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1 PROOFS

We present all proofs for Section 2 here. For the sake of conciseness and readability, we denote Y
as the collection of all partial label sets containing the true label y, i.e. Y¥ := {y € Y|y € y}.

Proof 1 (of Lemma 1) When Assumption 3 holds, elementary probability theory states that
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By Assumption 1, we have q, = 1, and thus complete the proof.
Proof 2 (of Theorem 1) For any x € X, there holds
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and
R(L,9(X)) = By x [L(Y, 9(2))|X = 2] = > L(y,9(2))P(Y = y|X = ).

Therefore, if we have
Ly, g(x) = Y PY =y|Y =y, X =2)L(y, g(x))
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since P(Y = ylY =y, X = z) = 0 for y not containing y, then there holds
R(L,9(X)) = R(L, g(X)).

According to Lemma 1, by Assumption 1 and Assumption 3, there holds
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Lemma 1 Let y be the true label of input x, q, := P(z € y|lY = y, X = z) for z € Y, and
VY :={y € Y|y € y}. Then there holds
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Proof 3 (of Lemma 1) By Assumption 1, we have
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where the last equation holds since P(Y = y|lY =y, X =) =0fory ¢ YV.
Proof 4 (of Theorem 2) According to Theorem 1, we have the form of the corresponding ordinary

loss function being
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The first term on the right hand side of (1) is
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By Lemma 1, we have
SOOI «JJ0-a) =
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and therefore the first term in (2) becomes
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For the second term in (2), since z # y and z € y, we switch the summations, and achieve
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Without loss of generality, we assume y = K for notational simplicity, and write
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Applying Lemma 1 with' Y =

and therefore the second term in (2) becomes
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Similarly, by switching the summations, the second term on the right hand side of (1) becomes
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where the last equality holds according to (4).
By combining (3), (5), (6), we have
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Proof 5 (of Corollary 1) When 3 = 0, we naturally have w, = 0 for z € [K] \ y, and thus there
holds
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When 8 = 1, the result is obvious enough.

When B = 2, there holds
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where the last equation holds since () is symmetric.

2  SUPPLEMENTARY OF EXPERIMENTS

2.1 FOR SECTION 4.1

All models are trained for 500 epochs. The optimizer is stochastic gradient descent (SGD) with
momentum 0.9, with the batch size chosen as 256. The learning rate decays by half every 50
epochs. For our method, the initial learning rate and weight decay is chosen by five-fold cross
validation from the grid {0.01,0.02,0.05,0.1} and {1e — 3,1e — 4,1e — 5,1e — 6}.

2.2 FOR SECTION 4.3

One example of the data generation procedure in Section 4.3 is shown in the following probability
matrix:

1 Gaasi 9 ¢ - @ Qadj
Gatj 1 Quaj q@ -+ q q
dadj 4 q q - Gag 1
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