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ABSTRACT

Recent studies have shown that the denoising process in (generative) diffusion
models can induce meaningful (discriminative) representations inside the model,
though the quality of these representations still lags behind those learned through
recent self-supervised learning methods. We argue that one main bottleneck in
training large-scale diffusion models for generation lies in effectively learning
these representations. Moreover, training can be made easier by incorporating
high-quality external visual representations, rather than relying solely on the diffu-
sion models to learn them independently. We study this by introducing a straight-
forward regularization called REPresentation Alignment (REPA), which aligns the
projections of noisy input hidden states in denoising networks with clean image
representations obtained from external, pretrained visual encoders. The results are
striking: our simple strategy yields significant improvements in both training ef-
ficiency and generation quality when applied to popular diffusion and flow-based
transformers, such as DiTs and SiTs. For instance, our method can speed up SiT
training by over 17.5×, matching the performance (without classifier-free guid-
ance) of a SiT-XL model trained for 7M steps in less than 400K steps. In terms of
final generation quality, our approach achieves state-of-the-art results of FID=1.42
using classifier-free guidance with the guidance interval.
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Figure 1: Representation alignment makes diffusion transformer training significantly easier.
Our framework, REPA, explicitly aligns the diffusion model representation with powerful pretrained
visual representation through a simple regularization. Notably, model training becomes significantly
more efficient and effective, and achieves >17.5× faster convergence than the vanilla model.

1 INTRODUCTION

Generative models based on denoising, such as diffusion models (Ho et al., 2020; Song et al., 2021)
and flow-based models (Albergo & Vanden-Eijnden, 2023; Lipman et al., 2022; Liu et al., 2023),
have been a scalable approach in generating high-dimensional visual data. They achieve remarkably
successful results in challenging tasks such as zero-shot text-to-image (Podell et al., 2023; Saharia
et al., 2022; Esser et al., 2024) or text-to-video (Polyak et al., 2024; Brooks et al., 2024) generation.
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Figure 2: Alignment behavior for a pretrained SiT model. We empirically investigate the feature
alignment between DINOv2-g and the original SiT-XL/2 checkpoint trained for 7M iterations. (a)
While SiT learns semantically meaningful representations, a significant gap remains compared to
DINOv2. (b) Using CKNNA (Huh et al., 2024), we observe that SiT already shows some alignment
with DINOv2, though its absolute value is lower compared to other vision encoders. (c) Alignment
improves with a larger model and longer training, but the progress remains slow and insufficient.

Recent works have explored the use of diffusion models as representation learners (Li et al., 2023a;
Xiang et al., 2023; Chen et al., 2024c; Mukhopadhyay et al., 2021) and have shown that they learn
discriminative features in their hidden states, and better diffusion models learn better representations
(Xiang et al., 2023). In fact, this observation is closely related to earlier approaches that employ
denoising score matching (Vincent, 2011) as a self-supervised learning method (Bengio et al., 2013),
which implicitly learns a representation h as a hidden state of a denoising autoencoder sθ(x̃) through
a reconstruction of x from the corrupted data x̃ (Yang & Wang, 2023). However, the reconstruction
task may not be a suitable task for learning good representations, as it is not capable of eliminating
unnecessary details in x for representation learning (LeCun, 2022; Assran et al., 2023).

Our approach. In this paper, we identify that the main challenge in training diffusion models stems
from the need to learn a high-quality internal representation h. We demonstrate that the training
process for generative diffusion models becomes significantly easier and more effective when sup-
ported by an external representation, y∗. Specifically, we propose a simple regularization technique
that leverages recent advances in self-supervised visual representations as y∗, leading to substantial
improvements in both training efficiency and the generation quality of diffusion transformers.

We start by performing an empirical analysis with recent diffusion transformers (Peebles & Xie,
2023; Ma et al., 2024a) and the state-of-the-art self-supervised vision model, DINOv2 (Oquab et al.,
2024). Similar to prior studies (Xiang et al., 2023), we first observe that pretrained diffusion models
do indeed learn meaningful discriminative representations (as shown by the linear probing results in
Figure 2a). However, these representations are significantly inferior to those produced by DINOv2.
Next, we find that the alignment between the representations learned by the diffusion model and
those of DINOv2 (Figure 2b) is still considered weak,1 which we study by measuring their repre-
sentation alignment (Huh et al., 2024). Finally, we observe this alignment between diffusion models
and DINOv2 improves consistently with longer training and larger models (Figure 2c).

These insights inspire us to enhance generative models by incorporating external self-supervised rep-
resentations. However, this approach is not straightforward when using off-the-shelf self-supervised
visual encoders (e.g., by fine-tuning an encoder for generation tasks). The first challenge is an input
mismatch: diffusion models work with noisy inputs x̃, whereas most self-supervised learning en-
coders are trained on clean images x. This issue is even more pronounced in modern latent diffusion
models, which take a compressed latent image z = E(x) from a pretrained VAE encoder (Rombach
et al., 2022) as input. Additionally, these off-the-shelf vision encoders are not designed for tasks like
reconstruction or generation. To overcome these technical hurdles, we guide the feature learning of
diffusion models using a regularization technique that distills pretrained self-supervised representa-
tions into diffusion representations, offering a flexible way to integrate high-quality representations.

1We describe this as “weak” because relatively, the alignments are much poorer than those seen with other
self-supervised encoders (e.g., MoCov3 (Chen et al., 2021)), even after extensive training.
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Figure 3: Bridging the representation gap: (a) Our method, REPA significantly reduces the “se-
mantic gap” between diffusion transformers and DINOv2, as demonstrated by the linear probing
results on ImageNet classification. (b) With REPA, the alignment between diffusion transformers
and DINOv2 improves substantially, even after just a few (e.g., 8) layers. (c) Notably, with improved
alignment, we can push the SiT model’s generation-representation envelope: within the same num-
ber of training iterations, it delivers both better generation quality and stronger linear probing results.
We use a single network trained with REPA at layer 8 and perform the evaluation at different layers.

Specifically, we introduce REPresentation Alignment (REPA), a simple regularization technique
built on recent diffusion transformer architectures (Peebles & Xie, 2023). In essence, REPA dis-
tills the pretrained self-supervised visual representation y∗ of a clean image x into the diffusion
transformer representation h of a noisy input x̃. This regularization reduces the semantic gap in the
representation h (Figure 3a) and better aligns it with the target self-supervised representations y∗
(Figure 3b). Notably, this enhanced alignment significantly boosts the generation performance of
diffusion transformers (Figure 3c). Interestingly, with REPA, we observe that sufficient represen-
tation alignment can be achieved by aligning only the first few transformer blocks. This, in turn,
allows the later layers of the diffusion transformers to focus on capturing high-frequency details
based on the aligned representations, further improving generation performance.

Based on our analysis, we conduct a system-level comparison to demonstrate the effectiveness of
our scheme by applying it to two recent diffusion transformers: DiTs (Peebles & Xie, 2023) and
SiTs (Ma et al., 2024a). For SiT training, we show the model achieves FID=7.9 on class-conditional
ImageNet (Deng et al., 2009) generation only using 400K training iteration (without classifier-free
guidance; Ho & Salimans 2022) which is >17.5× faster than the vanilla SiTs. Moreover, with
classifier-free guidance, our scheme shows an improved FID at the final from 2.06 to 1.80 and
achieves state-of-the-art results of FID=1.42 with guidance interval (Kynkäänniemi et al., 2024).

We highlight the main contributions of this paper below:

• We hypothesize that learning high-quality representations in diffusion transformers is essential for
improving their generation performance.

• We introduce REPA, a simple regularization for aligning diffusion transformer representations
with strong self-supervised visual representations.

• Our framework improves the generation performance of diffusion transformers, e.g., for SiTs, we
achieve a 17.5× faster training for SiTs and improved FID scores on ImageNet generation.

2 PRELIMINARIES

We present a brief overview of flow and diffusion-based models through the unified perspective of
stochastic interpolants (Albergo et al., 2023; Ma et al., 2024a); see Appendix A for more details.

We consider a continuous time-dependent process with a data x∗ ∼ p(x) and a Gaussian noise
ϵ ∼ N (0, I) on t ∈ [0, T ]:

xt = αtx∗ + σtϵ, α0 = σT = 1, αT = σ0 = 0, (1)

where αt and σt are a decreasing and increasing function of t, respectively. Given such a process,
there exists a probability flow ordinary differential equation (PF ODE) with a velocity field

ẋt = v(xt, t), (2)

3
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where the distribution of this ODE at t is equal to the marginal pt(x). Thus, data can be sampled by
solving this PF ODE in Eq. (2) through existing ODE samplers (e.g., Euler sampler) starting from a
random Gaussian noise ϵ ∼ N (0, I) (Lipman et al., 2022; Ma et al., 2024a).

