
(a) Shortest path problem (b) Blackmailer’s problem (c) Optimal stopping problem

Figure 5: Revisiting Fig. 1 for the discounted cases where γ ∈ (0, 1).

A More Examples with Multiple Fixed Points426

First, we consider the discounted formulations of the three examples (shown in Fig. 1), as shown in427

Fig. 5 where γ ∈ (0, 1). The differences are marked in red.428

• (a) Shortest path problem (deterministic, discounted case): Given two states 1 and 0, an agent429

at state 1 transits to either state 1 or 0 with rewards r = c or r = b, respectively. c > (1− γ) · b.430

At state 0, the value function is V (0) = 0. At state 1, the Bellman’s optimality equation is431

V (1) = max{c+ γ · V (1), b}, where any V (1) ≥ (b− c)/γ is a solution. If initialize V0(1) ≥ b,432

an agent obtains a policy that always transits back to state 1; otherwise, a result policy drives to433

terminal state 0.434

• (b) Blackmailer’s problem (stochastic, discounted case): Different from (a), a profit maximizing435

blackmailer/agent at 1 demands a cash amount a ∈ (0, 1] (an action), while a victim transits to state436

1 with probability a or to state 0 with probability 1− a, respectively. At state 0, a victim always437

refuses to yield to the blackmailer’s demand, i.e., V (0) = 0. The Bellman’s optimality equation438

is V (1) = maxa{a+ γ · (1− a)V (1)} for state 1, where any V (1) ≥ 1 is a feasible solution. If439

initialize V0(1) = c > 1, the blackmailer’s policy is demanding a → 0 at the k-th step to keep440

the victim stay at state 1, for any k ≤ K0 = −⌊logγ c⌋; and taking a = 1 to transit to terminal441

state 0 at the k-th step, for any k ≥ K0 + 1; otherwise initialize V0(1) = c ≤ 1, the result policy is442

demanding the maximum a = 1 that drives the victim to a refusal state 0 (a terminal state).443

• (c) Optimal stopping problem (terminating policies, discounted case): In a space R2 with444

terminating state at point 0, at point x ̸= 0 an agent moves to either point 0 with negative reward−c445

or point αx with reward −||x||, respectively, where α ∈ (0, 1). The Bellman’s optimality equation446

is V (x) = max{−c,−||x||+ γ · V (αx)} and the optimal policy is to continue inside the sphere of447

radius (1− α)c and to stop outside. If add a cone region C within which an agent always receives448

a reward −c, a second policy is jumping to point 0 at any point in region C.449

Then, we elaborate how the proposed H-term fixes the problems in Fig. 5.450

(a) Shortest path problem (deterministic, discounted case)451

Assume V0(1) ≥ b and c > (1− γ)b, we have452

V1(1) = c+ γ · V0(1) ≥ c+ γ · b > b

V2(1) = c+ γ · c+ γ2 · V0(1) ≥ (1 + γ)c+ γ2b > b

V3(1) = c+ γ · c+ γ2c+ γ3 · V0(1) ≥ (1 + γ + γ2)c+ γ3b > b

· · ·

Vk(1) =

k−1∑
i=0

γi · c+ γk · V0(1) ≥
k−1∑
i=0

γi · c+ γkb > b

· · ·

V ∗(1) =

∞∑
i=0

γi · c = 1

1− γ
c > b

(13)

14

The values of H(0) and H(1) are as follows:453

H(0) = 0, H(1) = −b−
∞∑
k=2

(

k−1∑
i=1

γi−1 · c+ γkb) = −∞. (14)

Adding the above H-values to state 1 and 0, respectively, we have454

V ∗(1) +H(1) =

∞∑
i=0

γi · c−∞ = −∞

V ∗(0) +H(0) = b.

(15)

Therefore, V ∗(1) +H(1) < V ∗(0) +H(0), independent of the initial value V0(1). That is, an agent455

always obtains a policy that drives to terminal state 0 at step 1.456

(b) Blackmailer’s problem (stochastic, discounted case)457

If initialize V0(1) = c > 1, the blackmailer’s policy is demanding a→ 0 at the k-th step to keep the458

victim stay at state 1, for any k ≤ K0 = −⌊logγ c⌋; and taking a = 1 to transit to terminal state 0 at459

the k-th step, for any k ≥ K0 + 1; otherwise initialize V0(1) = c ≤ 1, the result policy is demanding460

the maximum a = 1 that drives the victim to a refusal state 0 (a terminal state).461

The values of H(0) and H(1) are as follows:462

H(0) = 0, H(1) = −
∞∑
k=1

k−1∑
i=1

γi−1 · a = −∞. (16)

