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Figure 1: Overview of the EgoNight. EgoNight integrates diverse video sources spanning synthetic environments,
real-world indoor and outdoor scenes, recorded under both daytime and nighttime conditions, with spatial and temporal
alignment. It consists of three benchmarks: (i) egocentric VQA as the primary focus, (ii) day–night correspondence re-
trieval, and (iii) egocentric depth estimation, all targeting the challenges of low-light egocentric vision. The day–night
alignment (illustrated on the right with VQA examples) enables rigorous analysis of illumination gaps in MLLMs.

ABSTRACT

Most existing benchmarks for egocentric vision understanding focus primarily on daytime scenarios,
overlooking the low-light conditions that are inevitable in real-world applications. To investigate this
gap, we present EgoNight, the first comprehensive benchmark for nighttime egocentric vision, with
visual question answering (VQA) as the core task. A key feature of EgoNight is the introduction
of day–night aligned videos, which enhance night annotation quality using the daytime data and re-
veal clear performance gaps between lighting conditions. To achieve this, we collect both synthetic
videos rendered by Blender and real-world recordings, ensuring that scenes and actions are visually
and temporally aligned. Leveraging these paired videos, we construct EgoNight-VQA, supported by
a novel day-augmented night auto-labeling engine and refinement through extensive human verifica-
tion. Each QA pair is double-checked by annotators for reliability. In total, EgoNight-VQA contains
3658 QA pairs across 90 videos, spanning 12 diverse QA types, with more than 300 hours of hu-
man work. Evaluations of the state-of-the-art multimodal large language models (MLLMs) reveal
substantial performance drops when transferring from day to night, underscoring the challenges of
reasoning under low-light conditions. Beyond VQA, EgoNight also introduces two auxiliary tasks,
day–night correspondence retrieval and egocentric depth estimation at night, that further explore
the boundaries of existing models. We believe EgoNight-VQA provides a strong foundation for
advancing application-driven egocentric vision research and for developing models that generalize
across illumination domains. All the data and code will be made available upon acceptance.
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1 INTRODUCTION

With the rapid development of wearable devices, egocentric vision understanding has become increasingly important.
Unlike third-person vision, egocentric perception naturally aligns with the way humans perceive, understand, and
interact with the world. A robust egocentric vision system can not only serve as an intelligent assistant in daily
activities Yang et al. (2025) but also play a crucial role in embodied AI and robotic learning Li et al. (2025a); Kareer
et al. (2025). Beyond these general applications, egocentric vision holds unique potential for assisting specific user
groups such as people who are blind or visually impaired Xiao et al. (2025), or physically disabled Zhang et al.
(2023a), enabling technologies that enhance navigation, accessibility, and real-time scene understanding.

Significant efforts have been made to advance egocentric vision understanding, including the construction of large-
scale ego-centric datasets such as EPIC-KITCHENS Damen et al. (2020), Ego4D Grauman et al. (2022), and Ego-
Exo4D Grauman et al. (2024); the design of diverse and challenging benchmarks such as EgoTaskQA Jia et al. (2022),
EgoSchema Mangalam et al. (2023), and EgoTempo Plizzari et al. (2025); and the development of egocentric mul-
timodal large language models (MLLMs) such as EgoVLPv2 Pramanick et al. (2023), EgoGPT Yang et al. (2025),
and Exo2Ego Zhang et al. (2025a). Despite these advances, almost all prior works focus on daytime scenarios with
favorable lighting. In contrast, real-world egocentric systems, for example, intelligent personal assistants for naviga-
tion, must operate at night, under low light, uneven illumination, and severely limited visibility. This motivates us to
investigate egocentric vision at night, focusing on complex scene understanding and reasoning tasks.