This velocity v(x, t) is represented as the following sum of two conditional expectations

v(x, t) = E[ẋt|xt = x] = α̇tE[x∗|xt = x] + σ̇tE[ϵ|xt = x], (3)

which can be approximated with model vθ(xt, t) by minimizing the following training objective:

Lvelocity(θ) := Ex∗,ϵ,t

[
||vθ(xt, t)− α̇tx∗ − σ̇tϵ||2

]
. (4)

Moreover, there exists a reverse stochastic differential equation (SDE) that the marginal pt(x) coin-
cides with the one of PF ODE in Eq. (2) with a diffusion coefficient wt (Ma et al., 2024a):

dxt = v(xt, t)dt−
1

2
wts(xt, t)dt+

√
wtdw̄t, (5)

where the score s(xt, t) is the following conditional expectation

s(xt, t) = −σ−1
t E[ϵ|xt = x]. (6)

and it can be directly computed using the velocity v(x, t) for t > 0 as

s(x, t) = σ−1
t · αtv(x, t)− α̇tx

α̇tσt − αtσ̇t
, (7)

implying that data can be alternatively generated through Eq. (5) with SDE solvers.

Following Ma et al. (2024a), we mainly consider a simple linear interpolant with restricting T = 1:
αt = 1 − t and σt = t. However, our approach is applicable to any similar variants (e.g., DDPM;
Ho et al. 2020), which has a similar formulation but uses a discretized process and different αt, σt
that N (0, I) becomes an equilibrium distribution (i.e., xt converges to N (0, I) only if t→ ∞).

3 REPA: REGULARIZATION FOR REPRESENTATION ALIGNMENT

3.1 OVERVIEW

Let p(x) be an unknown target distribution for data x ∈ X . Our goal is to approximate p(x) through
a model distribution using a dataset drawn from p(x). To lower computational costs, we adopt the
recent prevalent latent diffusion (Rombach et al., 2022). This involves learning a latent distribution
p(z), which is defined as the distribution of a compressed latent variable z = E(x), where E is an
encoder from a pretrained autoencoder (e.g., KL-VAE; Rombach et al. 2022), with x ∼ pdata(x).

We aim to learn this distribution by training a diffusion model vθ(zt, t) using objectives such as
velocity prediction, as described in Section 2. Here, we revisit denoising score matching within the
context of self-supervised representation learning (Bengio et al., 2013). From this perspective, one
can think of the diffusion model vθ(zt, t) as a composition of two functions gθ ◦ fθ with an encoder
fθ : Z → H with fθ(zt) = ht and a decoder gθ : H → Z with gθ(ht) = vt, where the encoder fθ
implicitly learns a representation ht that reconstructs the target vt.

However, learning a good representation through producing a prediction of the input space (e.g.,
generating pixels) can be challenging, as the model is often not capable of eliminating unnecessary
details, which is crucial for developing a strong representation (LeCun, 2022; Assran et al., 2023).
We argue that a key bottleneck in the training of large-scale diffusion models for generation lies
in representation learning, an area where current diffusion models fall short. We also hypothesize
that the training process can be made easier by guiding the model with high-quality external visual
representations, rather than relying solely on the diffusion model to learn them independently.

To address this challenge, we introduce a simple regularization method called REPresentation Align-
ment (REPA) using the recent diffusion transformer architectures (Peebles & Xie, 2023; Ma et al.,
2024a) (see Appendix B for an illustration). In a nutshell, our regularization distills pretrained self-
supervised visual representations to diffusion transformers in a simple and effective way. This al-
lows the diffusion model to leverage these semantically rich external representations for generation,
leading to a substantial boost in performance.

4
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Figure 4: REPA improves visual scaling. We compare the images generated by two SiT-XL/2
models during the first 400K iterations, with REPA applied to one of the models. Both models share
the same noise, sampler, and number of sampling steps, and neither uses classifier-free guidance.

3.2 OBSERVATIONS

To take a deeper dive into this, we first investigate the layer-wise behavior of the pretrained SiT
model (Ma et al., 2024a) on ImageNet (Deng et al., 2009), which uses linear interpolants and velocity
prediction for training. In particular, we focus on measuring the representation gap between the
diffusion transformer and the state-of-the-art self-supervised DINOv2 model (Oquab et al., 2024).
We examine this from three angles: semantic gap, feature alignment progression, and their final
feature alignment. For the semantic gap, we compare linear probing results using DINOv2 features
with those from SiT models trained for 7M iterations, following the same protocol as in Xiang et al.
(2023), which involves linear probing on globally pooled hidden states of the diffusion transformer.
Next, to measure feature alignments, we use CKNNA (Huh et al., 2024), a kernel alignment metric
related to CKA (Kornblith et al., 2019), but based on mutual nearest neighbors. This allows for a
quantitative assessment of alignment between different representations. We summarize the result in
Figure 2 and more details (e.g., definition of CKNNA) in Appendix C.1.

Diffusion transformers exhibit a significant semantic gap from state-of-the-art visual encoders.
As shown in Figure 2a, we observe that the hidden state representation of the pretrained diffusion
transformer, in line with prior works (Xiang et al., 2023; Chen et al., 2024c), achieves a reasonably
high linear probing peak at layer 20. However, its performance remains well below that of DINOv2,
indicating a substantial semantic gap between the two representations. Additionally, we find that
after reaching this peak, linear probing performance quickly declines, suggesting that the diffusion
transformer must shift away from focusing solely on learning semantically-rich representations in
order to generate images with high-frequency details.

Diffusion representations are already (weakly) aligned with other visual representations. In
Figure 2b, we report representational alignments between SiT and DINOv2 using CKNNA. In
particular, the SiT model representation already shows better alignment than MAE (He et al.,
2022), which is also a self-supervised learning approach based on the reconstruction of masked
patches. However, the absolute alignment score remains lower than that observed between other
self-supervised learning methods (e.g., MoCov3 (Chen et al., 2021) vs. DINOv2). These results
suggest that while diffusion transformer representations exhibit some alignment with self-supervised
visual representations, the alignment remains weak.

Alignment improves with larger models and extended training. We also measure CKNNA values
across different model sizes and training iterations. As depicted in Figure 2c, we observe improved
alignment with larger models and extended training. However, the absolute alignment remains low
and does not reach the levels observed between other self-supervised visual encoders (e.g., MoCov3
and DINOv2), even after extensive training of 7M iterations.
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These findings are not unique to the SiT model but are also observed in other denoising-based gener-
ative transformers. For instance, in Figure 2, we present a similar analysis using a DiT model (Pee-
bles & Xie, 2023) pretrained on ImageNet with the DDPM objective (Ho et al., 2020; Nichol &
Dhariwal, 2021). See Appendix C.2 for more details.

3.3 REPRESENTATION ALIGNMENT WITH SELF-SUPERVISED REPRESENTATIONS

REPA aligns patch-wise projections of the model’s hidden states with pretrained self-supervised
visual representations. Specifically, we use the clean image representation as the target and ex-
plore its impact. The goal of this regularization is for the diffusion transformer’s hidden states to
predict noise-invariant, clean visual representations from noisy inputs that contain useful semantic
information. This provides meaningful guidance for the subsequent layers to reconstruct the target.

Formally, let f be a pretrained encoder and consider a clean image x∗. Let y∗ = f(x∗) ∈ RN×D

be an encoder output, where N,D > 0 are the number of patches and the embedding dimension of
f , respectively. REPA aligns hϕ(ht) ∈ RN×D with y∗, where hϕ(ht) is a projection of an diffusion
transformer encoder output ht = fθ(zt) that through a trainable projection head hϕ. In practice, we
simply parameterize hϕ using a multilayer perceptron (MLP).

In particular, REPA achieves alignment through a maximization of patch-wise similarities between
the pretrained representation y∗ and the hidden state ht:

LREPA(θ, ϕ) := −Ex∗,ϵ,t

[ 1

N

N∑
n=1

sim(y
[n]
∗ , hϕ(h

[m,n]
t ))

]
, (8)

where n is a patch index, m is a depth of fθ, and sim(·, ·) is a pre-defined similarity function.

In practice, we add this term to the original diffusion-based objectives described in Section 2 and
Appendix A. For instance, for the training of a velocity model in Eq. (4), the objective becomes:

L := Lvelocity + λLREPA (9)

where λ > 0 is a hyperparameter that controls the tradeoff between denoising and representation
alignment. We primarily investigate the impact of this regularization on two popular objectives: Im-
proved DDPM (Nichol & Dhariwal, 2021) used in DiT (Peebles & Xie, 2023) and linear stochastic
interpolants used in SiT (Ma et al., 2024a), though other objectives can also be considered.

4 EXPERIMENTS

We validate the performance of REPA and the effect of the proposed components through extensive
experiments. In particular, we investigate the following questions:

• Can REPA improve diffusion transformer training significantly? (Table 2, 3, 4, Figure 4, 6)
• Is REPA scalable in terms of model size and representation quality? (Table 2, Figure 5)
• Can diffusion model representations be aligned with various visual representations? (Figure 8)

4.1 SETUP

Table 1: Model configuration details.