For arbitrary initial value of V0(1), V1(1) = a+(1−a) ·γ(V0(1)+H(1)) take maximum V1(1) = 1463

when a = 1. Therefore, the policy always drives to terminal state 0 at step 1.464

(c) Optimal stopping problem (terminating policies, discounted case)465

Any policy that takes infinite steps will have466

H(x) = −c−
∞∑
k=2

[
k−1∑
i=1

γi · αi · ∥x∥+ γk · (−c)

]
= −∞ (17)

and a direct jumping policy will have H(x) = −c. Therefore, the H-term drives to a terminating467

policy.468

15

B MuJoCo Tasks with Multiple Policies469

B.1 Description of MuJoCo Taks470

We selected six challenging robotic locomotion tasks from MuJoCo, namely, Swimmer-v3, Hopper-471

v3, Walker2D-v3, HalfCheetah-v3, Ant-v3, Humanoid-v3. Table 3 lists the action space and state472

space of each task.473

Table 3: The state and action spaces of six challenging MuJoCo tasks.

Tasks Agent Action Space State Space
Swimmer-v3 Three-link swimming robot 2 8
Hopper-v3 Two-dimensional one-legged robot 3 11

Walker2d-v3 Two-dimensional bipedal robot 6 17
HalfCheetah-v3 Two-dimensional robot 6 17

Ant-v3 Four-legged creature 8 111
Humanoid-v3 Three-dimensional bipedal robot 17 376

B.2 Multiple policies in MuJoCo tasks474

In the supplementary files, we includes rendered videos of different policies, as given in Table 4.475

• Different policies are obtained over 20 runs of the PPO algorithm. We rendered theses polices and476

classified them by physical gaits.477

• The policies in bold texts are physically stationary.478

Table 4: List of video files for different policies.

Task Different Policies Video Name
hopping hopper_hopping.mp4
diving hopper_diving.mp4Hopper

standing hopper_standing.mp4
running ant_running.mp4
standing ant_standing.mp4Ant
flipping ant_flipping.mp4
walking walker_walking.mp4
diving walker_diving.mp4Walker

standing walker_standing.mp4
two-legs humanoid_two_legs.mp4
one-leg humanoid_one_leg.mp4Humanoid

backward humanoid_backward.mp4
running halfcheetah_running.mp4
diving halfcheetah_diving.mp4

flipping halfcheetah_flipping.mp4HalfCheetah

standing halfcheetah_standing.mp4
moving swimmer_moving.mp4Swimmer standing swimmer_standing.mp4

16

C Quantum K-Spin Hamiltonian Formulation of Reinforcement Learning479

We provide the detailed steps of reformulating (1) into a K-spin Hamiltonian equation480

H(θ) ≜ −ES0,A0
[Qπθ (S0, A0)]

= −ES0,Ak∼πθ(Sk,·),Sk+1∼P(·|Sk,Ak)

[∞∑
k=0

γk ·R(Sk, Ak)

]

= −
K−1∑
k=0

ES0,A0,··· ,Sk∼P(·|Sk−1,Ak−1),Ak∼πθ(Sk,·)
[
γk ·R(Sk, Ak)

]
= −

K−1∑
k=0

S×A∑
µ0

· · ·
S×A∑
µk

γk ·R(µk) · d0(S0) · πθ(µ0)

k−1∏
i=0

[P(Si+1|µi) · πθ(µi+1)]

= −
K−1∑
k=0

S×A∑
µ0

· · ·
S×A∑
µk

[
γk ·R(µk) · d0(S0) ·

k−1∏
i=0

P(Si+1|µi)

]
· πθ(µ0) · · ·πθ(µk)

= −
K−1∑
k=0

S×A∑
µ0

· · ·
S×A∑
µk

Lµ0,...,µk
· πθ(µ0) · · ·πθ(µk),

(18)

where K →∞, and the density function is481

Lµ0,...,µk
= γk ·R(µk) · d0(S0) ·

k−1∏
i=0

P(Si+1|µi). (19)

Table 5: Revisiting the analogy between MDP and quantum K-spin Ising model.