A central challenge in constructing such a benchmark lies in obtaining suitable video sources that capture the character-
istics of nighttime environments and developing annotation methods that ensure high labeling quality. To address this,
we place particular emphasis on day–night aligned videos, which not only allow us to leverage daytime data to annotate
nighttime videos, but also enable rigorous performance comparisons across day and night lighting conditions. How-
ever, in practice, collecting perfectly aligned day–night pairs in the real world is highly non-trivial. To overcome this,
we leverage Blender Iraci (2013), where scene layouts, camera trajectories, and lighting can be precisely controlled,
enabling the synthesis of the desired videos. This produces EgoNight-Synthetic, a collection of 50 ideally aligned
egocentric pairs spanning diverse and complex indoor scenarios with varying illumination levels. To complement
synthetic data with real-world evidence, we design a video-guided recording protocol to construct EgoNight-Sofia,
which contains 20 pairs of real-world egocentric videos with spatially and temporally aligned day–night counterparts.
These videos cover realistic use cases (e.g., “Where did I put my keys?”, “How much is the item I saw in the gro-
cery shop?”), spanning both indoor and outdoor environments under diverse illumination sources such as streetlights,
flashlights, and candles. Finally, we incorporate 20 nighttime videos from the Oxford Day-and-Night dataset Wang
et al. (2025b), termed EgoNight-Oxford, which serve as an additional testbed despite lacking day-night alignment.
Together, these three video sources constitute our EgoNight dataset, which is the first egocentric dataset providing
day–night aligned correspondences, as mainly summarized in Fig. 1.

The videos in EgoNight pave the way for constructing challenging benchmarks to evaluate the capabilities of existing
models. Among many egocentric tasks, we focus on the egocentric video question answering, a flagship task that best
reflects high-level understanding in egocentric vision. Specifically, to comprehensively evaluate model abilities, we
first propose a diverse set of QA types, spanning well-studied tasks (e.g., object recognition, spatial reasoning, action
recognition, counting, text recognition) as well as several underexplored dimensions (e.g., temporal scene sequence
understanding, navigation, lighting recognition, and non–common-sense reasoning). These are further organized into
paired and unpaired QA types, depending on whether day–night counterparts share the same questions and answers.
To construct the benchmark at scale, we then develop a novel three-stage day-augmented auto-labeling pipeline that
leverages daytime videos to assist in generating question–answer pairs for nighttime clips, followed by extensive
human verification to ensure accuracy and reliability. Building EgoNight and annotating VQA required over 300
hours of human effort, with each QA pair verified by at least one expert annotator. This process results in the high-
quality EgoNight-VQA dataset, comprising 3,658 QA pairs. Beyond VQA, we introduce two auxiliary tasks with
dedicated testbeds: day–night correspondence retrieval, which evaluates cross-illumination matching, and egocentric
depth estimation at night, which is crucial for navigation and interaction in embodied AI. These two tasks further
broaden the benchmark and expose new challenges for existing models.

Our extensive experiments across three video sources, three tasks, and 10 state-of-the-art multimodal large language
models reveal that nearly all models (including closed-source models such as GPT and Gemini) struggle on this chal-
lenging benchmark, with a clear and consistent performance gap between day and night. This highlights the unsolved
challenges of egocentric vision at nighttime and calls for more robust models that generalize across illumination con-
ditions. Besides, we highlight that our newly introduced QA types, covering lighting recognition/dynamic, scene se-
quence reasoning, navigation, and non–common-sense reasoning, are substantially more challenging than well-studied
categories, revealing fresh difficulties for MLLMs. We further prove synthetic data is highly correlated with real data
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and effectively boosts real-world performance through fine-tuning. Our pilot studies further show that fine-tuning on
specialized subset of data improves model performance through adapting vision encoder into low-light domain and
aligning the language model to the uncertain features during night.

Our main contributions are threefold: i) EgoNight Dataset: We present the first egocentric dataset that systematically
addresses nighttime conditions, featuring day–night aligned videos from synthetic (EgoNight-Synthetic), real-world
(EgoNight-Sofia), and existing (EgoNight-Oxford) sources. ii) Benchmark Suite: We build a comprehensive bench-
mark centered on egocentric VQA with diverse QA types and 3658 fully human-verified QA pairs, complemented by
egocentric depth estimation at night and day–night correspondence retrieval tasks. iii) Empirical Insights: Extensive
evaluations reveal clear day–night performance gaps, underscoring illumination robustness as a key challenge; our
newly proposed QA types are also validated to pose practical difficulties for current MLLMs.

