𝑧 log 𝑅 + 2𝑧 log 𝑧
= 𝑥.

For larger values, the result follows by noting 𝑥 − 𝑧
√︁

log(𝑅𝑥) is monotonically increasing in 𝑥 for all 𝑥 ≥ 𝑧. □

The next lemma bounds the norm of the weights ŵ𝑘
ℎ

computed in the OLSPE algorithm. We note a tighter bound can be
shown, as in (Jin et al., 2020b) Lemma B.2, but the simpler argument below is sufficient for our purposes.
Lemma 16. For all 𝑘 ∈ [𝐾], ℎ ∈ [𝐻], assuming running OLSPE (Algorithm 2) with dataset D𝑘

ℎ
, we have

ŵ𝑘
ℎ

 ≤
2𝛽𝐻 |D𝑘

ℎ
|/
√
𝛾𝜆.

Proof. We have; ŵ𝑘ℎ =  (
Λ𝑘ℎ

)−1 ∑︁
𝑖∈D𝑘

ℎ

𝜙(𝑠𝑖ℎ, 𝑎
𝑖
ℎ)𝑊

𝑘
ℎ+1 (𝑠

𝑖
ℎ+1)


≤

(
2𝛽𝐻/√𝛾

) (Λ𝑘ℎ)−1
  ∑︁

𝑠ℎ ,𝑎ℎ∈D𝑘
ℎ

𝜙(𝑠ℎ, 𝑎ℎ)
 ≤ 2𝛽𝐻 |D𝑘

ℎ
|

√
𝛾𝜆

,

where the first inequality follows from
𝑊 𝑘

ℎ+1

∞ ≤

𝐵𝑘
ℎ+1


∞ ≤ 2𝛽𝐻/√𝛾, as per definition Equation (14). □

Lemma 17. Let {𝜙𝑖}𝑛𝑖=1 ∈ ℝ
𝑑 , {𝑦𝑖}𝑛𝑖=1 ∈ ℝ, 𝜆 ∈ ℝ, and set Λ B

∑𝑁
𝑖=1 𝜙𝑖𝜙

⊤
𝑖
+ 𝜆𝐼, and 𝑤 = Λ−1 ∑𝑁

𝑖=1 𝜙𝑖𝑦𝑖 . Then𝑤 − 𝑤★
Λ
≤

 𝑁∑︁
𝑖=1

𝜙𝑖
(
𝑦𝑖 − 𝜙⊤𝑤★

)
Λ−1

+
√
𝜆
𝑤★

Proof. We have

𝑤 − 𝑤★ = Λ−1
𝑁∑︁
𝑖=1

𝜙𝑖𝑦𝑖 − Λ−1

(
𝑁∑︁
𝑖=1

𝜙𝑖𝜙
⊤
𝑖 + 𝜆𝐼

)
𝑤★ = Λ−1

𝑁∑︁
𝑖=1

𝜙𝑖
(
𝑦𝑖 − 𝜙⊤𝑤★

)
+ 𝜆Λ−1𝑤★,

which implies 𝑤 − 𝑤★
Λ
≤

 𝑁∑︁
𝑖=1

𝜙𝑖
(
𝑦𝑖 − 𝜙⊤𝑤★

)
Λ−1

+ 𝜆
𝑤★

Λ−1 ≤
 𝑁∑︁
𝑖=1

𝜙𝑖
(
𝑦𝑖 − 𝜙⊤𝑤★

)
Λ−1

+
√
𝜆
𝑤★ ,

as required. □

D.1 Uniform concentration for bonus value functions

In this section we provide lemmas that support uniform concentration over bonus value functions explored by the algorithm.
The bound on the covering number of the euclidean ball stated below is standard.
Lemma 18 (Covering number of Euclidean Ball). For any 𝜖 > 0, the 𝜖-covering of the Euclidean ball in ℝ𝑑 with radius
𝑅 > 0 is upper bounded by (1 + 2𝑅/𝜖)𝑑 .

The next lemma follows from (relatively standard) arguments that are essentially the same as those of Lemma D.6 in (Jin
et al., 2020b).
Lemma 19. Let N𝜖 (F ) denote the ∥·∥∞ covering number of a function class F . For some universal constant 𝑐 > 0, we
have

logN𝜖 (W(𝛽, 𝜆Σ+ , 𝛽ℙ, 𝜆Λ, 𝐿, 𝐵max, 𝜋)) ≤ 𝑐𝑑2 log
(
𝑑𝛽ℙ𝛽𝜆Σ+𝐿

𝜆Λ𝜖

)
,

for the function classW as defined in Equation (44).

