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Figure 3: Adjustible Gaussian windows after training.

A Note on adjustible windows for producing oversampled spectrogram

As mentioned in the main text, we experimented with applying multiple window functions to cre-
ate a log-mel spectrogram input, with multiple channels (for each window function) on each time-
frequency bin. In this work, the two-parameter adjustible Gaussian window is parameterized as
follows:

w[i] = exp

[
−0.5

(
i−Nσ(p1)

Nσ(p2)/2

)2
]
, i = 0, 1, . . . , N − 1 (6)

where N is the size of the window, p1 and p2 are two parameters for the center and the standard
deviation, respectively, and σ(·) is the sigmoid function which maps the parameters to be between
(0,1). Here, p1 is initialized such that centers are equidistantly placed between 0 and 1, and p2 is
initialized to −1. The final trained window bank is shown in Fig. 3.

B Note on activation-level evaluation metrics

For the commonly reported frame-level metrics (precision, recall, F1), we identify that the actual im-
plementations vary from paper to paper, with different hop sizes, e.g., Hawthorne et al. [2018, 2019],
Kong et al. [2020]. In Hawthorne et al. [2019, 2018], the authors use a hop size that is nearly twice
the one used in Kong et al. [2020]. Also these metrics, in the literature, are sometimes computed on
the raw grid of frame-level predictions, which does not reflect the final transcription quality. These
two facts render these metrics ill-suited for comparing systems. In order to make the evaluation
metrics more general, emphasizing the temporal overlap between the predicted and ground truth
time spans for activations of specific events, we propose to directly evaluate event activations in con-
tinuous time on the final output of all MIDI transcription systems, i.e., the transcribed note events
in continuous time, without the need for quantization. We denote these metrics as activation-level
metrics, and define them as follows:

precision =
total duration correctly predicted

total duration predicted

recall =
total duration correctly predicted

total duration in ground truth

F1 = 2

(
precision ∗ recall
precision + recall

) (7)

Here the total duration correctly predicted is the summation of all the durations of the overlapping
regions between the predicted time spans and the ground truth time spans.
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C Timing Precision

0 5 10 15 20 25 30 35 40 45
Deviation (ms)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95

Cu
m

ul
at

iv
e 

Pr
ob

ab
ilit

y

Proposed
Kong2020
Hawthorne2019

(a) Onset time deviation distribution.
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(b) Offset time deviation distribution.

Figure 4: Empirical cumulative distribution functions of time deviations of estimated onsets and
offsets from ground-truth notes.

We compare the proposed system to two state-of-the-art methods w.r.t. timing precision of onset
and offset estimation among correctly transcribed notes. Here the matching criteria is relaxed to a
tolerance of 100 ms for onsets and the greater value of 100 ms and 20% of the note duration for
offsets. The results are shown in Fig. 4 in the form of empirical cumulative distribution functions
(ECDFs). The frame hop sizes used by the three methods shown in the figure are 23ms, 10ms, 32
ms, respectively. Regarding onsets, the proposed method and Kong et al. [2020] perform the best,
showing 90% of deviations are less than 10 ms, while Hawthorne et al. [2019] shows a uniform
distribution below 32 ms, which is the frame hop size it uses. The curve of Kong et al. [2020] is
not smooth, due to the peak interpolation strategy it adopts. Regarding offsets, the proposed method
outperforms both comparison methods. In particular, 90% of offset deviations are less than 23 ms,
while the value is 30 ms for Kong et al. [2020] and 47 ms for Hawthorne et al. [2019]. Our strategy
of regressing to dequantize positions reaches a similar or better performance compared with Kong
et al. [2020], even with more than twice the hop size. Our method also produces a smooth ECDF
curve.
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