Config #Layers Hidden dim #Heads

B/2 12 768 12
L/2 24 1024 16
XL/2 28 1152 16

Implementation details. We strictly follow the setup in
DiT (Peebles & Xie, 2023) and SiT (Ma et al., 2024a)
unless otherwise specified. Specifically, we use Ima-
geNet (Deng et al., 2009), where each image is prepro-
cessed to the resolution of 256×256 (denoted as Ima-
geNet 256×256), and follow ADM (Dhariwal & Nichol,
2021) for other data preprocessing protocols. Each image is then encoded into a compressed vector
z ∈ R32×32×4 using the Stable Diffusion VAE (Rombach et al., 2022). For model configurations,
we use the B/2, L/2, and XL/2 architectures introduced in the DiT and SiT papers, which process in-
puts with a patch size of 2 (see Table 1 for details). To ensure a fair comparison with DiTs and SiTs,
we consistently use a batch size of 256 during training. Additional experimental details, including
hyperparameter settings and computing resources, are provided in Appendix D.
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Table 2: Component-wise analysis on ImageNet 256×256. All models are SiT-L/2 trained for
400K iterations. All metrics except accuracy (Acc.) are measured with the SDE Euler-Maruyama
sampler with NFE=250 and without classifier-free guidance. For Acc., we report linear probing
results on the ImageNet validation set using the latent features aligned with the target representation.
We fix λ = 0.5 here. ↓ and ↑ indicate whether lower or higher values are better, respectively.

Iter. Target Repr. Depth Objective FID↓ sFID↓ IS↑ Pre.↑ Rec.↑ Acc.↑
400K Vanilla SiT-L/2 (Ma et al., 2024a) 18.8 5.29 72.0 0.64 0.64 N/A

400K MAE-L 8 NT-Xent 12.5 4.89 90.7 0.68 0.63 57.3
400K DINO-B 8 NT-Xent 11.9 5.00 92.9 0.68 0.63 59.3
400K MoCov3-L 8 NT-Xent 11.9 5.06 92.2 0.68 0.64 63.0
400K I-JEPA-H 8 NT-Xent 11.6 5.21 98.0 0.68 0.64 62.1
400K CLIP-L 8 NT-Xent 11.0 5.25 100.4 0.67 0.66 67.2
400K SigLIP-L 8 NT-Xent 10.2 5.15 107.0 0.69 0.64 68.8
400K DINOv2-L 8 NT-Xent 10.0 5.09 106.6 0.68 0.65 68.1

400K DINOv2-B 8 NT-Xent 9.7 5.13 107.5 0.69 0.64 65.7
400K DINOv2-L 8 NT-Xent 10.0 5.09 106.6 0.68 0.65 68.1
400K DINOv2-g 8 NT-Xent 9.8 5.22 108.9 0.69 0.64 65.7

400K DINOv2-L 6 NT-Xent 10.3 5.23 106.5 0.69 0.65 66.2
400K DINOv2-L 8 NT-Xent 10.0 5.09 106.6 0.68 0.65 68.1
400K DINOv2-L 10 NT-Xent 10.5 5.50 105.0 0.68 0.65 68.6
400K DINOv2-L 12 NT-Xent 11.2 5.14 100.2 0.68 0.64 69.4
400K DINOv2-L 14 NT-Xent 11.6 5.61 99.5 0.67 0.65 70.0
400K DINOv2-L 16 NT-Xent 12.1 5.34 96.1 0.67 0.64 71.1

400K DINOv2-L 8 NT-Xent 10.0 5.09 106.6 0.68 0.65 68.1
400K DINOv2-L 8 Cos. sim. 9.9 5.34 111.9 0.68 0.65 68.2

Evaluation. We report Fréchet inception distance (FID; Heusel et al. 2017), sFID (Nash et al.,
2021), inception score (IS; Salimans et al. 2016), precision (Pre.) and recall (Rec.) (Kynkäänniemi
et al., 2019) using 50,000 samples. We also include linear probing results (Acc.) and CKNNA (Huh
et al., 2024) as discussed in Section 3.2. We provide more details of each metric in Appendix E.

Sampler. Following SiT (Ma et al., 2024a), we always use the SDE Euler-Maruyama sampler (for
SDE with wt = σt) and set the number of function evaluations (NFE) as 250 by default.

Baselines. We use several recent diffusion-based generation methods as baselines, each employing
different inputs and network architectures. Specifically, we consider the following four types of
approaches: (a) Pixel diffusion: ADM (Dhariwal & Nichol, 2021), VDM++ (Kingma & Gao,
2024), Simple diffusion (Hoogeboom et al., 2023), CDM (Ho et al., 2022), (b) Latent diffusion with
U-Net: LDM (Rombach et al., 2022), (c) Latent diffusion with transformer+U-Net hybrid models:
U-ViT-H/2 (Bao et al., 2023), DiffiT (Hatamizadeh et al., 2024), and MDTv2-XL/2 (Gao et al.,
2023), and (d) Latent diffusion with transformers: MaskDiT (Zheng et al., 2024), SD-DiT (Zhu et al.,
2024), DiT (Peebles & Xie, 2023), and SiT (Ma et al., 2024a). Here, we refer to Transformer+U-
Net hybrid models that contain skip connections, which are not originally used in pure transformer
architecture. Detailed descriptions of each baseline method are provided in Appendix F.

4.2 COMPONENT-WISE ANALYSIS

We answer the question of whether REPA leads to improved diffusion transformer training. As
shown in Table 2, we discover that REPA consistently provides a substantially improved genera-
tion performance across various design choices, achieving a much better FID score than the vanilla
model. Below, we provide a detailed analysis of the impact of each component.

Target representation. We begin by analyzing the effect of using different pretrained self-
supervised encoders as the target representation. Notably, there is a strong correlation between
the quality of these encoders and the performance of the corresponding aligned diffusion transform-
ers. When a diffusion transformer is aligned with a pretrained encoder that offers more semantically
meaningful representations (i.e., better linear probing results), the model not only captures better
semantics but also exhibits enhanced generation performance, as reflected by improved validation
accuracy with linear probing and lower FID scores.
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Figure 5: Scalability of REPA. (a) Linear probing vs. FID plot of REPA with different target
encoders (400K iterations). A stronger encoder improves both discrimination and generation per-
formance. (b) The relative improvement of REPA over the vanilla model becomes increasingly
significant as the model size grows. (c) With a fixed target encoder, larger models reach better per-
formance more quickly. In the line plot, results are marked at 50K, 100K, 200K, and 400K iters.

Figure 6: Selected samples on ImageNet 256×256 from the SiT-XL/2 + REPA model. We use
classifier-free guidance with w = 4.0.

Target encoder size. Next, we investigate the impact of different target representation encoder sizes
by evaluating various DINOv2 models (i.e., DINOv2-B, -L, -g). We observe that the performance
differences are marginal, which we hypothesize is due to all DINOv2 models being distilled from
the DINOv2-g model and thus sharing similar representations.

Alignment depth. We also examine the effect of attaching the REPA loss to different layers. We
find that regularizing only the first few layers (e.g., 8) in training is sufficient, as indicated by the
linear probing results in Table 2. Interestingly, limiting regularization to the first few layers further
enhances generation performance (e.g., adding REPA to layer 6 or 8 yields best results). We hy-
pothesize that this enables the remaining layers to concentrate on capturing high-frequency details,
building on a strong representation. In future experiments, we apply REPA to the first 8 layers.

Alignment objective. We compare two simple training objectives for alignment: Normalized
Temperature-scaled Cross Entropy (NT-Xent; Chen et al. 2020a) or negative cosine similarity (cos.
sim.). Empirically, we find that NT-Xent offers advantages in the early stages (e.g., 50-100K itera-
tions), but the gap diminishes over time. Thus, we opt for cos. sim. in future experiments.

Scalability. Lastly, we investigate the scalability of REPA by varying the model sizes of both the
target representation encoders and the diffusion transformers. In general, as summarized in Fig-
ure 5a, aligning with stronger representations improves both the generation results and the linear
probing performance. Moreover, the convergence speed-up from REPA becomes more significant
as the diffusion transformer model increases in size. We demonstrate this by plotting FID-50K of
different SiT models with and without REPA in Figure 5b: REPA achieves the same FID level more
quickly with larger models. Lastly, Figure 5c highlights the relationship between linear probing
results and FID scores as model size varies, while keeping the target representation encoder fixed
as DINOv2-B. Larger models exhibit a steeper performance improvement (i.e., faster gains in both
generation and linear evaluation) with longer training.
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Table 3: FID comparisons with vanilla
DiTs and SiTs on ImageNet 256×256.
We do not use classifier-free guidance
(CFG). ↓ denotes lower values are better.
Iter. indicates the training iteration.