28



Improved Regret for Efficient Online RL with Linear Function Approximation

Proof. First, we remove clipping (that can only decrease the covering number), and reparameterize the B function class
Equation (43) with 𝐴 =

(
𝛽ℙ

)2
Λ−1 and 𝐸 = 𝛽2Σ+, to consider functions of the form

𝐵(𝑠, 𝑎; 𝐸, 𝐴, 𝑤) = ∥𝜙(𝑠, 𝑎)∥𝐸 +
∑︁
𝑎

𝜋(𝑎′ |𝑠) ∥𝜙(𝑠, 𝑎′)∥𝐸 + 𝜙(𝑠, 𝑎)⊤𝑤 + ∥𝜙(𝑠, 𝑎)∥𝐴 ,

with parameters ∥𝑤∥ ≤ 𝐿, ∥𝐴∥ ≤
(
𝛽ℙ

)2
𝜆−1
Λ

, and ∥𝐸 ∥ ≤ 𝛽2𝜆Σ+ . Recall that ∥𝜙(𝑠, 𝑎)∥ ≤ 1, and observe,

|𝐵(𝑠, 𝑎; 𝐸1, 𝐴1, 𝑤1) − 𝐵(𝑠, 𝑎; 𝐸2, 𝐴2, 𝑤2) |

≤
���√︁𝜙(𝑠, 𝑎)⊤𝐸1𝜙(𝑠, 𝑎) −

√︁
𝜙(𝑠, 𝑎)⊤𝐸2𝜙(𝑠, 𝑎)

��� +∑︁
𝑎′
𝜋(𝑎′ |𝑠)

���√︁𝜙(𝑠, 𝑎′)⊤𝐸1𝜙(𝑠, 𝑎′) −
√︁
𝜙(𝑠, 𝑎′)⊤𝐸2𝜙(𝑠, 𝑎′)

���
+ ∥𝜙(𝑠, 𝑎)∥ ∥𝑤1 − 𝑤2∥ +

���√︁𝜙(𝑠, 𝑎)⊤𝐴1𝜙(𝑠, 𝑎) −
√︁
𝜙(𝑠, 𝑎)⊤𝐴2𝜙(𝑠, 𝑎)

���
≤

√︁
|𝜙(𝑠, 𝑎)⊤ (𝐸1 − 𝐸2)𝜙(𝑠, 𝑎) | +

∑︁
𝑎′
𝜋(𝑎′ |𝑠)

√︁
|𝜙(𝑠, 𝑎′)⊤ (𝐸1 − 𝐸2)𝜙(𝑠, 𝑎′) |

+ ∥𝑤1 − 𝑤2∥ +
√︁
|𝜙(𝑠, 𝑎)⊤ (𝐴1 − 𝐴2) 𝜙(𝑠, 𝑎) |

≤ 2
√︁
∥𝐸1 − 𝐸2∥ + ∥𝑤1 − 𝑤2∥ +

√︁
∥𝐴1 − 𝐴2∥

≤ 2
√︁
∥𝐸1 − 𝐸2∥𝐹 + ∥𝑤1 − 𝑤2∥ +

√︁
∥𝐴1 − 𝐴2∥𝐹

Now, we consider an 𝜖2/16 net over
{
𝐸 ⊂ ℝ𝑑×𝑑 | ∥𝐸 ∥𝐹 ≤

√
𝑑𝛽2𝜆Σ+

}
, an 𝜖/2 net over

{
𝑤 ∈ ℝ𝑑 | ∥𝑟 ∥ ≤ 𝐿

}
, and an 𝜖2/4

net over
{
𝐴 ⊂ ℝ𝑑×𝑑 | ∥𝐴∥𝐹 ≤

√
𝑑

(
𝛽ℙ

)2
𝜆−1
Λ

}
. Noting that for any matrix 𝑀 , ∥𝑀 ∥𝐹 ≤

√
𝑑 ∥𝑀 ∥, we have that the product

of these three nets provides an 𝜖-net over the original parameter space. By Lemma 18, this implies

logN𝜖 (B) ≤ 𝑑 log(1 + 4𝐿/𝜖) + 𝑑2 log
(
1 + 8
√
𝑑

(
𝛽ℙ

)2
𝜆−1
Λ 𝜖−2

)
+ 𝑑2 log

(
1 + 8
√
𝑑𝛽2𝜆Σ+𝜖

−2
)
.

Finally, noting that 𝜋 is a parameter that is held fixed, and that 𝑊 (𝑠) just averages over values of 𝐵(𝑠, ·), we have
logN𝜖 (W) ≤ logN𝜖 (B), and the result follows. □

The next lemma is brought as is from (Jin et al., 2020b), except from slight adaptation of notation. We remark that due to the
blocking structure / simulator in our algorithms, we could in fact use a similar weaker version of this lemma suitable for
random design least squares regression, rather than the one below which is suitable for a martingale setting.

