426

427
428

429
430
431
432
433
434

435
436
437

439
440
441
442
443

444
445
446
447
448
449

450

451

452

(a) Shortest path problem (b) Blackmailer’s problem (c) Optimal stopping problem

Figure 5: Revisiting Fig. [I|for the discounted cases where v € (0, 1).

A More Examples with Multiple Fixed Points

First, we consider the discounted formulations of the three examples (shown in Fig. m), as shown in
Fig. where v € (0, 1). The differences are marked in red.

* (a) Shortest path problem (deterministic, discounted case): Given two states 1 and 0, an agent
at state 1 transits to either state 1 or 0 with rewards » = ¢ or r = b, respectively. ¢ > (1 —~) - b.
At state 0, the value function is V(0) = 0. At state 1, the Bellman’s optimality equation is
V(1) = max{c+ - V(1),b}, where any V(1) > (b — ¢)/~ is a solution. If initialize V{,(1) > b,
an agent obtains a policy that always transits back to state 1; otherwise, a result policy drives to
terminal state 0.

* (b) Blackmailer’s problem (stochastic, discounted case): Different from (a), a profit maximizing
blackmailer/agent at 1 demands a cash amount a € (0, 1] (an action), while a victim transits to state
1 with probability a or to state 0 with probability 1 — a, respectively. At state 0, a victim always
refuses to yield to the blackmailer’s demand, i.e., V(0) = 0. The Bellman’s optimality equation
is V(1) = max,{a+ v - (1 — a)V (1)} for state 1, where any V(1) > 1 is a feasible solution. If
initialize V(1) = ¢ > 1, the blackmailer’s policy is demanding a — 0 at the k-th step to keep
the victim stay at state 1, for any £ < Ky = — Uogv ¢|; and taking a = 1 to transit to terminal
state 0 at the k-th step, for any k > K + 1; otherwise initialize V(1) = ¢ < 1, the result policy is
demanding the maximum a = 1 that drives the victim to a refusal state 0 (a terminal state).

* (c) Optimal stopping problem (terminating policies, discounted case): In a space R? with
terminating state at point 0, at point x # 0 an agent moves to either point 0 with negative reward —c
or point a with reward —||z||, respectively, where « € (0, 1). The Bellman’s optimality equation
is V(x) = max{—c¢, —||z|| + - V(ax)} and the optimal policy is to continue inside the sphere of
radius (1 — a)c and to stop outside. If add a cone region C' within which an agent always receives
areward —c, a second policy is jumping to point 0 at any point in region C.

Then, we elaborate how the proposed H-term fixes the problems in Fig. El

(a) Shortest path problem (deterministic, discounted case)

Assume V(1) > band ¢ > (1 — +)b, we have

Vi)=c+~v-Vo(1) > c+v-b>Db
Va(1) =c+v-c+97-Vo(l) > (14+7)c+b > b
Vas(l) =c+vy-c+yc+7* - Vo(1) > (1 +v++2)c+7°b> b

k=1 k=1 (13)
Vk(l):Z'yl~c+’yk-Vo(1)2 v e+ A > b
i=0 i=0

1
c>b
1—n

Vi)=Y A=
=0

14

453

454

455
456

457

459
460
461

462

463
464

465

466

467
468

The values of H(0) and H(1) are as follows:
H0)=0, H1)=-b—Y (> 471 c++") = —o0. (14)
Adding the above H-values to state 1 and 0, respectively, we have
V1) + H(1l) = t.c—00=—00
W+ H@) =3 s
V*(0)+ H(0) =b.

Therefore, V*(1) + H(1) < V*(0) 4+ H(0), independent of the initial value V;(1). That is, an agent
always obtains a policy that drives to terminal state O at step 1.
(b) Blackmailer’s problem (stochastic, discounted case)

If initialize V5 (1) = ¢ > 1, the blackmailer’s policy is demanding a — 0 at the k-th step to keep the
victim stay at state 1, for any £ < Ky = — Uogﬂ/ ¢|; and taking @ = 1 to transit to terminal state 0 at
the k-th step, for any k > K + 1; otherwise initialize V(1) = ¢ < 1, the result policy is demanding
the maximum a = 1 that drives the victim to a refusal state 0 (a terminal state).