Model #Params Iter. FID↓
DiT-L/2 458M 400K 23.3
+ REPA (ours) 458M 400K 15.6

DiT-XL/2 675M 400K 19.5
+ REPA (ours) 675M 400K 12.3

DiT-XL/2 675M 7M 9.6
+ REPA (ours) 675M 850K 9.6

SiT-B/2 130M 400K 33.0
+ REPA (ours) 130M 400K 24.4

SiT-L/2 458M 400K 18.8
+ REPA (ours) 458M 400K 9.7
+ REPA (ours) 458M 700K 8.4

SiT-XL/2 675M 400K 17.2
+ REPA (ours) 675M 150K 13.6

SiT-XL/2 675M 7M 8.3
+ REPA (ours) 675M 400K 7.9
+ REPA (ours) 675M 1M 6.4
+ REPA (ours) 675M 4M 5.9

Table 4: System-level comparison on ImageNet
256×256 with CFG. ↓ and ↑ indicate whether lower
or higher values are better, respectively. Results
that include additional CFG scheduling are marked
with an asterisk (*), where the guidance interval
from (Kynkäänniemi et al., 2024) is applied for REPA.

Model Epochs FID↓ sFID↓ IS↑ Pre.↑ Rec.↑
Pixel diffusion

ADM-U 400 3.94 6.14 186.7 0.82 0.52
VDM++ 560 2.40 - 225.3 - -
Simple diffusion 800 2.77 - 211.8 - -
CDM 2160 4.88 - 158.7 - -

Latent diffusion, U-Net
LDM-4 200 3.60 - 247.7 0.87 0.48

Latent diffusion, Transformer + U-Net hybrid
U-ViT-H/2 240 2.29 5.68 263.9 0.82 0.57
DiffiT* - 1.73 - 276.5 0.80 0.62
MDTv2-XL/2* 1080 1.58 4.52 314.7 0.79 0.65

Latent diffusion, Transformer
MaskDiT 1600 2.28 5.67 276.6 0.80 0.61
SD-DiT 480 3.23 - - - -

DiT-XL/2 1400 2.27 4.60 278.2 0.83 0.57

SiT-XL/2 1400 2.06 4.50 270.3 0.82 0.59
+ REPA (ours) 200 1.96 4.49 264.0 0.82 0.60
+ REPA (ours) 800 1.80 4.50 284.0 0.81 0.61
+ REPA (ours)* 800 1.42 4.70 305.7 0.80 0.65

4.3 SYSTEM-LEVEL COMPARISON

Based on the analysis, we perform a system-level comparison between recent state-of-the-art dif-
fusion model approaches and diffusion transformers with REPA. First, we compare the FID values
between vanilla DiT or SiT models and the same models trained with REPA. As shown in Table 3,
REPA shows consistent and significant improvement across all model variants. In particular, on SiT-
XL/2, aligning representation leads to FID=7.9 at 400K iteration, which already exceeds the FID
of the vanilla SiT-XL at 7M iteration. Note that the performance continues to improve with longer
training; for instance, with SiT-XL/2, FID becomes 6.4 at 1M iteration and 5.9 at 4M iteration. We
also qualitatively compare the progression of generation results in Figure 4, where we use the same
initial noise across different models. The model trained with REPA exhibits better progression.

Finally, we provide a quantitative comparison between SiT-XL/2 with REPA and other recent dif-
fusion model methods using classifier-free guidance (Ho & Salimans, 2022). Our method already
outperforms the original SiT-XL/2 with 7× fewer epochs and it is further improved with longer
training. At 800 epochs, SiT-XL/2 with REPA achieves FID of 1.80 with a classifier-free guidance
scale of w = 1.35, and achieves state-of-the-art FID of 1.42 with a extra classifier-free guidance
scheduling with guidance interval (Kynkäänniemi et al., 2024). We provide selected qualitative re-
sults of SiT-XL/2 with REPA in Figure 6 and more examples in Appendix H. Moreover, we provide
experimental results on ImageNet 512×512 and text-to-image generation in Appendix J and K; we
show that REPA provides significant improvements in such setups as well.

4.4 ABLATION STUDIES

Representation gap across different timesteps. We begin by comparing the semantic gap (mea-
sured through linear probing results) using outputs of the SiT models with different noise scale
(i.e., different timesteps), and maximum CKNNA values using clean DINOv2-g representations. As
shown in Figure 7, REPA consistently reduces the representation gap across different noise levels,
as indicated by better linear probing results and higher CKNNA values across all noise scales.

Alignment to different visual encoders. In addition, we extend the analysis from Section 2 to other
visual encoders, not limited to the DINOv2 models. Specifically, we train SiT-L/2 models using
REPA with MAE or MoCov3. As depicted in Figure 8, these models demonstrate higher CKNNA
values across the corresponding target representations than the vanilla model. This indicates that
REPA is effective in aligning various visual representations, not limited to DINOv2.
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Figure 8: Alignment to different target repre-
sentations. CKNNA values of SiT-L/2 models
using REPA, with (a) MoCov3-L and (b) MAE-
L as target representations.

Table 5: Ablation study for λ.

λ 0.25 0.5 0.75 1.0

FID↓ 8.6 7.9 7.8 7.8
IS↑ 118.6 122.6 124.4 124.8

Effect of λ. We also examine the effect of the regulariza-
tion coefficient λ by training SiT-XL/2 models for 400K
with different coefficients 0.25 to 1.0 and comparing the
performance. As shown in Table 5, the performance is
robust to the values and it is quite saturated after λ = 0.5.

5 RELATED WORK

We discuss with the most relevant literature here and provide a more discussion in Appendix I.

Bridging diffusion models and representation learning. Many recent works have attempted to
exploit or improve representations learned from diffusion models (Fuest et al., 2024). First, there
are hybrid model approaches: Yang et al. (2022) and Deja et al. (2023) train a single model capable
of both classification and diffusion-based generation. Also, Tian et al. (2024) introduces a hybrid
model capable of segmentation and generation. Next, several works have analyzed and exploited
representations in diffusion models: Xiang et al. (2023) and Mukhopadhyay et al. (2021) observe
that the intermediate representations of diffusion models have discriminative properties. Moreover,
Repfusion (Yang & Wang, 2023) and DreamTeacher (Li et al., 2023b) propose knowledge distilla-
tion schemes using diffusion models to perform various downstream tasks. Our work also shares
some similarities, where we focus on alignments between recent self-supervised and diffusion rep-
resentations and how they affect generation.

Diffusion models with external representations. Several recent studies have explored leveraging
pretrained visual encoders to enhance efficiency and performance of diffusion models (Pernias et al.,
2024; Li et al., 2024). Würstchen (Pernias et al., 2024) introduces a two-stage text-to-image diffu-
sion model framework: a text-conditioned model that first generates a semantic map from a text
prompt, followed by another diffusion model that synthesizes images based on the semantic map.
RCG (Li et al., 2024) focuses on unconditional generation, where a compact 1D latent vector is
produced by a diffusion model and subsequently used as a label for image generation by a second
diffusion model. We also exploit pretrained representations for improving the diffusion model but
without the need of training an additional model that learns the representation distribution.

6 CONCLUSION

In this paper, we have presented REPA, a simple regularization for improving diffusion transform-
ers. In particular, we investigated whether diffusion transformer representations can be aligned
with recent self-supervised representations, and if it can improve the generation performance of
diffusion transformers. We showed REPA can significantly improves generation performance of
diffusion transformers with faster convergence speed. We hope our work would facilitate many pos-
sible future research directions, including unifying discriminative and generative models and their
representations or theoretical analysis; We provide more discussion in Appendix M.
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REPRODUCIBILITY STATEMENT

We provide hyperparameter details in Section 4 and Appendix D. We will also release the imple-
mentation and model checkpoints in the future to reproduce the results in the paper.
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A DESCRIPTIONS FOR DIFFUSION-BASED MODELS

We provide an overview of two types of generative models that we use in this paper, which learn
the target distribution by training variants of a denoising autoencoder. We first explain denoising
diffusion probabilistic models (DDPM) in Section A.1 and stochastic interpolants in Section A.2.
For detailed explanations and rigorous proofs, please refer to the original papers (Albergo et al.,
2023; Ma et al., 2024a) that provide excellent formulations and description.

A.1 DENOISING DIFFUSION PROBABILISTIC MODELS

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) model the target distribution p(x)
via learning a gradual denoising process from Gaussian distribution N (0, I) to p(x). Formally,
diffusion models learn a reverse process p(xt−1|xt) of the pre-defined forward process q(xt|x0)
that gradually adds the Gaussian noise starting from p(x) for 1 ≤ t ≤ T with a fixed T > 0.

For a given x0 ∼ p(x), q(xt|xt−1) can be formalized as q(xt|xt−1) := N (xt;
√
1− βtx0, β

2
t I),

where βt ∈ (0, 1) are pre-defined hyperparameters set to be small. In particular, DDPM (Ho et al.,
2020) shows if one formalizes the reverse process p(xt−1|xt) (with αt = 1 − βt. ᾱt :=

∏t
i=1 αi

for 1 ≤ t ≤ T ) as

p(xt−1|xt) := N
(
xt−1;

1
√
αt

(
xt −

σ2
t√

1− ᾱt
ϵθ(xt, t)

)
,Σθ(xt, t)

)
, (10)

then ϵθ(xt, t) can be trained with a simple denoising autoencoder objective parameterized by θ:

Lsimple := Ex∗,ϵ,t

[
||ϵ− ϵθ(xt, t)||22

]
. (11)

For Σθ(xt, t), (Ho et al., 2020) shows it is enough to simply define it as σ2
t I with βt = σ2

t . After
that, Nichol & Dhariwal (2021) exhibits the performance can be improved if the model jointly learns
Σθ(xt, t) with ϵθ(xt, t) in dimension-wise manner through the following objective:

Lvlb := exp(v log βt + (1− v) log β̃t), (12)

where v denotes each component per dimension from the model output and β̃t =
1−ᾱt−1

1−ᾱt
βt.