MDP (Our formulation in (7)) Quantum K-spin Ising Model [23, 12] in (5)
State-action pairs µ0, ..., µK−1 Spins j0, · · · , jK−1

Optimal policy π∗
µ0
× π∗

µ1
× · · · × π∗

µK−1
Quantum field σj0 × σj1 × · · · × σjK−1

Cumulative rewards Lµ0...µK−1
Density function Lj0···jK−1

Functional of policy H(πµ0 , ..., πµK−1
) Functional of spins H(σj0 , · · · , σjK−1

)

Stationary condition
δH(πµ0

,··· ,πµK−1
)

δπµ
= 0 Stationary condition

δH(σj0
,··· ,σjK−1

)

δσj
= 0

17

D Derivation Steps for Section 4.2: Hamiltonian’s Policy Gradients482

We provide the policy gradient of the quantum K-spin Hamiltonian equation in (7) for both stochastic483

and deterministic cases, which are variants of the well-known policy gradient theorem [32].484

Theorem 1. (Hamiltonian’s stochastic policy gradient) The stochastic gradient of the K-spin485

Hamiltonian equation (7) w.r.t. parameter θ is486

∇θH(θ) = −Eµ0,...,µK−1

[
K−1∑
k=0

γk ·R(µk) · ∇θ log (πθ(µ0) · πθ(µ1) · · ·πθ(µk))

]
. (20)

Corollary 1. When K →∞, the Hamiltonian’s stochastic policy gradient ∇θH(θ) in (20) is equal487

to the stochastic policy gradient∇θJ(θ) in [33],488

lim
K→∞

∇θH(θ) = −∇θJ(θ) = −Es∼dθ,a∼πθ
[Qπθ (s, a)∇θ log πθ(s, a)] . (21)

Let ηθ(·) : S → A denote a deterministic policy, while we use π̃θ,δ(µ) to represent that a Gaussian489

noise (a.k.a, an exploration noise) with standard deviation δ > 0 is added in the exploration process.490

Theorem 2. (Hamiltonian’s deterministic policy gradient) The deterministic gradient of the K-spin491

Hamiltonian equation (7) w.r.t. parameter θ is492

∇θH
′(θ) = −Eµ0,...,µK−1

[
K−1∑
k=0

γk ·R(µk) · ∇θ log (π̃θ,δ(µ0) · π̃θ,δ(µ1) · · · π̃θ,δ(µk))

]
. (22)

Corollary 2. When K →∞, the Hamiltonian’s deterministic policy gradient ∇θH
′(θ) in (22) is493

equal to the deterministic policy gradient∇θJ
′(θ) in [31],494

lim
K→∞

∇θH
′(θ) = −∇θJ

′(θ) = −Es∼dθ

[
∇aQ

π̃θ,δ(s, a)|a=ηθ
∇θηθ(s)

]
. (23)

Corollary 3. When the variance of the exploration noise approaches zero, i.e., δ → 0, the determin-495

istic policy gradient∇θH
′(θ) is the limiting case of the stochastic policy gradient∇θH(θ),496

∇θH
′(θ) = lim

δ→0
∇θH(θ). (24)

D.1 Proof of Theorem 1: Hamiltonian’s Stochastic Policy Gradient497

Proof.

∇θH(θ) = −
K−1∑
k=0

S×A∑
µ0

· · ·
S×A∑
µk

Lµ0,...,µk
∇θ [πθ(µ0) · · ·πθ(µk)]

= −
K−1∑
k=0

S×A∑
µ0

· · ·
S×A∑
µk

Lµ0,...,µk
[πθ(µ0) · · ·πθ(µk)]∇θ log [πθ(µ0) · · ·πθ(µk)]

= −
K−1∑
k=0

S×A∑
µ0

· · ·
S×A∑
µk

γk ·R(µk) · d0(S0) · πθ(µ0)

k−1∏
i=0

[P(Si+1|µi) · πθ(µi+1)] · ∇θ log [πθ(µ0) · · ·πθ(µk)]

= −Eµ0,...,µK−1

[
K−1∑
k=0

γk ·R(µk) · ∇θ log [πθ(µ0) · · ·πθ(µk)]

]
,

(25)

where µk = (Sk, Ak), S0 ∼ d0(·), Ak ∼ πθ(Sk, ·), Sk+1 ∼ P(· | Sk, Ak) for k = 0 · · ·K.498

18

D.2 Proof of Corollary 1499

Proof.