Lemma 20 (Uniform concentration of self normalized processes, (Jin et al., 2020b) Lemma D.4). Let {𝑥𝜏} be a stochastic
process on state space S with corresponding filtration {F𝜏}∞𝜏=1. Let {𝜙𝜏} be an ℝ𝑑-valued stochastic process where 𝜙𝜏 ∈ F𝜏 ,
and ∥𝜙𝜏 ∥ ≤ 1. Further, let Λ𝑛 = 𝜆𝐼 +

∑𝑛
𝜏=1 𝜙𝜏𝜙

⊤
𝜏 . Then for any 𝛿 > 0, with probability at least 1 − 𝛿, for all 𝑛 ≥ 1 and any

𝑉 ∈ V so that ∥𝑉 ∥∞ ≤ 𝐷, we have; 𝑛∑︁
𝜏=1

𝜙𝜏

(
𝑉 (𝑥𝜏) − 𝔼 [𝑉 (𝑥𝜏) |F𝜏−1]

)2

Λ−1
𝑛

≤ 4𝐷2
(
𝑑

2
log

(
𝑛 + 𝜆
𝜆

)
+ log

N𝜖 (V)
𝛿

)
+ 8𝑛2𝜖2

𝜆
,

where N𝜖 (V) is ∥·∥∞ covering number ofV.

E Matrix Geometric Resampling Lemma Proof

As mentioned, our Algorithm 3 is similar to that of Luo et al. (2021), which itself is the original proposed by Neu &
Olkhovskaya (2020a) (see also Neu & Olkhovskaya, 2021; 2020b), but with averaging over multiple estimators. We present
here a different analysis to obtain tighter bounds in the 2’nd moment term analysis given in Lemma 9.

Proof of Lemma 3. First, note that since 𝛾 < 1/2 and 𝑐 = 1/2;Σ̂ (𝑛)𝑚,𝛾 ≤ (1 − 𝑐𝛾)𝑛 =⇒
Σ̂+𝑚,𝛾 ≤ 𝑐 𝑁∑︁

𝑛=0
(1 − 𝑐𝛾)𝑛 ≤ 1

𝛾

=⇒
Σ̂+𝛾 ≤ 1

𝛾
.
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For the bias claim, using independence of samples;

𝔼Σ̂
(𝑛)
𝑚,𝛾 =

𝑛∏
𝑖=1
(𝐼 − 𝑐𝔼

[
𝛾𝐼 + 𝜙𝑚,𝑖𝜙⊤𝑚,𝑖

]
) =

𝑛∏
𝑖=1
(𝐼 − 𝑐Σ𝛾) = (𝐼 − 𝑐Σ𝛾)𝑛

=⇒ 𝔼Σ̂+𝑚,𝛾 = 𝑐𝐼 + 𝑐
𝑁∑︁
𝑛=1
(𝐼 − 𝑐Σ𝛾)𝑛 = 𝑐

𝑁∑︁
𝑛=0
(𝐼 − 𝑐Σ𝛾)𝑛,

hence,

𝔼Σ̂+𝛾 = 𝑐

𝑁∑︁
𝑛=0
(𝐼 − 𝑐Σ𝛾)𝑛 = Σ−1

𝛾 −
∞∑︁

𝑛=𝑁+1
(𝐼 − 𝑐Σ𝛾)𝑛,

where we use that 𝛾 < 1/2 and 𝑐 = 1/2 imply all eigenvalues of 𝐼 − 𝑐Σ𝛾 are in (0, 1), and 𝐴−1 =
∑∞
𝑛=0 (𝐼 − 𝐴)𝑛 for any

invertible matrix 𝐴 with all eigenvalues ∈ (0, 1). Now,𝔼 [
Σ̂+𝛾

]
− Σ−1

𝛾


op
≤

(𝐼 − 𝑐Σ𝛾)𝑁+1op

Σ−1
ℎ𝛾


op
≤ (1 − 𝑐𝛾)𝑁 1

𝛾
≤ 𝑒−𝑐𝛾𝑁 1

𝛾
= 𝜖,

where in the last step we substitute 𝑐 = 1/2 and 𝑁 = 2
𝛾

log 1
𝛾𝜖

.

Now for the last claim, note that for any 𝑚, Σ̂+𝑚,𝛾 is a sum of positive definite matrices, with the first term being 𝑐𝐼, thus

𝜆min

(
Σ̂+𝑚

)
≥ 1/2. In addition, by Lemma 15,

𝑀 =
48𝑑
𝛾𝜎

log
72𝑑
𝛾2𝜎

≥ 12𝑑
𝛾(𝜎/2) log

3𝑀
𝛾

=⇒ 𝜎/2 ≥ 12𝑑
𝛾𝑀

log
3𝑀
𝛾
,

therefore our assumption that 𝜎 ≤ 1/4 verifies the conditions for Lemma 21 are met. Thus, we obtain;

𝔼
[
Σ̂+𝛾Σ𝛾Σ̂

+
𝛾

]
⪯ 2𝔼

[
Σ̂+𝛾

]
+

(
3𝜖 + 12𝑑

𝛾𝑀
log

3𝑀
𝛾

)
𝐼,

and by the previous display,

𝔼
[
Σ̂+𝛾Σ𝛾Σ̂

+
𝛾

]
⪯ 2𝔼

[
Σ̂+𝛾

]
+ (3𝜖 + 𝜎/2) 𝐼 .

