
POGEMA: A Benchmark Platform for Cooperative
Multi-Agent Navigation (Supplementary material)

Alexey Skrynnik
AIRI

Moscow, Russia

Anton Andreychuk
AIRI

Moscow, Russia

Anatolii Borzilov
MIPT

Moscow, Russia

Alexander Chernyavskiy
MIPT

Moscow, Russia

Konstantin Yakovlev
FRC CSC RAS, AIRI

Moscow, Russia

Aleksandr Panov
AIRI, MIPT

Moscow, Russia

1 Extended Evaluation Results1

POGEMA benchmark contains 6 different sets of maps and all baseline approaches were evaluated2

on them either on MAPF or on LMAPF instances. Regardless the type of instances, number of maps,3

seeds and agents were the same. Table 1 contains all information about these numbers. Note that4

there is no MaxSteps (LMAPF) value for MovingAI set of maps. This set of maps was used only for5

pathfinding meta-metric, thus all approaches were evaluated only on MAPF instances with a single6

agent. The source code for POGEMA Benchmark is available at link1.7

Table 1: Details about the instances on different sets of maps.
Agents Maps MapSize Seeds MaxSteps MaxSteps

(MAPF) (LMAPF)

Random [8, 16, 24, 32, 48, 64] 128 17×17 - 21×21 1 128 256
Mazes [8, 16, 24, 32, 48, 64] 128 17×17 - 21×21 1 128 256

Warehouse [32, 64, 96, 128, 160, 192] 1 33×46 128 128 256
Puzzles [2, 3, 4] 16 5×5 10 128 256

MovingAI [1] 8 256×256 10 2048 -
MovingAI-tiles [64, 128, 192, 256] 128 64×64 1 256 256

1.1 MAPF Benchmark: Performance8

The performance metrics were calculated using Mazes and Random maps of size close to 20×20. The9

primary metrics here are SoC and CSR. The results of all the MAPF approaches over different numbers10

of agents are presented in Figure 1. The superior performance is shown by the centralized approach,11

LaCAM. The learnable approaches, DCC and SCRIMP, show comparable results. Interestingly, the12

former has a better SoC metric, despite the latter having better results on CSR. Among the MARL13

methods, better results are shown by MAMBA for both metrics.14

1.2 MAPF Benchmark: Out-of-Distribution15

Out-of-Distribution metric was calculated on MovingAI-tiles dataset, that consists of pieces of16

cities maps with 64× 64 size. Due to much larger size compared to Mazes and Random maps, the17

amount of agents was also significantly increased. Here again centralized search-based planner, i.e.18

1https://github.com/Tviskaron/pogema_benchmark

Submitted to the 38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets
and Benchmarks. Do not distribute.

https://github.com/Tviskaron/pogema_benchmark


8 16 24 32 48 64
Number of Agents

0.0

0.2

0.4

0.6

0.8

1.0

CS
R

Random / Mazes

DCC
IQL
LaCAM
MAMBA
QMIX
QPLEX
SCRIMP
VDN

8 16 24 32 48 64
Number of Agents

0

2000

4000

6000

8000

So
C

Random / Mazes
DCC
IQL
LaCAM
MAMBA
QMIX
QPLEX
SCRIMP
VDN

Figure 1: Plots show performance of MAPF approaches on Random and Mazes maps. The perfor-
mance metrics was calculated based on SoC (lower is better) and CSR (higher is better) metrics. The
shaded area indicates 95% confidence intervals.

64 128 192 256
Number of Agents

0.0

0.2

0.4

0.6

0.8

1.0

CS
R

Out-of-Distribution

DCC
IQL
LaCAM
MAMBA
QMIX
QPLEX
SCRIMP
VDN

64 128 192 256
Number of Agents

0

10000

20000

30000

40000

50000

60000

So
C

Out-of-Distribution
DCC
IQL
LaCAM
MAMBA
QMIX
QPLEX
SCRIMP
VDN

Figure 2: Plots show performance of MAPF approaches on MovingAI-tiles maps. These results
were utilized to compute Out-of-Distribution metric. The shaded area indicates 95% confidence
intervals.