The values of H(0) and H(1) are as follows:
e .
H0)=0, H1)=-> Y +""a=-oc. (16)

For arbitrary initial value of V(1), V1 (1) = a+ (1 —a) - (Vo (1) + H(1)) take maximum V3 (1) = 1
when a = 1. Therefore, the policy always drives to terminal state O at step 1.

(c) Optimal stopping problem (terminating policies, discounted case)

Any policy that takes infinite steps will have

oo [k—1
H(z)=—c=Y |3 4" al -z +75 (=0)| = —o00 (17)
k=2 Li=1
and a direct jumping policy will have H (z) = —c. Therefore, the H-term drives to a terminating

policy.

15

469

470

471
472
473

474

475

476
477

478

B MuJoCo Tasks with Multiple Policies

B.1 Description of MuJoCo Taks

We selected six challenging robotic locomotion tasks from MuJoCo, namely, Swimmer-v3, Hopper-
v3, Walker2D-v3, HalfCheetah-v3, Ant-v3, Humanoid-v3. TableE]lists the action space and state
space of each task.

Table 3: The state and action spaces of six challenging MuJoCo tasks.

Tasks Agent Action Space | State Space
Swimmer-v3 Three-link swimming robot 2 8
Hopper-v3 Two-dimensional one-legged robot 3 11
Walker2d-v3 Two-dimensional bipedal robot 6 17
HalfCheetah-v3 Two-dimensional robot 6 17
Ant-v3 Four-legged creature 8 111
Humanoid-v3 Three-dimensional bipedal robot 17 376

B.2 Multiple policies in MuJoCo tasks
In the supplementary files, we includes rendered videos of different policies, as given in Table]

* Different policies are obtained over 20 runs of the PPO algorithm. We rendered theses polices and
classified them by physical gaits.

* The policies in bold texts are physically stationary.

Table 4: List of video files for different policies.

Task Different Policies Video Name
hopping hopper_hopping.mp4
Hopper diving hopper_diving.mp4
standing hopper_standing. mp4
running ant_running.mp4
Ant standing ant_standing.mp4
flipping ant_flipping.mp4
walking walker_walking.mp4
Walker diving walker_diving.mp4
standing walker_standing.mp4
two-legs humanoid_two_legs.mp4
Humanoid one-leg humanoid_one_leg.mp4
backward humanoid_backward.mp4
running halfcheetah_running.mp4
divin halfcheetah_diving.mp4
HalfCheetah ﬂippingg halfcheetah_ﬂippifg.nfp4
standing halfcheetah_standing. mp4
Swi moving swimmer_moving.mp4
wimmer . . .
standing swimmer_standing.mp4

16

a9 C Quantum K-Spin Hamiltonian Formulation of Reinforcement Learning

480 We provide the detailed steps of reformulating (IJ into a K-spin Hamiltonian equation

H(G) £ —Esy,4, [Qﬂe (SO’ AO)]

= —Esy, Ap~mo(Sk,), Sis1 ~B(-|Sk, Ar) [Z v* - R(Sk, Ar)
k=0

K-1
- Z]ESO,A(J,“' ,SkNP(<|Sk,1,Akfl),Akwﬂ'e(Sk,*) [’Vk ‘ R(SkH Ak})}
k=0

K-1S8xA SxA k—1 (18)
=-> > A R(u) - do(So) - mo(po) [P(Sisalma) - mo(piva)]
k=0 o Mk i=0
K-1S8xA SxA k—1
==Y > > [RGw) - do(So) -] P(Sz‘+1|ﬂi)1 ~mo(to) - -+ 7o (pr)
k=0 po P =0
K—-1SxA SxA
== > DD Lo - mali0) - (g,
k=0 po ke
where K — 00, and the density function is
k—1
Lysg,ooo =7 - R(ui) - do(S0) - T P(Sigr|pa)- (19)

=0

Table 5: Revisiting the analogy between MDP and quantum K-spin Ising model.