With a sufficiently large T and an appropriate scheduling of βt, the distribution p(xT ) becomes
almost an isotropic Gaussian distribution. Hence, one can generate a sample starting from a random
noise and perform iterative reverse process p(xt−1|xt) to reach the data sample x0 (Ho et al., 2020).
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A.2 STOCHASTIC INTERPOLANTS

Different from DDPM, flow-based models (Esser et al., 2024; Lipman et al., 2022; Liu et al., 2023)
deal with the continuous time-dependent process with a data x∗ ∼ p(x) and a Gaussian noise
ϵ ∼ N (0, I) on t ∈ [0, 1]:

xt = αtx0 + σtϵ, α0 = σ1 = 1, α1 = σ0 = 0, (13)

where αt and σt are a decreasing and increasing function of t (respectively). There exists a proba-
bility flow ordinary differential equation (PF ODE) with a velocity field

ẋt = v(xt, t), (14)

where distribution of this ODE at t is equal to the marginal pt(x).

The velocity v(x, t) is represented as the following sum of two conditional expectations

v(x, t) = E[ẋt|xt = x] = α̇tE[x∗|xt = x] + σ̇tE[ϵ|xt = x], (15)

which can be approximated with model vθ(xt, t) by minimizing the following training objective:

Lvelocity(θ) := Ex∗,ϵ,t

[
||vθ(xt, t)− α̇tx∗ − σ̇tϵ||2

]
. (16)

Note that this also corresponds to the following reverse stochastic differential equation (SDE):

dxt = v(xt, t)dt−
1

2
wts(xt, t)dt+

√
wtdw̄t, (17)

where the score s(xt, t) similarly becomes the conditional expectation

s(xt, t) = − 1

σt
E[ϵ|xt = x]. (18)

Similar to v, s can be approximated with a model sθ(x, t) with the following objective:

Lscore(θ) := Ex∗,ϵ,t

[
||σtsθ(xt, t) + ϵ||2

]
. (19)

Here, since the score s(x, t) can be directly computed using the velocity v(x, t) for t > 0 as

s(x, t) =
1

σt
· αtv(x, t)− α̇tx

α̇tσt − αtσ̇t
, (20)

so it is enough to estimate only one of the two vectors.

Stochastic interpolants (Albergo et al., 2023) shows any αt and σt satisfy the three conditions

1. α2
t + σ2

t > 0, ∀t ∈ [0, 1]

2. αt and σt are differentiable, ∀t ∈ [0, 1]

3. α1 = σ0 = 0, α0 = σ1 = 1,

leads to a process that interpolates between x0 and ϵ without bias. Thus, one can use a simple
interpolant by defining them as a simple function during training and inference, such as linear in-
terpolants with αt = 1− t and σt = t or variance-preserving (VP) interpolants with αt = cos(π2 t)
and σt = cos(π2 t) (Ma et al., 2024a). One another advantage of stochastic interpolants is that the
diffusion coefficient wt is independent in training any of a score or a velocity model. Thus, wt can
be also explicitly chosen after training when sampling with the reverse SDE.

Note that existing score-based diffusion models, including DDPM (Ho et al., 2020), can be similarly
interpreted as an SDE formulation. In particular, their forward diffusion process can be interpreted
as a pre-defined (discretized) forward SDEs that have an equilibrium distribution as N (0, I) at
t → ∞, where the training is done on [0, T ] with sufficiently large T (e.g., T = 1000) that p(xT )
becomes almost isotropic Gaussian. Generation is done by solving the corresponding reverse SDE
starting from a random Gaussian noise by assuming xT ∼ N (0, I), where αt, σt and the diffusion
coefficient wt is implicitly chosen from the forward diffusion process, which might lead to over-
complicated design space of score-based diffusion models (Karras et al., 2022).
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B DIFFUSION TRANSFORMER ARCHITECTURE

Timestep

MLPLayer Norm

Scale, Shift

Multi-Head
Attention

Scale

Tokens

Layer Norm

Scale, Shift

Pointwise
Feedforward

Scale, Shift

Figure 9: DiT block illustration.

We strictly follow the architecture used in DiT (Peebles & Xie, 2023) and SiT (Ma et al., 2024a).
The architecture is very similar to a vision transformer (ViTs; Dosovitskiy et al. 2021): an input is
patchified, reshaped to a 1D sequence of patches with a lengthN , and then fed to the model. Similar
to DiT and SiT, our architecture also uses a downsampled latent image z = E(x) as an input,
where x is a RGB image and E is an encoder of the stable diffusion variational autoencoder (VAE)
(Rombach et al., 2022). Different from the original ViT, our architecture also includes additional
modulation layers at each attention block called AdaIN-zero layers. These layers scale and shift
each hidden state with respect to the given timestep and additional conditions. We also consider a
single multilayer perceptron (MLP) that projects a hidden state to the target representation space,
which is only used in training. We provide an illustration of the DiT block in Figure 9.

C ANALYSIS DETAILS

C.1 EVALUATION DETAILS

CKNNA (Centered Kernel Nearest-Neighbor Alignment) is a relaxed version of the popular Cen-
tered Kernel Alignment (CKA; Kornblith et al. 2019) that mitigates the strict definition of alignment.
We generally follow the notations in the original paper for an explanation (Huh et al., 2024).

First, CKA have measured global similarities of the models by considering all possible data pairs:

CKA(K,L) =
HSIC(K,L)√

HSIC(K,K)HSIC(L,L)
, (21)

where K and L are two kernel matrices computed from the dataset using two different networks.
Specifically, it is defined as Kij = κ(ϕi, ϕj) and Lij = κ(ψi, ψj) where ϕi, ϕj and ψi, ψj are
representations computed from each network at the corresponding data xi,xj (respectively). By
letting κ as a inner product kernel, HSIC is defined as

HSIC(K,L) =
1

(n− 1)2

(∑
i

∑
j

(
⟨ϕi, ϕj⟩ − El[⟨ϕi, ϕl⟩]

)(
⟨ψi, ψj⟩ − El[⟨ψi, ψl⟩]

))
. (22)

CKNNA considers a relaxed version of Eq. (21) by replacing HSIC(K,L) into Align(K,L), where
Align(K,L) computes Eq. (22) only using a k-nearest neighborhood embedding in the datasets:

Align(K,L) =
1

(n− 1)2

(∑
i

∑
j

α(i, j)
(
⟨ϕi, ϕj⟩ − El[⟨ϕi, ϕl⟩]

)(
⟨ψi, ψj⟩ − El[⟨ψi, ψl⟩]

))
,

(23)
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where α(i, j) is defined as

α(i, j; k) = 1[i ̸= j and ϕj ∈ knn(ϕi; k) and ψj ∈ knn(ψi; k)], (24)

so this term only considers k-nearest neighbors at each i. In this paper, we randomly sample 10,000
images in the validation set in ImageNet (Deng et al., 2009) and report CKNNA with k = 10 based
on observation in Huh et al. (2024) that smaller k shows better a better alignment.

Linear probing. We follow the setup used in DAE (Chen et al., 2024c). Specifically, we use
parameter-free batch normalization layer and train a linear layer for 90 epochs with a batch size
of 16,384. We use the Adam optimizer (Kingma, 2015) with cosine decay learning rate scheduler,
where the initial learning rate is set to 0.001.

C.2 DIT ANALYSIS

We also perform a similar analysis have done in Figure 2a (linear probing) and 2b (CKA), and
illustrate the result in Figure 10. Overall is shows a similar trend; the model includes discriminative
representation but the gap is still large compared with DINOv2, as shown in the linear probing
results, and also weakly aligned with DINOv2 representations.
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Figure 10: Empirical study with the pretrained DiT model. Similar to Figure 2, we compare
the semantic gap and measure the feature alignment between DINOv2-g and the DiT-XL/2 model
trained with 7M iterations. (a) DiT learns meaningful (discriminative) representation but it still have
a large gap between DINOv2. (b) Measured with CKNNA (Huh et al., 2024), DiT already shows a
weak alignment with DINOv2, but its absolute value is still small.

C.3 DESCRIPTION OF PRETRAINED VISUAL ENCODERS

• MAE (He et al., 2022) proposes a self-supervised representation learning objective for vision
transformers, based on the reconstruction task of masked patches of input images.

• DINO (Caron et al., 2021) is a self-supervised learning method based on self-distillation through
the mean of momentum teacher network.