LaCAM, demonstrates the best results both in terms of CSR and SoC. Hybrid methods methods,19

i.e. DCC and SCRIMP, are also able to solve some of the instances. While DCC and SCRIMP20

demonstrate similar results on Mazes and Random maps, DCC completely outperforms SCRIMP on21

out-of-distribution dataset. MARL approaches are not able to solve any instance even with 64 agents.22

1.3 MAPF Benchmark: Scalability23

32 64 96 128 160 192
Number of Agents

0

2

8

32

128

Ru
nt

im
e 

(s
ec

on
ds

)

Warehouse
DCC
IQL
LaCAM
MAMBA
QMIX
QPLEX
SCRIMP
VDN

Figure 3: Runtime in seconds for each al-
gorithm. Note that the plot is log-scaled.

The results of how well the algorithm scales with a large24

number of agents are shown in Figure 3. The experiments25

were conducted on a warehouse map. The plot is log-26

scaled. The best scalability is achieved with the centralized27

LaCAM approach, which is a high-performance approach.28

The worst results in both runtime and scalability are for29

SCRIMP, with results close to it for DCC. Despite an30

initially high runtime, the scalability of MAMBA is better31

than other approaches; however, this could be attributed32

to the high cost of GPU computation, which is due to the33

large number of parameters in the neural network and is34

the limiting factor of this approach.35

2



1.4 MAPF Benchmark: Cooperation36

How well the algorithm is able to resolve complex situa-37

tions on the Puzzles set is reflected in the results presented in Table 2. Surprisingly, the centralized38

approach LaCAM does not solve all the tasks, showing only a 0.96 CSR. This highlights that this type39

of task is difficult even for centralized approaches, despite the small map size of 5× 5 and the low40

number of agents (2− 4). SCRIMP outperformed DCC in CSR but again showed comparable results41

in SoC. Among MARL approaches, better cooperation is demonstrated by QMIX, outperforming42

QPLEX, VDN, IQL, and even MAMBA.43

1.5 MAPF Benchmark: Congestion44

Table 2: Comparison of algorithms cooperation on
Puzzles set. ± shows confidence intervals 95%.

Algorithm CSR SoC

DCC 0.72±0.04 96.33±9.97
IQL 0.27±0.04 316.87±14.47
LaCAM 0.96±0.02 36.29±7.26
MAMBA 0.39±0.04 177.64±14.68
QMIX 0.53±0.05 246.11±17.10
QPLEX 0.33±0.04 250.12±14.80
SCRIMP 0.82±0.04 104.31±13.73
VDN 0.11±0.03 336.99±12.45

Congestion is one of the meta-metrics that esti-45

mates how well the agents are distributed along46

the map. This metric indirectly influences the47

performance of the approach, as well-distributed48

agents in case of highly crowded instances al-49

lows to reduce the amount of collisions and re-50

dundant wait-actions. To compute this metric we51

utilize the results obtained on Warehouse map52

with the highest evaluated amount of agents -53

192. In contrast to other metrics, that are com-54

puted as a ratio to the best obtained results, Con-55

gestion metric is computed as the ratio to aver-56

age density of all agents on the map to average57

density of the agents in agents’ local observations.58

Table 3: Average agents density by number of agents across algorithms for Warehouse map. Please
note, only column with 192 agents was utilized to compute Congestion metric.

Algorithm 64 Agents 96 Agents 128 Agents 160 Agents 192 Agents

DCC 0.094±0.001 0.132±0.001 0.170±0.001 0.207±0.001 0.241±0.001
IQL 0.076±0.001 0.114±0.001 0.163±0.002 0.244±0.002 0.299±0.002
LaCAM 0.082±0.001 0.116±0.001 0.149±0.001 0.179±0.001 0.207±0.001
MAMBA 0.101±0.001 0.183±0.001 0.266±0.002 0.335±0.002 0.389±0.002
QMIX 0.073±0.001 0.103±0.001 0.130±0.001 0.154±0.001 0.179±0.001
QPLEX 0.077±0.001 0.113±0.001 0.146±0.001 0.175±0.001 0.205±0.001
SCRIMP 0.074±0.001 0.104±0.001 0.127±0.001 0.148±0.001 0.173±0.001
VDN 0.071±0.001 0.101±0.001 0.130±0.001 0.158±0.001 0.188±0.001

1.6 MAPF Benchmark: Pathfinding59

Table 4: Comparison of makespan
used for pathfinding metric.