The proof is complete by our assumption that 𝜖 ≤ 𝜎/6. □

Lemma 21. Let 0 < 𝜖 < 1/16, 0 < 𝛾 < 1/2, and assume Σ̂+1 , . . . , Σ̂
+
𝑀
∈ ℝ𝑑×𝑑 are 𝑀 i.i.d. random matrices and

Σ ∈ ℝ𝑑×𝑑 is a fixed matrix such that 𝛾 ⪯ Σ ⪯ 𝐼, and
𝔼[

Σ̂+
]
− Σ−1

 ≤ 𝜖 where Σ̂+ B 1
𝑀

∑𝑀
𝑚=1 Σ̂

+
𝑚. Further, assume that

(1/2)𝐼 ⪯ Σ̂+𝑚 ⪯ (1/𝛾)𝐼 almost surely for all 𝑚, and 8𝑑
𝛾𝑀

log 3𝑀
𝛾
< 1/8. Then,

𝔼
[
Σ̂+ΣΣ̂+

]
⪯ 2𝔼

[
Σ̂+

]
+

(
3𝜖 + 12𝑑

𝛾𝑀
log

3𝑀
𝛾

)
𝐼

Proof. Denote Σ+ B 𝔼
[
Σ̂+

]
. By assumption,

Σ+ = Σ−1 +
(
Σ+ − Σ−1

)
⪯ Σ−1 + 𝜖 𝐼,

thus by Lemma 22,

Σ̂+ ⪯ 2Σ+ + 𝛼𝐼 ⪯ 2Σ−1 + (2𝜖 + 𝛼)𝐼
⇐⇒ Σ̂+ − (2𝜖 + 𝛼)𝐼 ⪯ 2Σ−1 (49)
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holds with probability ≥ 1 − 𝛿 and 𝛼 B 4𝑑
𝛾𝑀

log 3𝑀
𝛿

. Now, as long as 𝛼′ B 2𝜖 + 𝛼 < 1/4, we have that

𝜆min

(
Σ̂+ − 𝛼′𝐼

)
≥ 1/2 − 𝛼′ ≥ 1/4,

therefore the matrices on both sides of Equation (49) are positive definite, hence

Σ ⪯ 2
(
Σ̂+ − 𝛼′𝐼

)−1
.

This implies that,

Σ̂+ΣΣ̂+ =
(
Σ̂+ − 𝛼′𝐼

)
ΣΣ̂+ + 𝛼′ΣΣ̂+ ⪯ 2Σ̂+ + 𝛼′ΣΣ̂+,

holds w.p. ≥ 1 − 𝛿. This, and considering that
Σ̂+ΣΣ̂+ − 2Σ+ − 𝛼′ΣΣ̂+

 ≤ 1
𝛾2 + 2

𝛾
+ 1
𝛾
≤ 4
𝛾2 , implies that for any 𝛿 > 0;

𝔼
[
Σ̂+ΣΣ̂+

]
⪯ 2𝔼

[
Σ̂+

]
+ 𝛼′Σ𝔼

[
Σ̂+

]
+ 4𝛿
𝛾2 𝐼

= 2Σ+ + 𝛼′ΣΣ+ + 4𝛿
𝛾2 𝐼

= 2Σ+ + 𝛼′𝐼 + 𝛼′Σ
(
Σ+ − Σ−1

)
+ 4𝛿
𝛾2 𝐼

⪯ 2Σ+ + 𝛼′𝐼 + 𝜖 𝐼 + 4𝛿
𝛾2 𝐼

⪯ 2Σ+ +
(
3𝜖 + 4𝑑

𝛾𝑀
log

3𝑀
𝛿
+ 4𝛿
𝛾2

)
𝐼,

with the last equality following simply by plugging in the definition of 𝛼′. Choosing 𝛿 = 𝛾/𝑀 , we may now see that by our
assumptions,

𝛼′ B 2𝜖 + 𝛼 = 2𝜖 + 4𝑑
𝛾𝑀

log
3𝑀2

𝛾
≤ 1

8
+ 8𝑑
𝛾𝑀

log
3𝑀
𝛾

< 1/4,

which verifies our earlier requirement on 𝛼′. The proof is complete by plugging our choice of 𝛿 into the previous display. □

Lemma 22. Assume Σ̂+1 , . . . , Σ̂
+
𝑀
∈ ℝ𝑑×𝑑 are 𝑀 i.i.d. random matrices such that

Σ̂+𝑚 ≤ 1/𝛾 almost surely and 𝔼Σ̂+𝑚 = Σ+.