MDP (Our formulation in (7))

Quantum K-spin Ising Model [23,[12]] in

State-action pairs L0y -y K —1 Spins 305 s JK—1
Optimal policy Ty X Ty X oo Xy Quantum field Ojo X Ojp X o+ X Ojpe_;
Cumulative rewards Lyg..pires Density function Lijoojre_s
Functional of policy H (T, oy T _,) Functional of spins H(ojy, " ,0jr_1)
. . 0H R . .. SH (00, ,0;
Stationary condition W =0 Stationary condition w =0
L J

17

w2 D Derivation Steps for Section 4.2; Hamiltonian’s Policy Gradients

483 We provide the policy gradient of the quantum K-spin Hamiltonian equation in (/) for both stochastic
484 and deterministic cases, which are variants of the well-known policy gradient theorem [32].

485 Theorem 1. (Hamiltonian’s stochastic policy gradient) The stochastic gradient of the K-spin
ass Hamiltonian equation ([7) w.r.t. parameter 0 is

K-1

VoH(0) = —Epug,. pser | D 7" R(u) - Volog (mo(po) - mo(pa) - mo(px)) | - (20)
k=0

as7 Corollary 1. When K — oo, the Hamiltonian’s stochastic policy gradient Vg H (0) in @) is equal
ags fo the stochastic policy gradient Vo J(0) in [33],

lim VoH(0) = —VJ(0) = —Esdy,amm, [T (s,a)Vglog mg(s,a)]. 21

K—oo

a9 Letny(-) : S — A denote a deterministic policy, while we use 7y s(u) to represent that a Gaussian
a0 noise (a.k.a, an exploration noise) with standard deviation > 0 is added in the exploration process.

491 Theorem 2. (Hamiltonian’s deterministic policy gradient) The deterministic gradient of the K-spin
s92 Hamiltonian equation ([7) w.r.t. parameter 0 is

K-1

VoH'(0) = By ... puse ka'R(Mk)'Velog(%e,a(ﬂo)ﬁe,s(ul)'“%a,&(ﬂk))}o (22)
k=0

a3 Corollary 2. When K — oo, the Hamiltonian’s deterministic policy gradient Vo H' () in is
ae4 equal to the deterministic policy gradient Vo J'(0) in [31]],

Jim VoH'(8) = =V () = ~Eora [VaQ™* (5,0)]az, Vorno(s)] (23)

495 Corollary 3. When the variance of the exploration noise approaches zero, i.e., 6 — 0, the determin-
as6 istic policy gradient Vo H'(0) is the limiting case of the stochastic policy gradient Vo H (0),

VoH'(6) = lim VH(6). (24)

47 D.1 Proof of Theorem|[I; Hamiltonian’s Stochastic Policy Gradient

Proof.

K—-1S8xA SxA
VoH(O) ==Y > > Lyg.u Vo [To(p0) - 7o (1))
k=0 po Pk
K-18xA SxA

- Z Z Z Lyg.ou [0 (p0) - - mo ()] Vo log [mo (o) - - - o (1]
0 Mk

k=)
K—-18xA SxA k—1
== D AF R(u) - do(So) - malo) [T P(Sigalmi) - wo(pin)] - Vo log [ma (o) -+ wo(par)]
k=0 po 1227 =0
K—-1
= —Fpo x| D 7" R(ur) - Volog [mo(po) - mo(ur)]|
k=0
(25)
a98 where py, = (Sy, Ax), So ~ do(-), Ax ~ 7o (Sk,), Sky1 ~ P(- | Sk, Ay) fork =0--- K. O

18

499

500

501

502

503
504

505

506

507
508

509
510
511

512

513

D.2 Proof of Corollary[l|

Proof.