Algorithm Makespan

DCC 189.56±28.28
IQL 1825.95±137.11
LaCAM 179.82±20.21
MAMBA 416.45±139.34
QMIX 955.54±203.76
QPLEX 933.74±204.21
SCRIMP 1460.04±176.27
VDN 1733.20±158.91

To compute Pathfidning metric we run the approaches on the60

instances with a single agent. For this purpose we utilized61

large MovingAI mapf with 256 × 256 size. While this task62

seems easy, most of the hybrid and MARL approaches are63

not able to effectively solve them. Only LaCAM is able to64

find optimal paths in all the cases, as it utilizes precomputed65

costs to the goal location as a heuristic. Most of the evaluated66

hybrid and MARL approaches are also contain a sort of global67

guidance in one the channels of their observations. However,68

large maps with out-of-distribution structure, the absence of69

communication and other agents in local observations are able70

to lead to inconsistent behavior of the models that are not able71

3



to effectively choose the actions that lead the agent to its goal. Please note, SoC and makespan72

metrics in this case are equal, as there is only one agent in every instance.73

1.7 LifeLong MAPF Benchmark: Performance74

Performance metric in LMAPF case is based on the ratio of throughput compared to the best obtained75

one. In contrast to SoC, throughput should be as high as possible. There is also no CSR metric,76

as there is no need for agents to be at their goal locations simultaneously. As well as in MAPF77

case, the best results are obtained by centralized search-based approach – RHCR. The best results78

among decentralized methods demonstrate Follower and MATS-LP. Between pure MARL methods79

the highest throughput on both Random and Mazes maps is obtained by MAMBA. The one can also80

note multiple approaches, that were not directly mentioned in the baselines section – ASwitcher,81

HSwitcher, LSwitcher, EPOM and RePlan. All these approaches are parts of Switcher baseline, where82

RePlan is search-based planner, EPOM – learn-based, and the rest are the switchers that combine83

these two methods. Between them the best results demonstrates ASwitcher.84

8 16 24 32 48 64
Number of Agents

0.0

0.5

1.0

1.5

2.0

2.5

Av
er

ag
e 

Th
ro

ug
hp

ut

Mazes
ASwitcher
EPOM
Follower
HSwitcher
IQL
LSwitcher
MAMBA
MATS-LP
QMIX
QPLEX
RHCR
RePlan
VDN

8 16 24 32 48 64
Number of Agents

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Av
er

ag
e 

Th
ro

ug
hp

ut

Random
ASwitcher
EPOM
Follower
HSwitcher
IQL
LSwitcher
MAMBA
MATS-LP
QMIX
QPLEX
RHCR
RePlan
VDN

Figure 4: Performance results for LifeLong scenarios on the Mazes and Random maps.

1.8 LifeLong MAPF Benchmark: Out-of-Distribution85

The evaluation on out-of-distribution set of maps confirms the results obtained on Random and Mazes86

maps. The best results demonstrates RHCR. Next best results are obtained by Follower and MATS-LP,87

which are much closer to RHCR in this experiment. While MATS-LP outperforms Follower on the88

instances with 64, 128 and 192 agents, Follower is still better on the instances with 256 agents. Such89

relation is probably explained by the presence of dynamic edge-costs in Follower that allows to better90

distribute agents along the map and reduce congestion between them.91

1.9 LifeLong MAPF Benchmark: Scalability92

32 64 96 128 160 192
Number of Agents

1

4

16

64

256

1024

4096

Ru
nt

im
e 

(s
ec

on
ds

)

Warehouse
ASwitcher
EPOM
Follower
HSwitcher
IQL
LSwitcher
MAMBA
MATS-LP
QMIX
QPLEX
RHCR
RePlan
VDN

Figure 5: Runtime in seconds for each al-
gorithm. Note that the plot is log-scaled.

Figure 5 contains log-scaled plot of average time spent93

by each of the algorithms to process an instance on94

Warehouse map with the corresponding amount of agents.95

Most of the approaches scales almost linearly, except96

RHCR. This centralized search-based method lacks of97

exponential grow, as it needs to find a collision-free solu-98

tion for at least next few steps, rather than just to make99

a decision about next action for each of the agents. The100

worst runtime demonstrate MATS-LP, as it runs MCTS101

and simulates the behavior of the other observable agents.102

It’s still scales better than RHCR as it builds trees for each103

of the agents independently.104

4



Table 5: Evaluation on Out-of-Distribution maps. The results are shown by average throughput
metric.