Then, for Σ̂+ = 1
𝑀

∑𝑀
𝑖=1 Σ̂

+
𝑚 and 𝛼 = 4𝑑

𝛾𝑀
log 3𝑀

𝛿
, we have

Σ̂+ ⪯ 2Σ+ + 𝛼𝐼.

Proof. For any fixed 𝜙 ∈ ℝ𝑑 with ∥𝜙∥ = 1, we have by Lemma 23 that w.p. ≥ 1 − 𝛿:

𝑀∑︁
𝑚=1

𝜙⊤Σ̂+𝑚𝜙 ≤ 2
𝑀∑︁
𝑚=1

𝜙⊤Σ+𝜙 + 1
𝛾

log
1
𝛿

=⇒ 𝜙⊤Σ̂+𝜙 ≤ 2𝜙⊤Σ+𝜙 + 1
𝛾𝑀

log
1
𝛿
.

Consider now an 𝜖-net over the unit sphere in ℝ𝑑 of size (1 + 2/𝜖)𝑑 , which exists by Lemma 18. By the union bound we
have that w.p. 1 − 𝛿, for all 𝜙 in the net it holds that;

𝜙⊤Σ̂+𝜙 ≤ 2𝜙⊤Σ+𝜙 + 𝑑

𝛾𝑀
log

3
𝛿𝜖
,

Thus, w.p. 1 − 𝛿, for any 𝜙 ∈ ℝ𝑑 , ∥𝜙∥ = 1;

𝜙⊤Σ̂+𝜙 ≤ 2𝜙⊤Σ+𝜙 + 3𝜖2

𝛾
+ 𝑑

𝛾𝑀
log

3
𝛿𝜖
≤ 4𝑑
𝛾𝑀

log
3𝑀
𝛿

= 𝛼,

31



Improved Regret for Efficient Online RL with Linear Function Approximation

with the last inequality following from choosing 𝜖 = 1/𝑀 . This implies that

∀𝜙, ∥𝜙∥ = 1; 𝜙⊤Σ̂+𝜙 ≤ 𝜙⊤
(
2Σ+ + 𝛼𝐼

)
𝜙

=⇒ ∀𝜙 ∈ ℝ𝑑; 𝜙⊤Σ̂+𝜙 ≤ 𝜙⊤
(
2Σ+ + 𝛼𝐼

)
𝜙,

which completes the proof. □

Lemma 23. Let {𝑋𝑖}𝑁𝑖=1 be a sequence of i.i.d. random variables supported on [0, 𝐵]. Then with probability ≥ 1 − 𝛿, we
have that;

𝑁∑︁
𝑖=1

𝑋𝑖 ≤ 2
𝑁∑︁
𝑖=1

𝔼 [𝑋𝑖] + 𝐵 log
1
𝛿
.

Proof. Let 𝑍𝑖 B 𝑋𝑖/𝐵, 𝜇𝑖 B 𝔼[𝑍𝑖], and observe;

𝔼
[
𝑒𝑍𝑖

]
≤ 𝔼

[
1 + 𝑍𝑖 + 𝑍2

𝑖

]
≤ 1 + 2𝜇𝑖 ≤ 𝑒2𝜇𝑖 ,

where the first inequality follows from 𝑒𝑧 ≤ 1 + 𝑧 + 𝑧2 for 𝑧 ∈ [0, 1], and the last from 1 + 𝑧 ≤ 𝑒𝑧 . By independence of the
𝑍𝑖 , this implies that

𝔼
[
𝑒
∑𝑁

𝑖=1 𝑍𝑖−2𝜇𝑖
]
=

𝑁∏
𝑖=1

𝔼
[
𝑒𝑍𝑖−2𝜇𝑖

]
≤ 1,

and therefore by Markov’s inequality,

Pr
( 𝑁∑︁
𝑖=1

𝑍𝑖 − 2𝜇𝑖 ≥ 𝑤
)
= Pr

(
𝑒
∑𝑁

𝑖=1 𝑍𝑖−2𝜇𝑖 ≥ 𝑒𝑤
)
≤ 𝔼

[
𝑒
∑𝑁

𝑖=1 𝑍𝑖−2𝜇𝑖
]
𝑒−𝑤 ≤ 𝑒−𝑤 .