K-1S8xA SxA

VoH(9) @ _ Z Z Z Lyg,.... Vo [mo (o) - - o ()]

k=0 po I
®) K—-18xA SxA k
== > Ly > ma(p0) - o (i) o (mia) - -+ o (k) Voo (p1:)
k=0 o Pk =0
© K—-18xA SxA k—1 k i—1 k
= — <> A R(uk) - do(So) [T P(Sivalua) D [T 7o) - Vomo(us) - T mo(uy)
k=0 o j 1=0 =0 |[5=0 J=i+1

K-18xA SxA k

i—1 k—1
DN Y S do(S0) | T we e B(S alig) | Voma(uus) | TT w001 PCS iy o ()7~ R
j=0

k=0 o pr =0 j=i+1
© K-1k S S A SxA
= — szo(so) 20(50,51',2') Zveﬂe(si,/li) . p(Si, Sk, k — i) - mo(pr) - R(px)
i=0 Sp S A HE

K-1

A S A
> (80, 8,1) Y Voma(S,A) - 1D Y p(S. S k—i) Y me(S, A) - R(S, A)
i S’ k=i Al

A
oo A

do(S0) D Y p(S0.5,1) Y Voma(S, A) - Q™ (S, A)
A

i=0
S S e S S oo . A
(h) s, do(S0) 32— p(S0, S, 7)
= — do (S So, S, . = \V4 S, A) - S, A
gszg of 0)2/)(051 ;Zfzgo do(So)ZfioP(So,S,i)§ ool)@l)
S A
: 72%9(5) ;vg%(sv A)-Q™ (S, A)

(]:) —ESNde,ANTre(S,') [Qﬂ—e (S’ A)V@ log 770(57 A)]’
(26)

where p(S,S’,) denotes the probability of state S transfer to S’ in 7 steps.
We provide detailed explanations step-by-step:

* Equality (a) holds by definition.

¢ In equality (b), using the chain rule, we take derivative of Vg[mg (o) - - - mo ()] with respect to
wo(i).i = 1, k.

* In equality (c), we plugin L, ... ,, in ().

* In equality (d), we insert P(S;1|p:) P(Sit1|1:) between mo(p;) and wp(piy1), @ = 1, ..., k.

* In equality (e), we split trajectory pg,--- , s, - - , fbi INtO two trajectories pg,--- , i; and
i, -, . Therefore, we can classify all trajectories g, - - - , g by po, i, px, and <.

« In equality (f) ize K PSR into SSE P STE ! The f first t th

quality (f), we reorganize) " > . jinto > ;=" > 1" .~. The former one first traverses the

length k of a trajeoctory, and then traverses the ¢-th step on it.The latter one first traverses the ¢-th
step of a trajectory, and then traverses the length k of it.

* In equality (g), we calculate the limit of (f) when K approaches co.

* In equality (h), we normalize Z‘;o do(50) Yoo p(So, S, %) to be a probability distribution.

19

519
520
521
522

523

524

* In equality (¢), we remove the constant Z‘; Zgg do(S0) Y_i20 p(S0, S,) and replace the fraction
with d, (S), the stationary distribution of state S under policy 7.

* In equality (j), we reformulate (¢) as expectation.

D.3 Proof of Theorem 2} Hamiltonian’s Deterministic Policy Gradient

Proof. Letng(-) : S — A denote a deterministic policy, while we use 7 (1) to represent that a
Gaussian noise (a.k.a, an exploration noise) with standard deviation 6 > 0 is added in the exploration
process. In the inference stage, there is no exploration noise, the policy is deterministic, i.e., § = 0

and Ay, = 19(Sk).

H'(0) £ —Esyndy, Ag~7o.s [Q%’”‘(So,Ao)]

k=0
K SxA

k=0 po
K SxA

k=0 po
K SxA

k=0 po

where K — oo, and

_ESOvAkN%(),é(Sky')7sk+l~P('|Sk,Ak) [Z 'yk . R(Ska Ak)

_ZZ

k=0

K
- Z ESmAk"’%O,E(Skv')vsk+1NP('|Sk»Ak) [’yk - R(Sk, Ak)]

SxA k—1 (27)
k ~ _
D A" R(u) - do(So) - Fo5 (o) [[[P(Sigalm) - Fos(pivn)]
i 1=0
SxA k—1
Z ¥ Rpg) - do(So) - H P(Sz’+1|ﬂz‘)] -7o,5(1o) - - To,5 (pin)
Hr 1=0
SxA

< Ly - To.6(10) -+ Fo5 (1),
Mk

k-1

Lysgo = 7%+ R(pk) - do(So) -] P(Sisa|pti)- (28)
i=0

20

525 D.4 Proof of Corollary 2]

Proof.