Algorithm 64 Agents 128 Agents 192 Agents 256 Agents

ASwitcher 1.26±0.08 2.30±0.13 3.14±0.17 3.80±0.20
EPOM 1.18±0.08 2.19±0.13 3.01±0.17 3.60±0.20
Follower 1.50±0.08 2.82±0.13 3.95±0.19 4.81±0.22
HSwitcher 1.24±0.08 2.22±0.12 3.01±0.17 3.58±0.20
IQL 0.26±0.02 0.65±0.04 0.78±0.05 0.68±0.05
LSwitcher 1.23±0.07 2.23±0.12 3.06±0.17 3.67±0.20
MAMBA 1.02±0.05 1.42±0.08 2.05±0.12 2.46±0.17
MATS-LP 1.57±0.12 2.98±0.20 4.04±0.33 4.69±0.39
QMIX 0.83±0.03 1.55±0.06 2.01±0.09 2.27±0.11
QPLEX 0.79±0.03 1.48±0.07 1.79±0.10 1.74±0.11
RHCR 1.57±0.08 3.00±0.14 4.22±0.23 5.13±0.34
RePlan 1.24±0.08 2.15±0.12 2.82±0.17 3.25±0.19
VDN 0.50±0.03 0.91±0.05 1.03±0.06 0.96±0.06

1.10 LifeLong MAPF Benchmark: Cooperation105 Table 6: Average throughput on
Puzzles maps that were used to
compute Cooperation metric.

Algorithm Average Throughput

ASwitcher 0.164±0.015
EPOM 0.147±0.014
Follower 0.319±0.020
HSwitcher 0.194±0.014
IQL 0.036±0.003
LSwitcher 0.206±0.013
MAMBA 0.133±0.014
MATS-LP 0.394±0.021
QMIX 0.117±0.010
QPLEX 0.051±0.006
RHCR 0.538±0.021
RePlan 0.194±0.013
VDN 0.030±0.004

As well as for MAPF setting, cooperation metric is computed106

based on the results obtained on Puzzles dataset. Table 6107

contains average throughput obtained by each of the evaluated108

approaches. Here again the best results are obtained by RHCR109

algorithm. In contrast to Random, Mazes and Warehouse sets110

of maps, where MATS-LP and Follower demonstrate close111

results, the ability to simulate the behavior of other agents,112

provided by MCTS in MATS-LP, allows to significantly outper-113

form Follower on small Puzzles maps. The rest approaches114

demonstrate much worse results, especially IQL, QPLEX and115

VDN that have 10 times worse average throughput than RHCR.116

1.11 LifeLong MAPF Benchmark: Congestion117

Table 7 contains average agents density presented in obser-118

vations. As it was already mentioned in LMAPF:Out-of-119

Distribution section, Follower contains a mechanism that al-120

lows to effectively distribute agents along the map. As a result, the lowest density is demonstrated121

exactly by this approach. MARL methods, such as MAMBA and QMIX are also demonstrate low122

average agents density, as they actually utilize the same observation as Follower does.

Table 7: Average Agents Density by Number of Agents
Algorithm 64 Agents 96 Agents 128 Agents 160 Agents 192 Agents

ASwitcher 0.074±0.001 0.111±0.001 0.146±0.001 0.176±0.001 0.203±0.001
EPOM 0.075±0.001 0.122±0.002 0.180±0.003 0.230±0.003 0.269±0.003
Follower 0.073 0.101 0.126 0.150 0.173
HSwitcher 0.075±0.001 0.121±0.002 0.176±0.003 0.227±0.003 0.270±0.003
IQL 0.080±0.001 0.127±0.002 0.188±0.003 0.257±0.003 0.319±0.002
LSwitcher 0.075±0.001 0.114±0.001 0.149±0.001 0.180±0.001 0.208±0.001
MAMBA 0.073 0.095 0.119±0.001 0.146±0.001 0.176±0.001
MATS-LP 0.110±0.002 0.176±0.002 0.231±0.003 0.274±0.003 0.306±0.003
QMIX 0.074 0.100 0.126 0.150±0.001 0.175±0.001
QPLEX 0.078 0.114±0.001 0.147±0.001 0.176±0.001 0.216±0.002
RHCR 0.088 0.125±0.001 0.170±0.002 0.242±0.004 0.314±0.004
RePlan 0.081±0.001 0.116±0.001 0.145±0.001 0.168±0.001 0.189±0.001
VDN 0.077±0.001 0.109±0.001 0.141±0.001 0.173±0.001 0.204±0.002

5



1.12 LifeLong MAPF Benchmark: Pathfinding123

Table 8: Pathfinding results.