∇θH(θ)
(a)
= −

K−1∑
k=0

S×A∑
µ0

· · ·
S×A∑
µk

Lµ0,...,µk
∇θ [πθ(µ0) · · ·πθ(µk)]

(b)
= −

K−1∑
k=0

S×A∑
µ0

· · ·
S×A∑
µk

Lµ0,...,µk

k∑
i=0

πθ(µ0) · · ·πθ(µi−1)πθ(µi+1) · · ·πθ(µk)∇θπθ(µi)

(c)
= −

K−1∑
k=0

S×A∑
µ0

· · ·
S×A∑
µk

γk ·R(µk) · d0(S0)

k−1∏
i=0

P(Si+1|µi)

k∑
i=0

i−1∏
j=0

πθ(µj) · ∇θπθ(µi) ·
k∏

j=i+1

πθ(µj)


(d)
= −

K−1∑
k=0

S×A∑
µ0

· · ·
S×A∑
µk

k∑
i=0

d0(S0)

γi
i−1∏
j=0

πθ(µj)P(Sj+1|µj)

∇θπθ(µi)

 k−1∏
j=i+1

πθ(µj)P(Sj+1|µj)πθ(µk)γ
k−iR(µk)


(e)
= −

K−1∑
k=0

k∑
i=0

S∑
S0

d0(S0)

S∑
Si

ρ(S0, Si, i)

A∑
Ai

∇θπθ(Si, Ai) ·
S×A∑
µk

ρ(Si, Sk, k − i) · πθ(µk) ·R(µk)

(f)
= −

S∑
S0

d0(S0)

S∑
S

K−1∑
i=0

ρ(S0, S, i)

A∑
A

∇θπθ(S,A) ·

[S∑
S′

K−1∑
k=i

ρ(S, S′, k − i) ·
A∑
A′

πθ(S
′, A′) ·R(S′, A′)

]

(g)
= −

S∑
S0

d0(S0)

S∑
S

∞∑
i=0

ρ(S0, S, i)

A∑
A

∇θπθ(S,A) ·Qπθ (S,A)

(h)
= −

[S∑
S

S∑
S0

d0(S0)

∞∑
i=0

ρ(S0, S, i)

]
·

S∑
S

∑S
S0

d0(S0)
∑∞

i=0 ρ(S0, S, i)∑S
s

∑S
S0

d0(S0)
∑∞

i=0 ρ(S0, S, i)

A∑
A

∇θπθ(S,A) ·Qθ(S,A)

(i)
∝ −

S∑
S

dπθ
(S)

A∑
A

∇θπθ(S,A) ·Qπθ (S,A)

(j)
= −ES∼dθ,A∼πθ(S,·)[Q

πθ (S,A)∇θ log πθ(S,A)],
(26)

where ρ(S, S′, i) denotes the probability of state S transfer to S′ in i steps.500

We provide detailed explanations step-by-step:501

• Equality (a) holds by definition.502

• In equality (b), using the chain rule, we take derivative of∇θ[πθ(µ0) · · ·πθ(µk)] with respect to503

πθ(µi), i = 1, ..., k.504

• In equality (c), we plug in Lµ0,··· ,µk
in (6).505

• In equality (d), we insert P(Si+1|µi) P(Si+1|µi) between πθ(µi) and πθ(µi+1), i = 1, ..., k.506

• In equality (e), we split trajectory µ0, · · · , µi, · · · , µk into two trajectories µ0, · · · , µi and507

µi, · · · , µk. Therefore, we can classify all trajectories µ0, · · · , µk by µ0, µi, µk, and i.508

• In equality (f), we reorganize
∑K−1

k=0

∑k
i=0 into

∑K−1
i=0

∑K−1
k=i . The former one first traverses the509

length k of a trajeoctory, and then traverses the i-th step on it.The latter one first traverses the i-th510

step of a trajectory, and then traverses the length k of it.511

• In equality (g), we calculate the limit of (f) when K approaches∞.512

• In equality (h), we normalize
∑S

S0
d0(S0)

∑∞
i=0 ρ(S0, S, i) to be a probability distribution.513

19

• In equality (i), we remove the constant
∑S

S

∑S
S0

d0(S0)
∑∞

i=0 ρ(S0, S, i) and replace the fraction514

with dπθ
(S), the stationary distribution of state S under policy πθ.515

• In equality (j), we reformulate (i) as expectation.516

517

D.3 Proof of Theorem 2: Hamiltonian’s Deterministic Policy Gradient518

Proof. Let ηθ(·) : S → A denote a deterministic policy, while we use π̃θ,δ(µ) to represent that a519

Gaussian noise (a.k.a, an exploration noise) with standard deviation δ > 0 is added in the exploration520

process. In the inference stage, there is no exploration noise, the policy is deterministic, i.e., δ = 0521

and Ak = ηθ(Sk).522

H ′(θ) ≜ −ES0∼d0,A0∼π̃θ,δ

[
Qπ̃θ,δ(S0, A0)

]
= −ES0,Ak∼π̃θ,δ(Sk,·),Sk+1∼P(·|Sk,Ak)

[∞∑
k=0

γk ·R(Sk, Ak)