K SxA
VQH 77'9
k=0 po
K SxA

k=0 po
K SxA

k=0 po
K SxA

k=0 po
S

So
S

So

e
¥
5
S

—Zdo (So)VaEs, ., ~p(|s;,40)

SxA

Z (LNO,mvﬂk -~V [%9(M0) t 77'9(/1;6

Mk
SxA

Z (7o (o) - - - o (1

i
SxA
> Ve
122
SxA

> s

HE

)] + VGLMO;”' Mk

)] ’ ngHOvnvﬂk

7 R(ux) - do(So) -

k—1
H P(Si+1|ﬂi))1

Y* - R(py) - do(So) -

HP Siv1lpa)]Vene()

lZ’Y (St, Ay)

- Vone(S)

- Z do(So)V aQ(So, Ao) - Vene(S)

= —Egymdo(-) [VaQ(So, Ao) - Vone(S)]

526

where py, = (Sk, Ag), So ~

527

D.5 Proof of Corollary 3|

528

529 when K — oco.

530

[31] proved that

532 Therefore,

533

d0(~), Ak ~ 7T9(Sk7 -), Sk+1 ~ IP)(| Sk,Ak), fork=0---K.

Proof. In Corollary [2]and Corollary[I] we have

VoH'(6) = —VaJ'(8),
VoH(0) = =V J(0),

Ve J'(0) = lim Vo.J(0),

where 0 is the standard deviation of the Gaussian noise of stochastic policy 7g.

VoH'(0) = lim Vo H (6)

21

o) -+

(29)

(30)

€29

(32)

7o (1))

534

535

536
537

538
539

540
541
542

543

544

E Conventional Actor-Critic Algorithms for Deep Reinforcement Learning

The gradient of (2)) is [32]

A

S
Vo (0) £ dss(S)D Qo(S, A) Voma(S, A). (33)
S A

Since Qg in (33)) is unknown [37] (the stationary distribution dy is unknown), one can plug in a critic
network with parameter ¢ as an estimator of (Jy and obtain

S A
ViJ(0,6) =Y dse(S)>_ Qs(S,A) Vera(S, A), (34)
S A

1
where ds ¢ € REHA‘X

pairs.

denotes the stationary distribution over the states instead of state-action

(34) is a bi-level optimization problem [7], and a natural solution is an iterative algorithm that
alternates between estimating (), with parameter ¢ and improving policy 7y with parameter 6.
Therefore, a family of actor-critic algorithms are proposed with following objective functions:

Actor : max Jx(0,0) = (1 = 7)Esyndy, Ag~mo(So,) (@6 (S0, Ao)]

.. 1 (35)
Critic : max Jo(0,9) = gESMis(-).,Awrs(S,-) [(Qs(S, A) —y(S, 4))*] .
The gradient of (35) can be estimated as follows
N 1 &
VoJx(0,9) = =) Qs(r) - Vologme(n)
i=1
R L (36)
Voda0.6) = 1= 3 1Qu(S. A) — (S, A)] - VsQu(S. 4)
i=1
The parameters ¢ and 6 are updated as follows:
Actor: 0+ 0+« ng,r,
~ (37)
Critic: ¢+ ¢ —a Vylg.

22

sss F Stationary Deterministic Policy Gradient Algorithm with H-term

s46 For completeness, we present the details of the deterministic actor-critic algorithm with H-term.

Algorithm 2 Stationary Actor-Critic Algorithm with H-term

1: Input: learning rate o, temperature A, look-ahead step K, and parameters 6, M, T, G, B, B’
2: Initialize actor network 7 and critic network () with parameters 6, ¢, and replay buffers D1, Do
3: for episode =1,--- , M do

Initialize state sg

5 fort =0,---, 7T —1do

6: Take action a; = 1y (s¢) + €, where € ~ N(0, %)

7.