• MoCov3 (Chen et al., 2021) studies empirical study to train MoCo (He et al., 2020; Chen et al.,
2020b) on vision transformer and how they can be scaled up.

• CLIP (Radford et al., 2021) proposes a contrastive learning scheme on large image-text pairs.

• DINOv2 (Oquab et al., 2024) proposes a self-supervised learning method that combines pixel-
level and patch-level discriminative objectives by leveraging advanced self-supervised tech-
niques and a large pre-training dataset.

• I-JEPA (Assran et al., 2023) predicts missing parts of an image by learning representations
through joint-embedding, focusing on the context of the entire image without relying on pixel-
level reconstruction.

• SigLIP (Zhai et al., 2023) replaces the traditional softmax loss with a pairwise sigmoid loss,
enhancing performance and efficiency of image-text representation learning.
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Moreover, in Table 6, we also provide the datasets used for training of each of pretrained visual
encoder. As shown in this table, better visual representations learned from massive amounts of image
data provide more improvement, regardless of whether the dataset does not include ImageNet. Note
that we do not fine-tune encoders (e.g., SigLIP and CLIP) with the ImageNet dataset, particularly if
they were trained with another dataset, thereby separating the dataset leakage effect if we use these
encoders. REPA also achieves significant improvements with these encoders, which validates that
the improvement does not simply come from data leakages.

Table 6: Dataset analysis used for pretrained visual encoders.

Method Dataset w/ ImageNet-1K Text sup. FID↓
MAE ImageNet-1K O X 12.5
DINO ImageNet-1K O X 11.9
MoCov3 ImageNet-1K O X 11.9
I-JEPA ImageNet-1K O X 11.6

CLIP WIT-400M X O 11.0
SigLIP WebLi-4B X O 10.2
DINOv2 LVD-142M O X 10.0
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D HYPERPARAMETER AND MORE IMPLEMENTATION DETAILS

Table 7: Hyperparameter setup.

Figure 3 Table 3 (SiT-B) Table 3 (SiT-L) Table 3 (SiT-XL) Table 4

Architecture
Input dim. 32×32×4 32×32×4 32×32×4 32×32×4 32×32×4
Num. layers 28 12 24 28 28
Hidden dim. 1,152 768 1,024 1,152 1,152
Num. heads 16 12 16 16 16

REPA
λ 0.5 0.5 0.5 0.5 0.5
Alignment depth 8 4 8 8 8
sim(·, ·) cos. sim. cos. sim. NT-Xent cos. sim. cos. sim.
Encoder f(x) DINOv2-B DINOv2-B DINOv2-L DINOv2-B DINOv2-B

Optimization
Training iteration 1M 400K 700K 4M 4M
Batch size 256 256 256 256 256
Optimizer AdamW AdamW AdamW AdamW AdamW
lr 0.0001 0.0001 0.0001 0.0001 0.0001
(β1, β2) (0.9, 0.999) (0.9, 0.999) (0.9, 0.999) (0.9, 0.999) (0.9, 0.999)

Interpolants
αt 1− t 1− t 1− t 1− t 1− t
σt t t t t t
wt σt σt σt σt σt

Training objective v-prediction v-prediction v-prediction v-prediction v-prediction
Sampler Euler-Maruyama Euler-Maruyama Euler-Maruyama Euler-Maruyama Euler-Maruyama
Sampling steps 250 250 250 250 250
Guidance - - - - 1.35

Further implementation details. We implement our model based on the original SiT implementa-
tion (Ma et al., 2024a). Throughout the experiments, we use the exact same structure as DiT (Pee-
bles & Xie, 2023) and SiT (Ma et al., 2024a). We use AdamW (Kingma, 2015; Loshchilov, 2017)
with constant learning rate of 1e-4, (β1, β2) = (0.9, 0.999) without weight decay. To speed up
training, we use mixed-precision (fp16) with a gradient clipping. We also pre-compute compressed
latent vectors from raw pixels via stable diffusion VAE (Rombach et al., 2022) and use these la-
tent vectors. Because of this, we do not apply any data augmentation, but we find this does
not lead to a big difference, as similarly observed in EDM2 (Karras et al., 2024). We also use
stabilityai/sd-vae-ft-ema decoder for decoding latent vectors to images. For MLP used
for a projection, we use three-layer MLP with SiLU activations (Elfwing et al., 2018). We provide a
detailed hyperparameter setup in Table 7.

Pretrained encoders. For MoCov3-B and -L models, we use the checkpoint in the implementation
of RCG (Li et al., 2024);2 for other checkpoints, we use their official checkpoints released in their
official implementations. To adjust a different number of patches between the diffusion transformer
and the pretrained encoder, we interpolate positional embeddings of pretrained encoders.

Sampler. For sampling, we use the Euler-Maruyama sampler with the SDE in Eq. (5) with a diffu-
sion coefficient wt = σt. We use the last step of the SDE sampler as 0.04, and it gives a significant
improvement, similar to the original SiT paper (Ma et al., 2024a).

Computing resources. We use 8 NVIDIA H100 80GB GPUs for experiments; our training speed
is about 5.4 step/s with a batch size of 256. Note that this can be further boosted with additional
engineering (e.g., pre-computation of pretrained encoder features).

2https://github.com/LTH14/rcg
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E EVALUATION DETAILS

We strictly follow the setup and use the same reference batches of ADM (Dhariwal & Nichol, 2021)
for evaluation, following their official implementation.3 We use NVIDIA H100 80GB GPUs or
4090Ti GPUs for evaluation and enable tf32 precision for faster generation, and we find the perfor-
mance difference is negligible to the original fp32 precision.

In what follows, we explain the main concept of metrics that we used for the evaluation.

• FID (Heusel et al., 2017) measures the feature distance between the distributions of real and
generated images. It uses the Inception-v3 network (Szegedy et al., 2016) and computes distance
based on an assumption that both feature distributions are multivariate gaussian distributions.

• sFID (Nash et al., 2021) proposes to compute FID with intermediate spatial features of the
Inception-v3 network to capture the generated images’ spatial distribution.

• IS (Salimans et al., 2016) also uses the Inception-v3 network but use logit for evaluation of the
metric. Specifically, it measures a KL-divergence between the original label distribution and the
distribution of logits after the softmax normalization.

• Precision and recall (Kynkäänniemi et al., 2019) are based on their classic definitions: the
fraction of realistic images and the fraction of training data manifold covered by generated data.

F BASELINES

In what follows, we explain the main idea of baseline methods that we used for the evaluation.

• ADM (Dhariwal & Nichol, 2021) improves U-Net-based architectures for diffusion models and
proposes classifier-guided sampling to balance the quality and diversity tradeoff.

• VDM++ (Kingma & Gao, 2024) proposes a simple adaptive noise schedule for diffusion models
to improve training efficiency.

• Simple diffusion (Hoogeboom et al., 2023) proposes a diffusion model for high-resolution im-
age generation by exploring various techniques to simplify a noise schedule and architectures.

• CDM (Ho et al., 2022) introduces cascaded diffusion models: similar to progressiveGAN (Kar-
ras et al., 2018), it trains multiple diffusion models starting from the lowest resolution and ap-
plying one or more super-resolution diffusion models for generating high-fidelity images.

• LDM (Rombach et al., 2022) proposes latent diffusion models by modeling image distribution
in a compressed latent space to improve the training efficiency without sacrificing the generation
performance.

• U-ViT (Bao et al., 2023) proposes a ViT-based latent diffusion model that incorporates U-Net-
like long skip connections.

• DiffiT (Hatamizadeh et al., 2024) proposes a time-dependent multi-head self-attention mecha-
nism for enhancing the efficiency of transformer-based image diffusion models.

• MDTv2 (Gao et al., 2023) proposes an asymmetric encoder-decoder scheme for efficient training
of a diffusion-based transformer. They also apply U-Net-like long-shortcuts in the encoder and
dense input-shortcuts in the decoder.

• MaskDiT (Zheng et al., 2024) proposes an asymmetric encoder-decoder scheme for efficient
training of diffusion transformers, where they train the model with an auxiliary mask reconstruc-
tion task similar to MAE (He et al., 2022).

• SD-DiT (Zhu et al., 2024) extends MaskdiT architecture but incorporates self-supervised dis-
crimination objective using a momentum encoder.

• DiT (Peebles & Xie, 2023) proposes a pure transformer backbone for training diffusion models
based on proposing AdaIN-zero modules.

• SiT (Ma et al., 2024a) extensively analyzes how DiT training can be efficient by moving from
discrete diffusion to continuous flow-based modeling.

3https://github.com/openai/guided-diffusion/tree/main/evaluations
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G DETAILED QUANTITATIVE RESULTS

We provide evaluation results of different SiT models trained with REPA. All models are aligned
with DINOv2-B representations with λ = 0.5 and negative cosine similarity. We use the 4th layer
hidden states for the base model and use the 8th layer hidden states for the large and xlarge model.

Table 8: Detailed evaluation results with different model sizes. All results are reported without
classifier-free guidance.