Setting 𝛿 B 𝑒−𝑤 , we get that w.p.≥ 1 − 𝛿,
∑𝑁
𝑖=1 𝑍𝑖 ≤ 2

∑𝑁
𝑖=1 𝜇𝑖 + log 1

𝛿
. The result follows by substituting 𝑍𝑖 for 𝑋𝑖/𝐵 and

rearranging. □

F Additional Lemmas

Lemma 24 (See Lemma D.4 in (Rosenberg et al., 2020)). Let (F𝑖)∞𝑖=1 be a filtration, and let (𝑋𝑖)∞𝑖=1 be a sequence of
random variables that are F𝑖-measurable, and supported on [0, 𝐵]. Then with probability ≥ 1 − 𝛿, we have that for any
𝑁 ≥ 1;

𝑁∑︁
𝑖=1

𝔼 [𝑋𝑖 | F𝑖−1] ≤ 2
𝑁∑︁
𝑖=1

𝑋𝑖 + 4𝐵 log
2𝐾
𝛿
.

Lemma 25 (Elliptical potential lemma, see (Lattimore & Szepesvári, 2020), Lemma 19.4). Let (𝜙𝑖)𝑁𝑖=1 ⊂ ℝ𝑑 with ∥𝜙𝑖 ∥ ≤ 1,
and set Λ𝑖 B 𝜆𝐼 +∑𝑖−1

𝑡=1 𝜙𝑡𝜙
⊤
𝑡 where 𝜆 ≥ 1. Then,

𝑁∑︁
𝑖=1
∥𝜙𝑖 ∥2Λ−1

𝑖

≤ 2𝑑 log
(
1 + 𝑁

𝑑𝜆

)
Proof. Note that 𝜆 ≥ 1 implies ∥𝜙𝑖 ∥2Λ−1

𝑖

≤ 𝜆max (Λ−1
𝑖
) ∥𝜙𝑖 ∥2 ≤ 𝜆−1 ≤ 1. Thus

𝑁∑︁
𝑖=1
∥𝜙𝑖 ∥2Λ−1

𝑖

=

𝑁∑︁
𝑖=1

min
{
1, ∥𝜙𝑖 ∥2Λ−1

𝑖

}
.

The rest of the proof is identical to (Lattimore & Szepesvári, 2020), with 𝐿 = 1 and 𝑉0 = 𝜆𝐼. □
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Lemma 26 (Extended value difference, (Shani et al., 2020) Lemma 1, see also (Cai et al., 2020)). Let 𝑀 = (S,A, 𝐻,ℙ, ℓ) be
any MDP and 𝜋, 𝜋′ ∈ S → Δ(A) be any two policies. Then, for any sequence of functions 𝑄 𝜋

ℎ
: S × A → ℝ, 𝑉 𝜋

ℎ
: S → ℝ,

where 𝑉 𝜋
ℎ
(𝑠) B

〈
𝜋ℎ (·|𝑠), 𝑄 𝜋ℎ (𝑠, ·)

〉
, ℎ = 1, . . . , 𝐻, we have

𝑉 𝜋1 −𝑉
𝜋′

1 =

𝐻∑︁
ℎ=1

𝔼𝑠ℎ∼𝑑𝜋′
ℎ

[〈
𝑄 𝜋ℎ (𝑠ℎ, ·), 𝜋ℎ (·|𝑠ℎ) − 𝜋

′
ℎ (·|𝑠ℎ)

〉]
+

𝐻∑︁
ℎ=1

𝔼𝑠ℎ ,𝑎ℎ∼𝑑𝜋′
ℎ

[
𝑄 𝜋ℎ (𝑠ℎ, 𝑎ℎ) − ℓℎ (𝑠ℎ, 𝑎ℎ) − ℙℎ𝑉

𝜋
ℎ+1 (𝑠ℎ, 𝑎ℎ)

]
.

Proof. For any 𝑠 ∈ S, ℎ ∈ [𝐻], we have

𝑉 𝜋ℎ (𝑠) −𝑉
𝜋′

ℎ (𝑠) =
〈
𝜋ℎ (·|𝑠), 𝑄 𝜋ℎ (𝑠, ·)

〉
−

〈
𝜋′ℎ (·|𝑠), 𝑄

𝜋′

ℎ (𝑠, ·)
〉

=

〈
𝜋ℎ (·|𝑠) − 𝜋′ℎ (·|𝑠), 𝑄

𝜋
ℎ (𝑠, ·)

〉
+

〈
𝜋′ℎ (·|𝑠), 𝑄

𝜋
ℎ (𝑠, ·) −𝑄

𝜋′

ℎ (𝑠, ·)
〉

Further, by the Bellman consistency equations, for all 𝑎; 𝑄 𝜋
′

ℎ
(𝑠, 𝑎) = ℓℎ (𝑠, 𝑎) + ℙℎ𝑉 𝜋

′

ℎ+1 (𝑠, 𝑎), thus〈
𝜋′ℎ (·|𝑠), 𝑄

𝜋
ℎ (𝑠, ·) −𝑄

𝜋′

ℎ (𝑠, ·)
〉
= 𝔼𝑎∼𝜋′ ( · |𝑠)