Algorithm Makespan

ASwitcher 340.56±79.41
EPOM 762.94±168.21
Follower 181.00±20.95
HSwitcher 299.90±62.73
IQL 1825.95±144.16
LSwitcher 472.64±119.23
MAMBA 416.45±136.01
MATS-LP 179.93±22.45
QMIX 955.54±200.68
QPLEX 933.74±199.18
RHCR 179.82±20.21
RePlan 299.90±62.40
VDN 1733.20±157.96

Pathfinding metric is tailored to indicate how well the algo-124

rithm is able to guide am agent to its goal location. As a result,125

there is actually no need to run the algorithms on LifeLong126

instances. Instead, they were run on the same set of instances127

that were utilized for MAPF approaches. The results of this128

evaluation are presented in Table 8. Again, the best results129

were obtained by search-based approach – RHCR. Its imple-130

mentation was slightly modified to work on MAPF instances,131

when there is no new goal after reaching the current one. Ei-132

ther optimal or close to optimal paths are able to find Follower133

and MATS-LP. Followers misses optimal paths due to the inte-134

grated technique that changes the edge-costs. MATS-LP adds135

noise to the root of the search tree that might result in choosing136

of wrong actions. For the approaches from Switcher family137

it’s actually almost impossible to find optimal paths as they138

have no information about global map and operate only based139

on the local observations.140

2 Code examples for POGEMA141

from pogema import pogema_v0, GridConfig, AnimationMonitor

grid = """
.....#.....
.....#.....
...........
.....#.....
.....#.....
#.####.....
.....###.##
.....#.....
.....#.....
...........
.....#.....
"""

# Define new configuration with 6 randomly placed agents
grid_config = GridConfig(map=grid, num_agents=6)

# Create custom Pogema environment with AnimationMonitor
env = AnimationMonitor(pogema_v0(grid_config=grid_config))
env.reset()

# Saving SVG animation
env.save_animation('four-rooms.svg')

Listing 1: Setting up a POGEMA instance with a custom map and generating an animation.

POGEMA is an environment that provides a simple scheme for creating MAPF scenarios, specifying142

the parameters of GridConfig. The main parameters are: on_target (the behavior of an agent on143

6



the target, e.g., restart for LifeLong MAPF and nothing for classical MAPF), seed – to preserve144

the same generation of the map; agent; and their targets for scenario, size – used for cases without145

custom maps to specify the size of the map, density – the density of obstacles, num_agents – the146

number of agents, obs_radius – observation radius, collision_system – controls how conflicts147

are handled in the environment (we used a soft collision system for all of our experiments). The148

example of creation such instance is presenten in Listing 1.149

Visualization of the agents is a crucial tool for debugging algorithms, visually comparing them,150

and presenting the results. Many existing MARL environments lack such tools, or have limited151

visualization functionality, e.g., requiring running the simulator to provide replays, or offering152

visualizations only in one format (such as videos). In the POGEMA environment, there are three153

types of visualization formats. The first one is console rendering, which can be used with the default154

render methods of the environment; this approach is useful for local or server-side debugging.155

The preferred second option is SVG animations. An example of generating such a visualization is156

presented in the listing above. This approach allows displaying the results using any browser. It157

provides the ability to highlight high-quality static images (e.g., as the images provided in the paper)158

or to display results on a website (e. g., animations of the POGEMA repository on GitHub). This159

format ensures high-quality vector graphics. The third option is to render the results to video format,160

which is useful for presentations and videos.161

3 POGEMA Toolbox162

The POGEMA Toolbox provides three types of functionality.163

The first one is registries to handle custom maps and algorithms. To create a custom map, the user first164

needs to define it using ASCII symbols or by uploading it from a file, and then register it using the165

toolbox (see Listing 1). The same approach is used to register and create algorithms (see Listing 2).166

In that listing, the registration of a simple algorithm is presented, which must includ two methods:167

act and reset_states. This approach can also accommodate a set of hyperparameters which the168

Toolbox handles.169

from pogema import BatchAStarAgent

# Registring A* algorithm
ToolboxRegistry.register_algorithm('A*', BatchAStarAgent)

# Creating algorithm
algo = ToolboxRegistry.create_algorithm("A*")

Listing 2: Example of registering the A* algorithm as an approach in the POGEMA Toolbox.

from pogema_toolbox.registry import ToolboxRegistry

# Creating cusom_map
custom_map = """
.......#.
...#...#.
.#.###.#.
"""

# Registring custom_map
ToolboxRegistry.register_maps({"custom_map": custom_map})

Listing 3: Example of registering a custom map to the Pogema Toolbox.