Model #Params Iter. FID↓ sFID↓ IS↑ Prec.↑ Rec.↑ Acc.↑
SiT-B/2 (Ma et al., 2024a) 130M 400K 33.0 6.46 43.7 0.53 0.63 N/A
+ REPA (ours) 130M 50K 78.2 11.71 17.1 0.33 0.48 43.2
+ REPA (ours) 130M 100K 49.5 7.00 27.5 0.46 0.59 50.9
+ REPA (ours) 130M 200K 33.2 6.68 43.7 0.54 0.63 50.9
+ REPA (ours) 130M 400K 24.4 6.40 59.9 0.59 0.65 61.2

SiT-L/2 (Ma et al., 2024a) 458M 400K 18.8 5.29 72.0 0.64 0.64 N/A
+ REPA (ours) 458M 50K 55.4 24.0 23.0 0.43 0.53 55.3
+ REPA (ours) 458M 100K 24.1 6.25 55.7 0.62 0.60 61.8
+ REPA (ours) 458M 200K 14.0 5.18 86.5 0.67 0.64 66.3
+ REPA (ours) 458M 400K 10.0 5.20 109.2 0.69 0.65 69.4

SiT-XL/2 (Ma et al., 2024a) 675M 7M 8.3 6.32 131.7 0.68 0.67 N/A
+ REPA (ours) 675M 50K 52.3 31.24 24.3 0.45 0.53 56.1
+ REPA (ours) 675M 100K 19.4 6.06 67.4 0.64 0.61 62.9
+ REPA (ours) 675M 200K 11.1 5.05 100.4 0.69 0.64 67.3
+ REPA (ours) 675M 400K 7.9 5.06 122.6 0.70 0.65 70.3
+ REPA (ours) 675M 4M 5.9 5.73 157.8 0.70 0.69 74.6

We also provide SiT-XL/2+REPA at 4M iteration with classifier-free guidance with different class-
free guidance scales.

Table 9: Detailed evaluation results of SiT-XL+REPA at 4M iteration with different classifier-free
guidance scale w.

Model #Params Iter. w FID↓ sFID↓ IS↑ Prec.↑ Rec.↑
SiT-XL/2 (Ma et al., 2024a) 675M 7M 1.500 2.06 4.50 270.3 0.82 0.59
+ REPA (ours) 675M 4M 1.300 1.80 4.55 268.6 0.80 0.63
+ REPA (ours) 675M 4M 1.325 1.79 4.51 276.8 0.81 0.62
+ REPA (ours) 675M 4M 1.350 1.80 4.50 284.0 0.81 0.61
+ REPA (ours) 675M 4M 1.375 1.84 4.48 291.7 0.82 0.61
+ REPA (ours) 675M 4M 1.400 1.90 4.48 297.5 0.82 0.60

Moreover, we provide the results with the guidance interval (Kynkäänniemi et al., 2024).

Model #Params Iter. Interval w FID↓ sFID↓ IS↑ Prec.↑ Rec.↑
SiT-XL/2 (Ma et al., 2024a) 675M 7M [0, 1] 1.50 2.06 4.50 270.3 0.82 0.59
+ REPA (ours) 675M 4M [0, 0.8] 2.00 2.23 4.40 360.9 0.84 0.6
+ REPA (ours) 675M 4M [0, 0.75] 2.00 1.78 4.50 346.2 0.82 0.62
+ REPA (ours) 675M 4M [0, 0.7] 2.00 1.48 4.67 324.0 0.82 0.62
+ REPA (ours) 675M 4M [0, 0.65] 2.00 1.44 4.88 308.8 0.79 0.65
+ REPA (ours) 675M 4M [0, 0.6] 2.00 1.56 5.11 290.7 0.78 0.66
+ REPA (ours) 675M 4M [0, 0.7] 1.90 1.45 4.68 317.6 0.80 0.64
+ REPA (ours) 675M 4M [0, 0.7] 1.80 1.42 4.70 305.7 0.80 0.64

Table 10: Detailed evaluation results of SiT-XL+REPA at 4M iteration with different classifier-free
guidance scale w. We apply the guidance interval (Kynkäänniemi et al., 2024).
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Finally, in Figure 11, we provide a plot similar to Figure 1 using SiT-XL/2 but FIDs are obtained
with a classifier-guidance scale w = 1.35. Similar to Figure 1, REPA provides great speedup and
performance improvement compared with the vanilla model.

50K 400K 1M 4M 7M
Training Iteration

70.0

35.0

15.0

10.0

6.29

2.43
1.8

FI
D

-5
0K

SiT-XL/2
SiT-XL/2 + REPA

Figure 11: Training iteration vs. FID plot. All values are measured using a classifier-free guidance.
REPA demonstrates a notable speedup and enhanced performance.
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H MORE QUALITATIVE RESULTS

Figure 12: Uncurated generation results of SiT-XL/2 + REPA. We use classifier-free guidance
with w = 4.0. Class label = “loggerhead sea turtle” (33).

Figure 13: Uncurated generation results of SiT-XL/2 + REPA. We use classifier-free guidance
with w = 4.0. Class label = “macaw” (88).
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Figure 14: Uncurated generation results of SiT-XL/2 + REPA. We use classifier-free guidance
with w = 4.0. Class label = “sulphur-crested cockatoo” (89).

Figure 15: Uncurated generation results of SiT-XL/2 + REPA. We use classifier-free guidance
with w = 4.0. Class label = “golden retriever” (207).
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Figure 16: Uncurated generation results of SiT-XL/2 + REPA. We use classifier-free guidance
with w = 4.0. Class label = “husky” (250).

Figure 17: Uncurated generation results of SiT-XL/2 + REPA. We use classifier-free guidance
with w = 4.0. Class label = “arctic wolf” (270).
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Figure 18: Uncurated generation results of SiT-XL/2 + REPA. We use classifier-free guidance
with w = 4.0. Class label = “arctic fox” (279).

Figure 19: Uncurated generation results of SiT-XL/2 + REPA. We use classifier-free guidance
with w = 4.0. Class label = “lion” (291).
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Figure 20: Uncurated generation results of SiT-XL/2 + REPA. We use classifier-free guidance
with w = 4.0. Class label = “otter” (360).

Figure 21: Uncurated generation results of SiT-XL/2 + REPA. We use classifier-free guidance
with w = 4.0. Class label = “red panda” (387).
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Figure 22: Uncurated generation results of SiT-XL/2 + REPA. We use classifier-free guidance
with w = 4.0. Class label = “panda” (388).

Figure 23: Uncurated generation results of SiT-XL/2 + REPA. We use classifier-free guidance
with w = 4.0. Class label = “acoustic guitar” (402).
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Figure 24: Uncurated generation results of SiT-XL/2 + REPA. We use classifier-free guidance
with w = 4.0. Class label = “balloon” (417).

Figure 25: Uncurated generation results of SiT-XL/2 + REPA. We use classifier-free guidance
with w = 4.0. Class label = “baseball” (429).
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Figure 26: Uncurated generation results of SiT-XL/2 + REPA. We use classifier-free guidance
with w = 4.0. Class label = “dog sled” (537).

Figure 27: Uncurated generation results of SiT-XL/2 + REPA. We use classifier-free guidance
with w = 4.0. Class label = “fire truck” (555).
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Figure 28: Uncurated generation results of SiT-XL/2 + REPA. We use classifier-free guidance
with w = 4.0. Class label = “laptop” (620).

Figure 29: Uncurated generation results of SiT-XL/2 + REPA. We use classifier-free guidance
with w = 4.0. Class label = “space shuttle” (812).
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Figure 30: Uncurated generation results of SiT-XL/2 + REPA. We use classifier-free guidance
with w = 4.0. Class label = “ice cream” (928).

Figure 31: Uncurated generation results of SiT-XL/2 + REPA. We use classifier-free guidance
with w = 4.0. Class label = “cheeseburger” (933).
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Figure 32: Uncurated generation results of SiT-XL/2 + REPA. We use classifier-free guidance
with w = 4.0. Class label = “cliff drop-off” (972).

Figure 33: Uncurated generation results of SiT-XL/2 + REPA. We use classifier-free guidance
with w = 4.0. Class label = “coral reef” (973).
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Figure 34: Uncurated generation results of SiT-XL/2 + REPA. We use classifier-free guidance
with w = 4.0. Class label = “lake shore” (975).

Figure 35: Uncurated generation results of SiT-XL/2 + REPA. We use classifier-free guidance
with w = 4.0. Class label = “volcano” (980).
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I MORE DISCUSSION ON RELATED WORK

Pretrained visual encoders for generative models. First, there have been several approaches in
generative adversarial network (GAN; Goodfellow et al. 2014) that try to accelerate training with
better convergence using pretrained visual encoders (Sauer et al., 2021; Kumari et al., 2022; Sauer
et al., 2022; 2023a; Kang et al., 2023). They usually use pretrained visual encoders as a discriminator
by leveraging their intermediate features. This approach has also been applied to the distillation of
diffusion models with adversarial objectives (Sauer et al., 2023b; 2024; Kang et al., 2024). Another
line of work tries to exploit the pretrained visual encoders for improving diffusion model training
from scratch (Pernias et al., 2024; Li et al., 2024), usually by training two diffusion models where
one model generates the pretrained representations and the other model generates the target data
conditioned on the generated representation. Our method also tries to improve diffusion model
training through pretrained visual encoders, but our motivation is in the alignment between the
diffusion model representation and recent self-supervised visual representations.