8

nok

Execute action a;, receive reward 7;, and observe new state s; 1
: Store a transition (8¢, ag, ¢, S¢+1) in Dy
9: end
10: Store a trajectory 7 of length 7" in Dy
11: forg=1,--- ,Gdo

12: Randomly sample a mini-batch of B transitions {(s;, a;, s, s;+1) }2., from Dy
13: Randomly sample a mini-batch of B’ trajectories (of length K) {Tj}fz/l from Dy
14: Update critic network using a conventional method

15: Update actor network as 8 < 6 + « (ng’(@)f)\ Veﬁ’(ﬁ)).

16: end

17: end

547 We apply the proposed Hamiltonian equation (7)) to regularize the actor network. Specifically, H'(6)
s48 in (/) is added to the actor’s objective with weight A > 0. The objective functions of actor and critic
s49 networks become:

Actor :max Jx (0,) = (1 = 7)Eisomdy, 40=ns(50) [Qo (S0, Ao)] =AH'(0),

(38)
Critic : min Jo(6. 6) = 2E5Nd9()A o (5) {(Qd,(s A) = y(S, A))2
ss0 The gradient of (38) is
VQJI(st 0 VAQ¢(S A) VQT]@(S)—)\V(-)H/(G)7 39)
551
Vodq(b,¢) = ste Qe (S, A4) —y(S, A)] - VpQs(S; A)| a=ne(s)- (40)

ss2 To estimate Vg H'(#), the Monte Carlo gradient estimator in is used. Therefore, and
553 can be estimated as follows:

1 ~
VG 0,9 NZ VaQe(S, A) a=ny(s) V@ﬁe(s) N Z AZ (1) Vo log [Ta (o) - - To(ur)] |
i=1 i=1 [k=0
(41)
554
N
Vadal(0,9) = Z [Qo(S, A) = y(S, A)] - Vo Qu (S, A)| a=ny(s): (42)

23

ss5s. G Experiments: Hyperparameters and More Results
ss6 G.1 Hyperparameters in Experiments

Table 6: Hyperparameters used for the PPO and PPO + H in MuJoCo tasks

Parameters Values
Optimizer Adam
Learning rate 3-1074
Discount (v) 0.99
GAE parameter 0.95
Replay buffer size 106
Number of hidden layers for all networks | 3
Number of hidden units per layer 256
Mini-batch size 32
Importance rate of H-term () 2-3
Truncation step of H-term (K) 16

Table 7: Hyperparameters used for the DDPG and DDPG + H in MuJoCo tasks

Parameters Values
Optimizer Adam
Learning rate 5-1074
Target Update Rate (1) 1073
Discount () 0.995
Replay buffer size 106
Number of hidden layers for all networks | 3
Number of hidden units per layer 256
Batch size 64
Importance rate of H-term () 273
Truncation step of H-term (K) 16

s57 G.2 More Results

sss Fig. [6]shows the H-value (average over 20 runs) during the training process, which verified that the
559 trained agents have converged to policies with small H-values.

HalfCheetah Ant Humanoid
o 3 00
-2 \
8- 2 g \WWJN/VI
= = 3
© © ©
> > - >
T T T
- 6 10
o 1 B 3 3 00 03 To Ts 20 00 05 To Ts 20
#samples #samples #samples
Hopper Swimmer Walker2D
o 00 Py e i SN 0
0 0 -01 o
[[-2
=3 =3 =}
© © ©
> > >
T T 2 T
o -
o 1 H 3 G ?) 4 4 00 05 1o s 20
#samples 1e6 #samples #samples <0
— PPO PPO+H,K=8 —— PPO+H,K=16 —— PPO+H,K=24

Figure 6: H values during the training process.