2 RELATED WORKS

2.1 EGOCENTRIC DATASETS AND VQA BENCHMARKS

A series of large-scale egocentric datasets, such as EPIC-KITCHENS Damen et al. (2020), Ego4D Grauman et al.
(2022), Ego-Exo4D Grauman et al. (2024), and EgoExoLearn Huang et al. (2024), have laid the foundation for a
wide range of tasks, including action recognition Sudhakaran et al. (2019), object detection Ren & Gu (2010), pose
estimation Luo et al. (2021), video generation Liu et al. (2021), Ego-Exo correspondence Fu et al. (2025). Among
these, we are particularly interested in egocentric visual question answering (VQA) Fan (2019), which provides a
natural and human-like framework for comprehensively evaluating model performance through question–answer in-
teractions. In recent years, several egocentric VQA benchmarks have been proposed, including EgoVQA Fan (2019),
EgoTaskQA Jia et al. (2022), EgoSchema Mangalam et al. (2023), EgoThink Cheng et al. (2024), EgoTempo Plizzari
et al. (2025), EgoCross Li et al. (2025b), EgoBlind Xiao et al. (2025), EgoMemoria Ye et al. (2024), HourVideo Chan-
drasegaran et al. (2024), EgoLifeQA Yang et al. (2025) with different focuses. However, nearly all of them are confined
to daytime or well-lit scenarios, leaving model performance in low-light or nighttime conditions largely unexplored.
The Oxford Day-and-Night dataset Wang et al. (2025b) is a partial exception but was not designed for VQA and lacks
day–night alignment. This makes EgoNight and EgoNight-VQA fundamentally distinct from prior benchmarks.

2.2 MLLMS FOR VIDEO UNDERSTANDING

The rapid development of multimodal large language models (MLLMs) has substantially advanced the frontier of
video understanding. Prominent open-source models include Qwen-VL Bai et al. (2023), InternVL Chen et al.
(2024b), Video-LLaMA Zhang et al. (2023b), LLaVA-NeXT-Video Li et al. (2024), and GLM-V Hong et al. (2025),
while closed-source commercial systems such as GPT-4V Achiam et al. (2023) and Gemini Comanici et al. (2025)
demonstrate even stronger capabilities in video captioning, summarization, and open-ended visual question answer-
ing. Building on these advances, egocentric MLLMs have emerged to adapt foundation models from exocentric
to first-person perspectives. Representative examples include EgoVLPv2 Pramanick et al. (2023) for improved
video–language cross-modal fusion, EgoGPT Yang et al. (2025) fine-tuned with egocentric captioning and QA, MM-
Ego Ye et al. (2024) with a memory mechanism for long videos, and Exo2Ego Zhang et al. (2025a) leveraging ex-
ocentric data for egocentric generalization. These works highlight the potential of MLLMs as egocentric assistants.
However, nearly all of them are developed and tested under well-lit daytime conditions, leaving their robustness in
low-light or nighttime scenarios unexplored. Nevertheless, almost all existing MLLMs are developed and evaluated
under well-lit daytime conditions, with little consideration of low-light or nighttime videos, leaving their robustness
in low-light or nighttime scenarios unexplored.

2.3 CROSS-DOMAIN GENERALIZATION

Domain generalization Zhou et al. (2022) is a long-standing challenge in computer vision, where models trained on
one distribution must adapt to another. Shifts can arise from semantic drift, style changes, or variations in weather and
lighting. Many algorithms have been validated across tasks such as image classification Li et al. (2017); Zhou et al.
(2021), object detection Fu et al. (2024); Li et al. (2025c), action recognition Pan et al. (2020); Bian et al. (2011),
few-shot learning Guo et al. (2020); Fu et al. (2021), and autonomous driving Li et al. (2022; 2023a). In contrast,
cross-domain transfer for MLLMs, especially in video understanding, remains underexplored, with only a few recent
attempts (e.g., CL-CrossVQA Zhang et al. (2025b), VQA-GEN Unni et al. (2023), Super-CLEVR Li et al. (2023c)).
However, none of them are targeted for egocentric video, which is naturally different from exocentric videos in terms
of recorded images, camera motion, and contained information. The most relevant effort to us is EgoCross Li et al.
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(2025b), an egocentric VQA benchmark that moves beyond daily activities to evaluate model generalization across
distinct long-tail, specialized domains such as surgery and industrial settings. In this paper, however, we investigate
MLLMs from a different perspective, robustness under nighttime conditions, a common and ubiquitous scenario in
daily life, yet previously overlooked dimension of domain generalization in egocentric video understanding.