]

= −
K∑

k=0

ES0,Ak∼π̃θ,δ(Sk,·),Sk+1∼P(·|Sk,Ak)

[
γk ·R(Sk, Ak)

]
= −

K∑
k=0

S×A∑
µ0

· · ·
S×A∑
µk

γk ·R(µk) · d0(S0) · π̃θ,δ(µ0)

k−1∏
i=0

[P(Si+1|µi) · π̃θ,δ(µi+1)]

= −
K∑

k=0

S×A∑
µ0

· · ·
S×A∑
µk

[
γk ·R(µk) · d0(S0) ·

k−1∏
i=0

P(Si+1|µi)

]
· π̃θ,δ(µ0) · · · π̃θ,δ(µk)

= −
K∑

k=0

S×A∑
µ0

· · ·
S×A∑
µk

Lµ0,...,µk
· π̃θ,δ(µ0) · · · π̃θ,δ(µk),

(27)

where K →∞, and523

Lµ0,...,µk
= γk ·R(µk) · d0(S0) ·

k−1∏
i=0

P(Si+1|µi). (28)

524

20

D.4 Proof of Corollary 2525

Proof.

∇θH
′(πθ) = −

K∑
k=0

S×A∑
µ0

· · ·
S×A∑
µk

(Lµ0,...,µk
· ∇θ [π̃θ(µ0) · · · π̃θ(µk)] +∇θLµ0,··· ,µk

· π̃θ(µ0) · · · π̃θ(µk))

= −
K∑

k=0

S×A∑
µ0

· · ·
S×A∑
µk

[π̃θ(µ0) · · · π̃θ(µk)] · ∇θLµ0,...,µk

= −
K∑

k=0

S×A∑
µ0

· · ·
S×A∑
µk

∇θ

[
γk ·R(µk) · d0(S0) ·

k−1∏
i=0

P(Si+1|µi))

]

= −
K∑

k=0

S×A∑
µ0

· · ·
S×A∑
µk

∇A

[
γk ·R(µk) · d0(S0) ·

k−1∏
i=0

P(Si+1|µi))

]
∇θηθ(S)

= −
S∑
S0

d0(S0)∇AESt+1∼P(·|St,At)

[∞∑
t=0

γkR(St, At)

]
· ∇θηθ(S)

= −
S∑
S0

d0(S0)∇AQ(S0, A0) · ∇θηθ(S)

= −ES0∼d0(·) [∇AQ(S0, A0) · ∇θηθ(S)]
(29)

where µk = (Sk, Ak), S0 ∼ d0(·), Ak ∼ πθ(Sk, ·), Sk+1 ∼ P(· | Sk, Ak), for k = 0 · · ·K.526

D.5 Proof of Corollary 3527

Proof. In Corollary 2 and Corollary 1, we have528

∇θH
′(θ) = −∇θJ

′(θ),

∇θH(θ) = −∇θJ(θ),
(30)

when K →∞.529

[31] proved that530

∇θJ
′(θ) = lim

δ→0
∇θJ(θ), (31)

where δ is the standard deviation of the Gaussian noise of stochastic policy πθ.531

Therefore,532

∇θH
′(θ) = lim

δ→0
∇θH(θ) (32)

533

21

E Conventional Actor-Critic Algorithms for Deep Reinforcement Learning534

The gradient of (2) is [32]535

∇θJ(θ) ≜
S∑
S

dS,θ(S)

A∑
A

Qθ(S,A)∇θπθ(S,A). (33)

Since Qθ in (33) is unknown [37] (the stationary distribution dθ is unknown), one can plug in a critic536

network with parameter ϕ as an estimator of Qθ and obtain537

∇ϕ
θJ(θ, ϕ) =

S∑
S

dS,θ(S)

A∑
A

Qϕ(S,A)∇θπθ(S,A), (34)

where dS,θ ∈ R|S||A|×1
+ denotes the stationary distribution over the states instead of state-action538

pairs.539

(34) is a bi-level optimization problem [7], and a natural solution is an iterative algorithm that540

alternates between estimating Qϕ with parameter ϕ and improving policy πθ with parameter θ.541

Therefore, a family of actor-critic algorithms are proposed with following objective functions:542 
Actor : max

θ
Jπ(θ, ϕ) = (1− γ)ES0∼d0,A0∼πθ(S0,·) [Qϕ(S0, A0)]

Critic : max
ϕ

JQ(θ, ϕ) =
1

2
ES∼dθ(·),A∼πθ(S,·)

[
(Qϕ(S,A)− y(S,A))2

]
.