24

HalfCheetah Humanoid

12k T
— K=38 — K=38
§5k—_ K=16 8 §10k—_ K=16 =
o L y: © © £ g
0%4‘(,— K=24 5 ngj ki —— K=24
< 3k < < 6k ‘]
© ® ® s
?E: 2k E E 4k
3 1k 3 3 2k ot
oy
0 1 2 3 4 0.0 0.5 1.0 1.5 2.0
#samples le6 #samples le6 #samples le7
H r wimmer Walker2D
5k T oppe 200 T s S 9k T T alke
— K=8 — K=8 — K=38
B 4k — K=16 8160{ — K=16 B 75k — k=16
g — K=24 g — K 2 gl — K=24
2 3k i 2120 2
2 2 2 4.5k
® 2k ® 80 & 3
> =] =3
£ : £
3 1k o 40 O 1.5k
0 1 2 3 0 2 a 6 00 05 1.0 15 20
#samples le6 #samples le6 #samples le6

Figure 7: For the proposed PPO+H algorithm, the performance with different K values.

s60 Fig.[7|shows more performance of the PPO+H algorithm, for K = 8, 16, 24. We run each experiment
s61 with 20 random seeds and each run we test 100 episodes.

25

562

563

565
566

567
568

569
570
571

572
573
574
575

577
578
579

580
581
582
583

594

H Hamiltonian Policy Network

H.1 Hamiltonian Policy Network

Since Hamiltonian equation in is a functional of policy 7y, a natural question would be: can
we use the Hamiltonian equation replace existing Bellman’s equation (3] or the policy gradient’s
objective function (2)?

As a verification, we test the capability of Hamiltonian equation in (7)) as a loss function to train a
policy network. The algorithm is first given as follows.

Algorithm 3 Hamiltonian Policy Network
1: Input: learning rate «, look-ahead step K, and parameters M, T, G, B
2: Initialize policy network with parameters 6, and replay buffer D
3: for episode = 1,--- , M do
4: Initialize state sg

5: fort =0,---, 7T —1do
6: Select action a; ~ mo(+|s¢)
7: Execute action a;, receive reward 7;, and observe new state s;;
8: end
9: Store a trajectory 7 of length 7" in D
10: forg=1,--- ,Gdo
11: Randomly sample a mini-batch of B trajectories (of length K) {Tj}j?:] from D
12: Update pocliy network as 6 < 0 — o Vo H (6).
13: end
14: end

In Alg. [3] an agent interacts with an environment and updates its policy network. The algorithm has
M episodes and each episode consists of a (Monte Carlo) simulation process and a learning process
(gradient estimation) as follows:

* During the (Monte Carlo) simulation process (lines 5-9 of Alg. [3), an agent takes action a;
according to a policy my(-|s¢), t = 0,--- , T — 1, generating a trajectory of T steps/transitions.
Then, the full trajectory 7 = (so, ao, 7o, $1, " * , ST—1,@7—1,TT—1, ST) 18 stored in replay buffer
D.

* During the learning process (G > 1 updates in one episode) (lines 10-12 of Alg. [T), a mini-batch of
B trajectories (of length K) {7; = (s{,a}, 1,51, -+,) _1:0%_1:7%_1, s%)}le are sampled
from D, respectively. The policy network is updated by a Monte Carlo gradient estimator over B
trajectories.

Implementation of replay buffer D. After a full trajectory 7 of length 7" is generated, it is partitioned
into T' — K + 1 trajectories of length K. We rank them according to the cumulative reward and
store the top portion, say 80%, into a new replay buffer D (line 9 of Alg.). We randomly sample a
mini-batch of B trajectories from D (line 11 of Alg. [3) to compute the H-term.

H.2 Frozenlake Task

Environment: Frozenlake 8 x 8, a game in OpenAI Gym.

Rules: As shown in Fig. [§] (left), the Frozenlake task has 8 x 8 states with 4 optional actions to move
around. The agent needs to go from the start point and find the way to the destination in limited steps.
There are 8 holes which can cause the agent to fail the game.

Experiment settings: We take Deep Q-learning (DQN) [26] as our baseline and use the implementa-
tion from the ElegantRL library. We use a 4-layer fully connected neural network as the deep policy
network both in DQN and DHN. We use the Adam optimizer with a learning rate 1 x 10~3 and a
batch size 100.