EgoNight Synthetic EgoNight Sofia EgoNight Oxford
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Figure 2: EgoNight construction and EgoNight-VQA annotation. EgoNight integrates EgoNight-Synthetic,
EgoNight-Sofia, and EgoNight-Oxford sources. Annotation is achieved via a novel three-stage day-augmented Auto
QA generation pipeline with 300+ hours of human refinement, resulting in over 3600 high-quality QA pairs.

3 EGONIGHT DATASET & BENCHMARKS

3.1 VIDEO SOURCE COLLECTION

Overview & Design Principles. EgoNight is built to systematically evaluate MLLMs under challenging nighttime
conditions, which are critical for developing robust intelligent assistants. The collection of video sources follows four
principles: ① Reflect real-world challenges, such as walking on dimly lit streets or navigating indoors during power
outages; ② Involve natural camera movements and preferably capture actions and interactions with the environment
to evaluate both static perception and dynamic understanding; ③ Ensure diversity of scenarios, illumination, and task
difficulties, spanning indoor, outdoor, office, and grocery settings, lighting from streetlights, flashlights, headlights,
and candles, and task levels from easy (relatively clear), through medium (partially visible), to hard (barely visible).
④ Enable rigorous analysis through day–night paired videos, where scenes, trajectories, and actions remain consistent
across conditions so that differences can be attributed solely to illumination. To meet these requirements, EgoNight
integrates three complementary video sources, as illustrated in the upper part of Fig. 2 and detailed below.

EgoNight-Synthetic. To obtain perfectly aligned day–night video pairs, we used a simulation environment where
every element can be precisely controlled, including the scene layout, camera path, and lighting. This ensures that
the day and night videos match exactly at the pixel and frame level, with lighting being the only difference. We first
employ Infinigen Raistrick et al. (2023) to generate diverse indoor 3D scenes. Human annotators cleaned and refined
these scenes, then simulated walking through the space at a normal speed (1.2 m/s), recording the camera trajectory.
We replayed the same trajectory under different lighting conditions. Daytime videos were rendered using Blender
Iraci (2013), and we adjusted the lighting to create the corresponding nighttime versions.

In total, EgoNight-Synthetic contains 50 pairs of egocentric videos, covering more than 100 environment assets. These
include indoor scenes such as kitchens, bathrooms, and living rooms, populated with over 50 diverse object categories
(e.g., windows, tables, beds, chairs, lamps, bookshelves, plates). We design multiple illumination setups, ranging
from uniformly lit rooms to sparsely localized lighting, and incorporate three difficulty levels with a different range of
motion blur, sensor noise, and illumination level. Besides RGB frames, Blender also allows us to generate ground-truth
depth and normals (see Appendix Sec. A.1), making EgoNight-Synthetic richer and more versatile.

EgoNight-Sofia. To include realistic human–environment interactions missing from synthetic videos, we also
recorded our own day–night paired videos. Capturing perfectly aligned real-world pairs is challenging, so we de-
signed a practical video-guided recording strategy with post-trimming for better alignment.
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We first record a daytime video with an ego-wearer exploring an environment while viewing the live camera feed on
a phone screen. For the nighttime version, the same person, device, and viewpoint are kept unchanged. Instead of
using live preview, the recorded daytime video is played back on the phone, serving as visual guidance to help the
ego-wearer match walking speed, viewpoints, and actions. After brief practice, this approach proved more stable and
reliable than methods like using landmarks or memorized trajectories. Post-trimming is applied to further refine spatial
and temporal consistency.

Our real-world dataset, EgoNight-Sofia, contains 20 day–night paired videos recorded in Sofia, Bulgaria. Despite
its modest size, it is a rare resource capturing diverse real-world everyday scenarios, including apartments, offices,
grocery stores, streets, tourist spots, and outdoor fitness areas. The recordings include natural actions such as drinking
water, locking doors, placing keys, charging devices, or checking price labels—leading to realistic VQA cases (e.g.,
“Where did I put my keys?”, “How much was the drink?”, “Did I turn left?”). Illumination sources include street
lights, lamps, flashlights, and candles.