Denoising transformers. Many recent works have tried to use transformer backbones for diffusion
or flow-based model training. First, several works like U-ViT (Bao et al., 2023), MDT (Gao et al.,
2023), and DiffiT (Hatamizadeh et al., 2024) show transformer-based backbones with skip connec-
tions can be an effective backbone for training diffusion models. Intriguingly, DiT (Peebles & Xie,
2023) show skip connections are not even necessary components, and a pure transformer architec-
ture can be a scalable architecture for training diffusion-based models. Based on DiT, SiT (Ma et al.,
2024a) shows the model can be further improved with continuous stochastic interpolants (Albergo
et al., 2023). Moreover, VDT (Lu et al., 2024) and Latte (Ma et al., 2024b) show DiTs can be
extended for video generation through a space-time attention (Arnab et al., 2021). Based on these
improvements, Pixart-α (Chen et al., 2024b), Pixart-Σ (Chen et al., 2024a), Stable diffusion 3 (Esser
et al., 2024) show pure transformers can be scaled up for challenging text-to-image generation, and
CMD (Yu et al., 2024), WALT (Gupta et al., 2024), and Sora (Brooks et al., 2024) demonstrates
their success in text-to-video generation. Our work analyzes and improves the training of DiT (and
SiT) architecture based on a simple feature matching regularization to the early layers.

Generative models with auxiliary self-supervised tasks. MaskDiT (Zheng et al., 2024) combines
mask reconstruction in MAE (He et al., 2022) to diffusion model training for faster diffusion model
training. Similarly, SD-DiT (Zhu et al., 2024) shows diffusion model training can be improved
with an auxiliary discriminative self-supervised loss. MAGE (Li et al., 2023c) bridge MAE training
and masked image modeling (Chang et al., 2022) by adjusting the masking ratio in training, which
leads to a single model both capable of discrimination and generation tasks. Our method also has a
similarity to these works, where our training scheme has an additional distillation loss to projection
of diffusion transformer hidden states.

Denoising as self-supervised learning task. There have been some attempts to improve self-
supervised learning with denoising: Abstreiter et al. (2021) extends the diffusion objective for a
better representation learning scheme, and Chen et al. (2024c) deconstructs diffusion models to
improve denoising-based representation learning. Hudson et al. (2024) introduces an encoder that
learns a representation by guiding a diffusion with its output as a compact latent vector. Zaidi et al.
(2023) focuses on the molecular domain and proposes a pretraining scheme based on denoising.
Our work also analyzes representational gap between popular self-supervised networks and those
learned from pretrained diffusion models.
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J IMAGENET 512×512 EXPERIMENT

To validate the scalability of REPA with respect to the input image resolution, we conduct an ad-
ditional experiment on ImageNet 512× 512. We strictly follow the setup used in our ImageNet
256×256 experiment except an input dimension. Specifically, the input dimension for SiT becomes
a 64× 64× 4 compressed latent image from 512× 512× 3 image pixels using stable diffusion VAE
(Rombach et al., 2022). Moreover, we use an image resized to 448× 448 resolution for an input to
the DINOv2 (Oquab et al., 2024) encoder with an interpolation of the positional embedding.

We provide quantitative results in Table 11 and qualitative result in Figure 36. Notably, as shown in
this table, the model (with REPA) already outperforms the vanilla SiT-XL/2 in terms of four metrics
(FID, sFID, IS, and Prec) using >6x fewer training iterations.

Figure 36: Samples on ImageNet 512×512 from SiT-XL/2+REPA using CFG with w = 4.0.

Table 11: System-level comparison on ImageNet 512×512 using CFG with w = 1.35.

Model Epochs FID↓ sFID↓ IS↑ Pre.↑ Rec.↑
Pixel diffusion

VDM++ - 2.65 - 278.1 - -
ADM-G, ADM-U 400 2.85 5.86 221.7 0.84 0.53
Simple diffusion (U-Net) 800 4.28 - 171.0 - -
Simple diffusion (U-ViT, L) 800 4.53 - 205.3 - -

Latent diffusion, Transformer
MaskDiT 800 2.50 5.10 256.3 0.83 0.56

DiT-XL/2 600 3.04 5.02 240.8 0.84 0.54

SiT-XL/2 600 2.62 4.18 252.2 0.84 0.57
+ REPA (ours) 80 2.44 4.21 247.3 0.84 0.56
+ REPA (ours) 100 2.32 4.16 255.7 0.84 0.56
+ REPA (ours) 200 2.08 4.19 274.6 0.83 0.58
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K TEXT-TO-IMAGE GENERATION EXPERIMENT

We also validate REPA in text-to-image generation. We mostly follow the experimental setup used in
U-ViT (Bao et al., 2023) unless otherwise specified: we train the model from scratch on a train split
of the MS-COCO dataset (Lin et al., 2014) and use a validation split for evaluation. We use MMDiT
(Esser et al., 2024), a simple variant of DiT that design attention layers to be jointly computed with
image patches and text embeddings. We train MMDiT models for 150K iterations with a batch size
of 256. We set a hidden dimension as 768 and a model depth as 24, and we use the CLIP (Radford
et al., 2021) text encoder to compute text prompts from captions.

We report the results in Table 12 and Figure 37. First, as shown in the qualitative comparison in
Figure 37, REPA shows consistently better results than the vanilla model. Moreover, as shown in
Table 12, REPA also shows considerable improvements in T2I generation, highlighting the impor-
tance of alignment of visual representations even under the presence of text representations.

In this respect, we strongly believe that training large-scale T2I models with large-scale data using
REPA will be a promising direction in the future.
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Figure 37: Qualitative comparison on text-to-image generation (MS-COCO). We use classifier-
free guidance with w = 4.0.
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Method Type FID

AttnGAN (Xu et al., 2018) GAN 35.49
DM-GAN (Zhu et al., 2019) GAN 32.64
VQ-Diffusion (Gu et al., 2022) Discrete Diffusion 19.75
DF-GAN (Tao et al., 2022) GAN 19.32
XMC-GAN (Zhang et al., 2021) GAN 9.33
Frido (Fan et al., 2023) Diffusion 8.97
LAFITE (Zhou et al., 2021) GAN 8.12

U-Net (Bao et al., 2023) Diffusion 7.32
U-ViT-S/2 (Bao et al., 2023) Diffusion 5.95
U-ViT-S/2 (Deep) (Bao et al., 2023) Diffusion 5.48

MMDiT (ODE; NFE=50) Diffusion 6.05
MMDiT+REPA (ODE; NFE=50) Diffusion 4.73

MMDiT (SDE; NFE=250) Diffusion 5.30
MMDiT+REPA (SDE; NFE=250) Diffusion 4.14

Table 12: Quantitative comparison on text-to-image generation (MS-COCO). We use classifier-
free guidance with w = 2.0 following the setup in (Bao et al., 2023).

L FEATURE MAP VISUALIZATION

We provide PCA visualizations of feature map, similar to those in DINOv2 (Oquab et al., 2024). As
shown in Figure 38, REPA shows coarse-to-fine feature maps, while the vanilla model tends to show
noisy feature map particular for large t.

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 14 Layer 21 Layer 28

w
/ R

EP
A

Si
T-

XL
/2

(a) t = 0.5

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 14 Layer 21 Layer 28

w
/ 

R
E

P
A

S
iT

-X
L

/2

(b) t = 0.7

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 14 Layer 21 Layer 28

w
/ 

R
E

P
A

S
iT

-X
L

/2

(c) t = 0.9

Figure 38: PCA visualization of layer-wise features of SiT-XL/2 and SiT-XL/2+REPA.
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M LIMITATIONS AND FUTURE WORK

Recall that we empirically showed that applying REPA to layer 8 is more beneficial than later trans-
former layer embeddings (see Table 2) conducting extensive analysis of this result will be an inter-
ersting direction. Next, we mainly focused on latent diffusion in the image domain. Exploring REPA
with pixel-level diffusion or on other data domains like videos would be an interesting future work.
Moreover, training large-scale text-to-image diffusion models with REPA will be an also interesting
direction. Exploring theoretical insights into why REPA works well will be also an exciting future
direction. Exploring the effectiveness of REPA in fine-tuning setups will be also a promising future
direction. Finally, we think one of the interesting possible directions can be designing a weight
function based on a noise schedule used in the diffusion process. We have not explored this in this
work as our main focus is more on performing extensive analysis on other perspectives, such as
target representations used for alignment, alignment depth, scalability of the method, etc. We leave
this as an exciting direction for future work.
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