[
𝑄 𝜋ℎ (𝑠, 𝑎) − ℓℎ (𝑠, 𝑎) − ℙℎ𝑉

𝜋′

ℎ+1 (𝑠, 𝑎)
]

= 𝔼𝑎∼𝜋′ ( · |𝑠)
[
𝑄 𝜋ℎ (𝑠, 𝑎) − ℓℎ (𝑠, 𝑎) − ℙℎ𝑉

𝜋
ℎ+1 (𝑠, 𝑎)

]
+ 𝔼𝑎∼𝜋′ ( · |𝑠)

[
ℙℎ𝑉

𝜋
ℎ+1 (𝑠, 𝑎) − ℙℎ𝑉

𝜋′

ℎ+1 (𝑠, 𝑎)
]

= 𝔼𝑎∼𝜋′ ( · |𝑠)
[
𝑄 𝜋ℎ (𝑠, 𝑎) − ℓℎ (𝑠, 𝑎) − ℙℎ𝑉

𝜋
ℎ+1 (𝑠, 𝑎)

]
+ 𝔼𝑠′∼ℙℎ ( · |𝑠,𝑎) ,𝑎∼𝜋′ ( · |𝑠)

[
𝑉 𝜋ℎ+1 (𝑠

′) −𝑉 𝜋′ℎ+1 (𝑠
′)
]
.

Combining the last two displays we obtain

𝑉 𝜋ℎ (𝑠) −𝑉
𝜋′

ℎ (𝑠) =
〈
𝜋ℎ (·|𝑠) − 𝜋′ℎ (·|𝑠), 𝑄

𝜋
ℎ (𝑠, ·)

〉
+ 𝔼𝑎∼𝜋′ ( · |𝑠)

[
𝑄 𝜋ℎ (𝑠, 𝑎) − ℓℎ (𝑠, 𝑎) − ℙℎ𝑉

𝜋
ℎ+1 (𝑠, 𝑎)

]
+ 𝔼𝑠′∼ℙℎ ( · |𝑠,𝑎) ,𝑎∼𝜋′ ( · |𝑠)

[
𝑉 𝜋ℎ+1 (𝑠

′) −𝑉 𝜋′ℎ+1 (𝑠
′)
]
.

Unrolling the above relation, the result follows. □

The next lemma is standard, for proof see e.g., Hazan et al. (2016); Lattimore & Szepesvári (2020).

Lemma 27 (Entropy regularized OMD). Let 𝜂 > 0, and 𝑔𝑘 ∈ ℝ𝑛, 𝑥𝑘 ∈ Δ(𝑛) be a sequence of vectors such that for all 𝑎,
𝑥1 (𝑎) = 1/𝑛, for all 𝑘 ∈ [𝐾], 𝑎 ∈ [𝑛], 𝜂𝑔𝑘 (𝑎) ≥ −1 and

𝑥𝑘+1 (𝑎) =
𝑥𝑘 (𝑎)𝑒−𝜂𝑔𝑡 (𝑎)∑

𝑎′∈[𝑛] 𝑥𝑘 (𝑎′)𝑒−𝜂𝑔𝑘 (𝑎
′ ) .

Then,

max
𝑥∈Δ𝑛

{
𝐾∑︁
𝑘=1
⟨𝑔𝑘 , 𝑥𝑘 − 𝑥⟩

}
≤ log 𝑛

𝜂
+ 𝜂

𝐾∑︁
𝑘=1

𝑛∑︁
𝑖=1

𝑥𝑘 (𝑖)𝑔𝑘 (𝑖)2.

The next lemma establishes a regret bound for OMD with blocking, and follows from standard arguments. We provide a
proof for completeness.

Lemma 28 (Entropy regularized OMD with blocking). Let 𝐾 ∈ ℤ+, 𝜏 ≤ 𝐾, 𝐽 = ⌈𝐾/𝜏⌉, and set 𝑇𝑗 B
{𝜏( 𝑗 − 1) + 1, . . . , 𝜏 𝑗} for all 𝑗 ∈ [𝐽]. Assume 𝜂 > 0, let 𝑔𝑘 ∈ ℝ𝑛 be a sequence of vectors such that ∀𝑎, 𝑘; 𝜂𝑔𝑘 (𝑎) ≥ −1 ,
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and set

𝑔( 𝑗 ) =
1
𝜏

∑︁
𝑘∈𝑇𝑗

𝑔𝑘 ∀ 𝑗 ∈ [𝐽]

𝑥 ( 𝑗+1) (𝑎) =
𝑥 ( 𝑗 ) (𝑎)𝑒−𝜂𝑔( 𝑗) (𝑎)∑

𝑎′∈[𝑛] 𝑥 ( 𝑗 ) (𝑎′)𝑒−𝜂𝑔( 𝑗) (𝑎
′ ) .