7



environment: # Configuring Test Environments
name: Environment
on_target: 'restart'
max_episode_steps: 128
observation_type: 'POMAPF'
collision_system: 'soft'
seed:

grid_search: [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ]
num_agents:

grid_search: [ 8, 16, 24, 32, 48, 64 ]
map_name:

grid_search: [
validation-mazes-seed-000, validation-mazes-seed-001, validation-mazes-seed-002,
validation-mazes-seed-003, validation-mazes-seed-004, validation-mazes-seed-005,

]

algorithms: # Specifying algorithms and it's hyperparameters
RHCR-5-10:

name: RHCR
parallel_backend: 'balanced_dask'
num_process: 32
simulation_window: 5
planning_window: 10
time_limit: 10
low_level_planner: 'SIPP'
solver: 'PBS'

results_views: # Defining results visualization
01-mazes:

type: plot
x: num_agents
y: avg_throughput
width: 4.0
height: 3.1
line_width: 2
use_log_scale_x: True
legend_font_size: 8
font_size: 8
name: Mazes
ticks: [8, 16, 24, 32, 48, 64]

TabularThroughput:
type: tabular
drop_keys: [ seed, map_name]
print_results: True

Listing 4: Example of the POGEMA Toolbox configuration for parallel testing of the RHCR approach
and visualization of its results.

Second, it provides a unified way of conducting distributed testing using Dask 2 and defined con-170

figurations. An example of such a configuration is provided in Listing 4. The configuration is split171

2https://github.com/dask/dask

8

https://github.com/dask/dask


into three main sections; the first one details the parameters of the POGEMA environment used for172

testing. It also includes iteration over the number of agents, seeds, and names of the map (which were173

registered beforehand). The unified grid_search tag allows for the examination of any existing174

parameter of the environment. The second part of the configurations is a list of algorithms to be175

tested. Each algorithm has its alias (which will be shown in the results) and name, which specifies176

the family of methods. It also includes a list of hyperparameters common to different approaches,177

e.g., number of processes, parallel backend, etc., and the specific parameters of the algorithm.178

The third functionality and third part of the configuration concern views. This is a form of presenting179

the results of the algorithms. Working with complex testing often requires custom tools for creating180

visual materials such as plots and tables. The POGEMA toolbox provides such functionality for181

MAPF tasks out-of-the-box. The listing provides two examples of such data visualization: a plot and182

a table, which, based on the configuration, provide aggregations of results and present information in183

a high-quality form, including confidence intervals. The plots and tables in the paper are prepared184

using this functionality.185

4 Examples of used maps186

(a) Maze (b) Random (c) MovingAI-tiles

(d) Puzzle (e) Warehouse (f) MovingAI

Figure 6: Examples of maps presented in POGEMA.

5 MARL training setup187

For training MARL approaches, such as MAMBA, QMIX, QPLEX, and VDN, we used the default188

hyperparameters provided in the corresponding repositories3, and employed the PyMARL2 frame-189

work4 to establish MARL baselines. As input, we apply preprocessing from the Follower approach,190

which is the current state-of-the-art for decentralized LifeLong MAPF. We attempted to add a ResNet191

encoder, as used in the Follower approach; however, this addition worsened the results, thus we192

opted for vectorized observation and default MLP architectures. For centralized methods that work193

3https://github.com/jbr-ai-labs/mamba
4https://github.com/hijkzzz/pymarl2

9

https://github.com/jbr-ai-labs/mamba
https://github.com/hijkzzz/pymarl2


with the state of the environment (e.g., QMIX or QPLEX), we utilized the MARL integration of194

POGEMA, which provides agent positions, targets, and obstacle positions in a format similar to the195

SMAC environment (providing their coordinates).196

Our initial experiments on training this approach with a large number of agents, similar to the197

Follower model, showed very low results. We adjusted the training maps to be approximately 16×16,198

which proved to be more effective and populated them with 8 agents. This setup shows better results.199

We continued training the approaches until they reached a plateau, which for most algorithms is under200

1 million steps.201

6 Resources and Statistics202

To evaluate all the presented approaches integrated with POGEMA we have used two workstations203

with equal configuration, that includes 2 NVidia Titan V GPU, AMD Ryzen Threadripper 3970X204

CPU and 256 GB RAM. The required computation time is heavily depends on the approach by itself.205

Table 9: Total time (in hours) required by each of the algorithms to run all MAPF instances on the
corresponding datasets.