Evaluation: We evaluate the performance of policy by computing the success rate, in which we use
50 agents to walk 100 steps and compute the rates of agents who successfully arrive the destination.

26

595
596
597
598
599

600

601

602
603
604
605

606
607

608
609
610
611

Results for the Frozenlake task: Fig. [9](left) shows the success rate of agents with increasing the
number of transitions learned by the network. compared with DQN, DHN has a more stable training
process. It is easy for DQN to quickly obtain a good policy to win the game. But with increasing the
number of transitions fed to the network, the performance of DQN shows a large and frequent shock
while the performance of DHN shows the strong stability.

start = == —— | A 4
| | >

gerft

<€

T3
)

J¥L
oA

=5 =
_ =
= - I

<

Figure 8: The Frozenlake task (left) and Gridworld task (right).

H.3 Gridworld Task

Environment: a Gridworld of size 10 x 10, a game available in our code.

Rules: As shown in the Fig. [§] (right), the Gridworld has 10 x 10 states with 4 optional actions to
move around. The agent will initialize at a random locations and it needs to find the smiley as many
as possible which has 10 reward in turn. It should be noted that there are some endpoints which may
cause the agent game over and some transfer-points which transfer the agent to certain location.

Experiment settings and evaluation: Both the experiment settings and evaluation method are the
same with that on Frozenlake 8 x 8 game.

Results for the Gridworld task: Fig. 0] (rigt) shows the mean reward obtained by the agents with
increasing the training time. Compared with DQN, DHN has a faster training process. It only needs
massive random parallel samples of trajectories and do not need any policy for guided sampling while
DQN needs guided exploration in the training process which costs a large time consumption.

1.01 o 800 1
6001
058
@ 4001
© 06_
o kel
" S 200+
o =
Q
(v} @
Q 0.41 o 04
3
(0]
0.21 —2001
— DON —400 — DON
0.04 —— DHN —— DHN
5000 10000 15000 20000 25000 30000 0 50 100 150 200 250 300 350
Number of Transitions Training Time (Seconds)

Figure 9: Comparison between the DQN and DHN algorithms. The Frozenlake task (left) and
Gridworld task (right).

27

	Introduction
	Bellman's Optimality Equation and Multiple Fixed Points
	Bellman's Optimality Equation
	Observational Experiments for Multiple Polices and Physically Stationary Policy

	Reinforcement Learning as Quantum K-spin Hamiltonian Equation
	Motivation through Analogy with Quantum K-spin Ising Model
	Reformulation into Quantum K-spin Hamiltonian Equation
	Revisiting Examples in Fig. 1

	Actor-Critic Algorithm with Quantum K-spin Hamiltonian Regularization
	Stationary Actor-Critic Algorithm with H-term
	Hamiltonian Policy Gradient and Monte Carlo-based Gradient Estimator

	Performance Evaluation
	Experimental Settings
	H-term Increases Cumulative Reward
	H-term Reduces Variance
	H-term Drives to Physically Stationary Policy
	Impact of Trajectory Length K

	Conclusions
	More Examples with Multiple Fixed Points
	MuJoCo Tasks with Multiple Policies
	Description of MuJoCo Taks
	Multiple policies in MuJoCo tasks

	Quantum K-Spin Hamiltonian Formulation of Reinforcement Learning
	Derivation Steps for Section 4.2: Hamiltonian's Policy Gradients
	Proof of Theorem 1: Hamiltonian's Stochastic Policy Gradient
	Proof of Corollary 1
	Proof of Theorem 2: Hamiltonian's Deterministic Policy Gradient
	Proof of Corollary 2
	Proof of Corollary 3

	Conventional Actor-Critic Algorithms for Deep Reinforcement Learning
	Stationary Deterministic Policy Gradient Algorithm with H-term
	Experiments: Hyperparameters and More Results
	Hyperparameters in Experiments
	More Results

	Hamiltonian Policy Network
	Hamiltonian Policy Network
	Frozenlake Task
	Gridworld Task