Then if 𝑥𝑘 ∈ Δ(𝑛) are such that 𝑥𝑘 = 𝑥 ( 𝑗 ) for all 𝑘 ∈ 𝑇𝑗 , 𝑗 ∈ [𝐽] we have

max
𝑥∈Δ𝑛

{
𝐾∑︁
𝑘=1
⟨𝑔𝑘 , 𝑥𝑘 − 𝑥⟩

}
≤ 𝜏 log 𝑛

𝜂
+ 𝜏max

𝑘
∥𝑔𝑘 ∥∞ + 𝜂

𝐾∑︁
𝑘=1

𝑛∑︁
𝑖=1

𝑥𝑘 (𝑖)𝑔𝑘 (𝑖)2.

Proof. By applying Lemma 27 on 𝑔( 𝑗 ) , 𝑥 ( 𝑗 ) , we get

𝐽∑︁
𝑗=1

〈
𝑔( 𝑗 ) , 𝑥 ( 𝑗 ) − 𝑥★

〉
≤ log 𝑛

𝜂
+ 𝜂

𝐽∑︁
𝑗=1

𝑛∑︁
𝑖=1

𝑥 ( 𝑗 ) (𝑖)𝑔( 𝑗 ) (𝑖)2.

In addition,

𝐽∑︁
𝑗=1

〈
𝑔( 𝑗 ) , 𝑥 ( 𝑗 ) − 𝑥★

〉
=

𝐽∑︁
𝑗=1

〈
1
|𝑇𝑗 |

∑︁
𝑘∈𝑇𝑗

𝑔𝑘 , 𝑥 ( 𝑗 ) − 𝑥★
〉
=

𝐽∑︁
𝑗=1

1
|𝑇𝑗 |

∑︁
𝑘∈𝑇𝑗

〈
𝑔𝑘 , 𝑥𝑘 − 𝑥★

〉
≥ 1
𝜏

𝐾∑︁
𝑘=1

〈
𝑔𝑘 , 𝑥𝑘 − 𝑥★

〉
Further, by Jensen’s inequality,

𝑔( 𝑗 ) (𝑖)2 =
©« 1
|𝑇𝑗 |

∑︁
𝑘∈𝑇𝑗

𝑔𝑘 (𝑖)
ª®¬

2

=
1
|𝑇𝑗 |2

©«
∑︁
𝑘∈𝑇𝑗

𝑔𝑘 (𝑖)
ª®¬

2

≤ 1
|𝑇𝑗 |

∑︁
𝑘∈𝑇𝑗

𝑔𝑘 (𝑖)2,

thus

1
𝜏

𝐾∑︁
𝑘=1

〈
𝑔𝑘 , 𝑥𝑘 − 𝑥★

〉
≤ log 𝑛

𝜂
+ 𝜂
𝜏

𝐾 ′∑︁
𝑘=1

𝑛∑︁
𝑖=1

𝑥𝑘 (𝑖)𝑔𝑘 (𝑖)2 +
𝜂

|𝑇𝐽 |
∑︁
𝑘∈𝑇𝐽

𝑛∑︁
𝑖=1

𝑥𝑘 (𝑖)𝑔𝑘 (𝑖)2,

where 𝐾 ′ = max {𝑘 ∈ 𝑇𝐽−1}. Finally,

𝐾∑︁
𝑘=1

〈
𝑔𝑘 , 𝑥𝑘 − 𝑥★

〉
≤ 𝜏 log 𝑛

𝜂
+ 𝜂

𝐾 ′∑︁
𝑘=1

𝑛∑︁
𝑖=1

𝑥𝑘 (𝑖)𝑔𝑘 (𝑖)2 +
𝜏𝜂

|𝑇𝐽 |
∑︁
𝑘∈𝑇𝐽

𝑛∑︁
𝑖=1

𝑥𝑘 (𝑖)𝑔𝑘 (𝑖)2,

≤ 𝜏 log 𝑛
𝜂
+ 𝜂

𝐾 ′∑︁
𝑘=1

𝑛∑︁
𝑖=1

𝑥𝑘 (𝑖)𝑔𝑘 (𝑖)2 +
𝜏

|𝑇𝐽 |
∑︁
𝑘∈𝑇𝐽

𝑛∑︁
𝑖=1

𝑥𝑘 (𝑖)𝑔𝑘 (𝑖)

≤ 𝜏 log 𝑛
𝜂
+ 𝜂

𝐾∑︁
𝑘=1

𝑛∑︁
𝑖=1

𝑥𝑘 (𝑖)𝑔𝑘 (𝑖)2 + 𝜏max
𝑘
∥𝑔𝑘 ∥∞,

which concludes the proof. □
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