(35)

The gradient of (35) can be estimated as follows543

∇θĴπ(θ, ϕ) =
1

N

N∑
i=1

Qϕ(µ) · ∇θ log πθ(µ)

∇ϕĴQ(θ, ϕ) =
1

N

N∑
i=1

[Qϕ(S,A)− y(S,A)] · ∇ϕQϕ(S,A)

(36)

The parameters ϕ and θ are updated as follows:544 {
Actor : θ ← θ + α ∇ϕ

θ Ĵπ,

Critic : ϕ← ϕ− α ∇ϕĴQ.
(37)

22

F Stationary Deterministic Policy Gradient Algorithm with H-term545

For completeness, we present the details of the deterministic actor-critic algorithm with H-term.546

Algorithm 2 Stationary Actor-Critic Algorithm with H-term
1: Input: learning rate α, temperature λ, look-ahead step K, and parameters δ,M, T,G,B,B′

2: Initialize actor network η and critic network Q with parameters θ, ϕ, and replay buffers D1, D2

3: for episode = 1, · · · ,M do
4: Initialize state s0
5: for t = 0, · · · , T − 1 do
6: Take action at = ηθ(st) + ϵ, where ϵ ∼ N (0, δ2)
7: Execute action at, receive reward rt, and observe new state st+1

8: Store a transition (st, at, rt, st+1) in D1

9: end
10: Store a trajectory τ of length T in D2

11: for g = 1, · · · , G do
12: Randomly sample a mini-batch of B transitions {(si, ai, ri, si+1)}Bi=1 from D1

13: Randomly sample a mini-batch of B′ trajectories (of length K) {τj}B
′

j=1 from D2

14: Update critic network using a conventional method
15: Update actor network as θ ← θ + α

(
∇θĴ

′(θ)−λ ∇θĤ
′(θ)

)
.

16: end
17: end

We apply the proposed Hamiltonian equation (7) to regularize the actor network. Specifically, H ′(θ)547

in (7) is added to the actor’s objective with weight λ > 0. The objective functions of actor and critic548

networks become:549 
Actor : max

θ
J ′
π(θ, ϕ) = (1− γ)ES0∼d0,A0=ηθ(S0) [Qϕ (S0, A0)]−λH ′(θ),

Critic : min
ϕ

JQ(θ, ϕ) =
1

2
ES∼dθ(·),A=ηθ(S)

[
(Qϕ(S,A)− y(S,A))

2
]
.

(38)

The gradient of (38) is550

∇θJ
′
π(θ, ϕ) =(1− γ)

S∑
S

dS,θ(S)∇AQϕ(S,A) · ∇θηθ(S)−λ∇θH
′(θ), (39)

551

∇ϕJQ(θ, ϕ) =

S∑
S

dS,θ(S) · [Qϕ(S,A)− y(S,A)] · ∇ϕQϕ(S,A)|A=ηθ(S). (40)

To estimate ∇θH
′(θ), the Monte Carlo gradient estimator in (11) is used. Therefore, (39) and (40)552

can be estimated as follows:553

∇θĴ
′
π(θ, ϕ) =

1

N

N∑
i=1

[
∇AQϕ(S,A)|A=ηθ(S)∇θηθ(S)

]
− 1

N ′

N ′∑
i=1

[
λ

K∑
k=0

γkR(µk)∇θ log [π̃θ(µ0) · · · π̃θ(µk)]

]
,

(41)
554

∇ϕĴQ(θ, ϕ) =
1

N

N∑
i=1

[Qϕ(S,A)− y(S,A)] · ∇ϕQϕ(S,A)|A=ηθ(S). (42)

23

G Experiments: Hyperparameters and More Results555

G.1 Hyperparameters in Experiments556

Table 6: Hyperparameters used for the PPO and PPO + H in MuJoCo tasks

Parameters Values
Optimizer Adam
Learning rate 3 · 10−4

Discount (γ) 0.99
GAE parameter 0.95
Replay buffer size 106

Number of hidden layers for all networks 3
Number of hidden units per layer 256
Mini-batch size 32
Importance rate of H-term (λ) 2−3

Truncation step of H-term (K) 16

Table 7: Hyperparameters used for the DDPG and DDPG + H in MuJoCo tasks

Parameters Values
Optimizer Adam
Learning rate 5 · 10−4

Target Update Rate (τ) 10−3

Discount (γ) 0.995
Replay buffer size 106

Number of hidden layers for all networks 3
Number of hidden units per layer 256
Batch size 64
Importance rate of H-term (λ) 2−3