Random Mazes Warehouse MovingAI-tiles Puzzles MovingAI

DCC 2.11 2.46 11.07 22.70 0.09 0.02
IQL 0.05 0.04 0.13 0.13 0.01 0.01

LaCAM 0.20 0.29 0.24 0.23 0.37 0.01
MAMBA 6.62 6.47 8.36 12.27 2.59 3.40

QMIX 0.04 0.04 0.14 0.13 0.01 0.01
QPLEX 0.05 0.04 0.13 0.13 0.01 0.01

SCRIMP 1.66 2.20 16.54 21.63 0.08 0.21
VDN 0.05 0.04 0.13 0.13 0.01 0.01

Table 10: Total time (in hours) required by each of the algorithms to run all LMAPF instances on the
corresponding datasets.

Random Mazes Warehouse MovingAI-tiles Puzzles MovingAI

ASwitcher 1.03 0.47 2.95 1.76 0.31 0.04
EPOM 0.57 0.28 0.97 0.77 0.31 0.09

Follower 0.48 0.23 0.69 0.77 0.26 0.89
HSwitcher 6.39 2.65 18.40 10.25 0.31 0.10

IQL 0.08 0.04 0.26 0.24 0.02 0.01
LSwitcher 6.18 2.61 17.30 10.70 0.81 0.21
MAMBA 13.82 6.69 15.81 11.07 7.83 3.40

MATS-LP 77.31 35.34 163.68 129.78 3.80 0.14
QMIX 0.08 0.04 0.26 0.25 0.02 0.01

QPLEX 0.08 0.04 0.26 0.25 0.02 0.01
RHCR 0.57 0.25 17.04 6.28 0.01 0.01
RePlan 6.00 2.40 16.20 11.33 0.01 0.09

VDN 0.08 0.04 0.25 0.25 0.02 0.01

The statistics regarding the spent time on solving MAPF and LMAPF instances are presented in Table206

9 and Table 10 respectively. Please note, that all these approaches were run in parallel in multiple207

threads utilizing dask, that significantly reduces the factual spent time.208

We used pretrained models for all the hybrid methods, such as Follower, Switcher, MATS-LP,209

SCRIMP, and DCC, thus, no resources were spent on their training. RHCR and LaCAM are pure210

search-based planners and do not require any training. MARL methods, such as MAMBA, QPLEX,211

QMIX, IQL, and VDN, were trained by us. MAMBA was trained for 20 hours on the MAPF instances,212

resulting in 200K environment steps, and for 6 days on LifeLong MAPF instances, resulting in 50K213

environment steps, which corresponds to the same amount of GPU hours. For MARL approaches,214

10



we trained them for 1 million environment steps, which corresponds to an average of 5 GPU hours215

for each algorithm.216

7 Accountability framework217

Our team is committed to maintaining an open and accountable POGEMA framework. Since218

2021, we have continuously improved POGEMA, including the addition of the POGEMA Toolbox219

and the recent introduction of POGEMA Benchmark. We ensure transparency in our operations220

and encourage the broader AI community to participate. Our framework includes a fast learning221

environment, problem instance generator, visualization toolkit, and automated benchmarking tools,222

all guided by a clear evaluation protocol. We have also implemented/integrated and evaluated multiple223

strong baselines that simplify further comparison with them. We practice rigorous software testing224

and conduct regular code reviews. We are promptly addressing issues that are reported on Github and225

we welcome any feedback and contributions through GitHub.226

11


	Extended Evaluation Results
	MAPF Benchmark: Performance
	MAPF Benchmark: Out-of-Distribution
	MAPF Benchmark: Scalability
	MAPF Benchmark: Cooperation
	MAPF Benchmark: Congestion
	MAPF Benchmark: Pathfinding
	LifeLong MAPF Benchmark: Performance
	LifeLong MAPF Benchmark: Out-of-Distribution
	LifeLong MAPF Benchmark: Scalability
	LifeLong MAPF Benchmark: Cooperation
	LifeLong MAPF Benchmark: Congestion
	LifeLong MAPF Benchmark: Pathfinding

	Code examples for POGEMA
	POGEMA Toolbox
	Examples of used maps
	MARL training setup
	Resources and Statistics
	Accountability framework