Truncation step of H-term (K) 16

G.2 More Results557

Fig. 6 shows the H-value (average over 20 runs) during the training process, which verified that the558

trained agents have converged to policies with small H-values.559

0 1 2 3 4

#samples 1e6

4

2

0

H
va

lu
es

HalfCheetah

0.0 0.5 1.0 1.5 2.0

#samples 1e7

6

4

2

0

H
va

lu
es

Ant

0.0 0.5 1.0 1.5 2.0

#samples 1e7

1.0

0.5

0.0

H
va

lu
es

Humanoid

0 1 2 3

#samples 1e6

2

1

0

H
va

lu
es

Hopper

0 2 4 6 8

#samples 1e7

0.3

0.2

0.1

0.0

H
va

lu
es

Swimmer

0.0 0.5 1.0 1.5 2.0

#samples 1e6

4

2

0

H
va

lu
es

Walker2D

PPO PPO + H, K = 8 PPO + H, K = 16 PPO + H, K = 24

Figure 6: H values during the training process.

24

0 1 2 3 4
#samples 1e6

 1k

 2k

 3k

 4k

 5k

Cu
m

ul
at

iv
e

re
wa

rd
s

HalfCheetah
K = 8
K = 16
K = 24

0 1 2 3 4
#samples 1e6

 1k

 2k

 3k

 4k

 5k

Cu
m

ul
at

iv
e

re
wa

rd
s

Ant
K = 8
K = 16
K = 24

0.0 0.5 1.0 1.5 2.0
#samples 1e7

 2k

 4k

 6k

 8k

10k

12k

Cu
m

ul
at

iv
e

re
wa

rd
s

Humanoid
K = 8
K = 16
K = 24

0 1 2 3
#samples 1e6

 1k

 2k

 3k

 4k

 5k

Cu
m

ul
at

iv
e

re
wa

rd
s

Hopper
K = 8
K = 16
K = 24

0 2 4 6 8
#samples 1e6

40

80

120

160

200

Cu
m

ul
at

iv
e

re
wa

rd
s

Swimmer
K = 8
K = 16
K = 24

0.0 0.5 1.0 1.5 2.0
#samples 1e6

 1.5k

 3k

 4.5k

 6k

7.5k

9k

Cu
m

ul
at

iv
e

re
wa

rd
s

Walker2D
K = 8
K = 16
K = 24

Figure 7: For the proposed PPO+H algorithm, the performance with different K values.

Fig. 7 shows more performance of the PPO+H algorithm, for K = 8, 16, 24. We run each experiment560

with 20 random seeds and each run we test 100 episodes.561

25

H Hamiltonian Policy Network562

H.1 Hamiltonian Policy Network563

Since Hamiltonian equation in (7) is a functional of policy πθ, a natural question would be: can564

we use the Hamiltonian equation replace existing Bellman’s equation (3) or the policy gradient’s565

objective function (2)?566

As a verification, we test the capability of Hamiltonian equation in (7) as a loss function to train a567

policy network. The algorithm is first given as follows.568

Algorithm 3 Hamiltonian Policy Network
1: Input: learning rate α, look-ahead step K, and parameters M,T,G,B
2: Initialize policy network with parameters θ, and replay buffer D
3: for episode = 1, · · · ,M do
4: Initialize state s0
5: for t = 0, · · · , T − 1 do
6: Select action at ∼ πθ(·|st)
7: Execute action at, receive reward rt, and observe new state st+1

8: end
9: Store a trajectory τ of length T in D

10: for g = 1, · · · , G do
11: Randomly sample a mini-batch of B trajectories (of length K) {τj}Bj=1 from D
12: Update pocliy network as θ ← θ − α ∇θĤ(θ).
13: end
14: end

In Alg. 3, an agent interacts with an environment and updates its policy network. The algorithm has569

M episodes and each episode consists of a (Monte Carlo) simulation process and a learning process570

(gradient estimation) as follows:571

• During the (Monte Carlo) simulation process (lines 5-9 of Alg. 3), an agent takes action at572

according to a policy πθ(·|st), t = 0, · · · , T − 1, generating a trajectory of T steps/transitions.573

Then, the full trajectory τ = (s0, a0, r0, s1, · · · , sT−1, aT−1, rT−1, sT) is stored in replay buffer574

D.575

• During the learning process (G ≥ 1 updates in one episode) (lines 10-12 of Alg. 1), a mini-batch of576

B trajectories (of length K) {τj = (sj0, a
j
0, r

j
0, s

j
1, · · · , s

j
K−1, a

j
K−1, r

j
K−1, s

j
K)}Bj=1 are sampled577

from D, respectively. The policy network is updated by a Monte Carlo gradient estimator over B578

trajectories.579

Implementation of replay bufferD. After a full trajectory τ of length T is generated, it is partitioned580

into T − K + 1 trajectories of length K. We rank them according to the cumulative reward and581

store the top portion, say 80%, into a new replay buffer D (line 9 of Alg. 3). We randomly sample a582

mini-batch of B trajectories from D (line 11 of Alg. 3) to compute the H-term.583

H.2 Frozenlake Task584

Environment: Frozenlake 8× 8, a game in OpenAI Gym.585

Rules: As shown in Fig. 8 (left), the Frozenlake task has 8× 8 states with 4 optional actions to move586

around. The agent needs to go from the start point and find the way to the destination in limited steps.587

There are 8 holes which can cause the agent to fail the game.588

Experiment settings: We take Deep Q-learning (DQN) [26] as our baseline and use the implementa-589

tion from the ElegantRL library. We use a 4-layer fully connected neural network as the deep policy590

network both in DQN and DHN. We use the Adam optimizer with a learning rate 1× 10−3 and a591

batch size 100.592

Evaluation: We evaluate the performance of policy by computing the success rate, in which we use593

50 agents to walk 100 steps and compute the rates of agents who successfully arrive the destination.594

26

Results for the Frozenlake task: Fig. 9 (left) shows the success rate of agents with increasing the595

number of transitions learned by the network. compared with DQN, DHN has a more stable training596

process. It is easy for DQN to quickly obtain a good policy to win the game. But with increasing the597

number of transitions fed to the network, the performance of DQN shows a large and frequent shock598

while the performance of DHN shows the strong stability.599

Figure 8: The Frozenlake task (left) and Gridworld task (right).

H.3 Gridworld Task600

Environment: a Gridworld of size 10× 10, a game available in our code.601

Rules: As shown in the Fig. 8 (right), the Gridworld has 10× 10 states with 4 optional actions to602

move around. The agent will initialize at a random locations and it needs to find the smiley as many603

as possible which has 10 reward in turn. It should be noted that there are some endpoints which may604

cause the agent game over and some transfer-points which transfer the agent to certain location.605

Experiment settings and evaluation: Both the experiment settings and evaluation method are the606

same with that on Frozenlake 8× 8 game.607

Results for the Gridworld task: Fig. 9 (rigt) shows the mean reward obtained by the agents with608

increasing the training time. Compared with DQN, DHN has a faster training process. It only needs609

massive random parallel samples of trajectories and do not need any policy for guided sampling while610

DQN needs guided exploration in the training process which costs a large time consumption.611

Figure 9: Comparison between the DQN and DHN algorithms. The Frozenlake task (left) and
Gridworld task (right).

27

	Introduction
	Bellman's Optimality Equation and Multiple Fixed Points
	Bellman's Optimality Equation
	Observational Experiments for Multiple Polices and Physically Stationary Policy

	Reinforcement Learning as Quantum K-spin Hamiltonian Equation
	Motivation through Analogy with Quantum K-spin Ising Model
	Reformulation into Quantum K-spin Hamiltonian Equation
	Revisiting Examples in Fig. 1

	Actor-Critic Algorithm with Quantum K-spin Hamiltonian Regularization
	Stationary Actor-Critic Algorithm with H-term
	Hamiltonian Policy Gradient and Monte Carlo-based Gradient Estimator

	Performance Evaluation
	Experimental Settings
	H-term Increases Cumulative Reward
	H-term Reduces Variance
	H-term Drives to Physically Stationary Policy
	Impact of Trajectory Length K

	Conclusions
	More Examples with Multiple Fixed Points
	MuJoCo Tasks with Multiple Policies
	Description of MuJoCo Taks
	Multiple policies in MuJoCo tasks

	Quantum K-Spin Hamiltonian Formulation of Reinforcement Learning
	Derivation Steps for Section 4.2: Hamiltonian's Policy Gradients
	Proof of Theorem 1: Hamiltonian's Stochastic Policy Gradient
	Proof of Corollary 1
	Proof of Theorem 2: Hamiltonian's Deterministic Policy Gradient
	Proof of Corollary 2
	Proof of Corollary 3

	Conventional Actor-Critic Algorithms for Deep Reinforcement Learning
	Stationary Deterministic Policy Gradient Algorithm with H-term
	Experiments: Hyperparameters and More Results
	Hyperparameters in Experiments
	More Results

	Hamiltonian Policy Network
	Hamiltonian Policy Network
	Frozenlake Task
	Gridworld Task