EgoNight-Oxford. Oxford Day–Night Wang et al. (2025b) is a notable exception that also includes egocentric videos
captured under both daytime and nighttime conditions. Although it was originally designed for 3D vision tasks such
as novel view synthesis, it offers illumination variations across five representative locations in Oxford. However, the
day and night videos are not spatially or temporally aligned.

To enrich EgoNight with more realistic nighttime content—particularly for urban outdoor scenes—we manually select
20 nighttime segments to form EgoNight-Oxford, based on two criteria: (i) minimal overlap in trajectories and loca-
tions, and (ii) genuinely low-light conditions. These segments serve as a complementary testbed for evaluating model
generalization under illumination changes when paired alignment is unavailable.

For both EgoNight-Sofia and EgoNight-Oxford, human annotators categorize each video into easy, medium, or hard
levels. Together, these sources provide EgoNight with a balanced combination of precise alignment, natural dynamics,
and broad real-world diversity.
3.2 EGONIGHT-VQA BENCHMARK RECONSTRUCTION

QA Task Taxonomy. To thoroughly assess models from multiple perspectives, we define a diverse taxonomy of 12
QA tasks. Some of these categories are well-studied and have been explored in previous egocentric VQA benchmarks,
such as object/action/text recognition, counting, and spatial reasoning. Others are much less studied or newly proposed
in EgoNight-VQA, including scene sequence and navigation (which require not only visual perception but also mem-
ory and spatial reasoning), illumination recognition and illumination change (designed to test models’ understanding
of lighting concepts), and non–common-sense reasoning (e.g., detecting abnormal cases such as a door inserted into
a wall in the synthetic data). More detailed explanations of QA types can be found in the Appendix Sec. A.4.1. We
further organize these categories into paired and unpaired QA types, depending on whether the same questions can be
consistently applied across day–night counterparts: 1) Paired QA Types. These cover contexts that remain unchanged
across day and night, allowing the same QA pairs to be used for both videos and thus providing a clean testbed for
measuring performance gaps. Specifically, we include: ① object recognition, ② text recognition, ③ spatial reasoning,
④ scene sequence, ⑤ navigation, ⑥ counting of static, ⑦ action recognition, and ⑧ non–common-sense reasoning. 2)
Unpaired QA Types. These include categories that are impractical to pair across day and night, or are only meaning-
ful in the nighttime condition. We consider: ① lighting recognition, ② lighting dynamic, ③ dynamic detection, and ④
counting of dynamic. We control QA clip duration by task type. For static or spatial tasks (e.g., object recognition,
lighting recognition), we use short clips of 3 seconds to minimize redundancy; For dynamic or temporal tasks (e.g.,
action recognition, navigation), the entire video is used to capture the complete context. Following recent works Pliz-
zari et al. (2025); Xiao et al. (2025), we adopt the open-ended QA setting over the closed-form multiple-choice format,
as it better reflects natural human–AI interactions.

A detailed summary of each QA type, including whether it is paired or unpaired, clip duration, and example questions,
is provided in Fig. 3. This taxonomy makes EgoNight-VQA not only diverse and well-structured but also novel,
introducing illumination reasoning and other challenges uniquely tied to nighttime egocentric vision.

Day-Augmented Auto QA Generation. Constructing large-scale QA pairs for nighttime videos is particularly chal-
lenging due to low visibility, which makes direct annotation both time-consuming and error-prone. To address this, as
illustrated in the lower part of Fig. 2, we design a novel three-stage day-augmented auto QA generation pipeline that
leverages aligned daytime videos as a strong prior for annotating their nighttime counterparts.

Specifically, the pipeline is tailored to each QA type and consists of three stages:

1) Nighttime captioning. For each clip, we prompt advanced MLLMs to generate detailed captions with an explicit
focus on the target QA type (e.g., highlighting object-related attributes for object recognition or text/logos for text
recognition). This ensures that the captions capture the most key information or construct relevant QA pairs.
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(3) Spatial
Reasoning

(9) Lighting 
Recognition

Q:What objects are on the side of the church? 
A: A lamppost is near the church and an
informational sign is in front of the entrance.

Q:How many windows are lit in the building at the
end of the passageway?
A: There are 9.

(5) Navigation (11) Dynamic 
Detection

Q: Where can I see the bank?
A: Turn right, and then walk straight to the cafe,
and then slightly turn left.

Q: What kind of vehicle passed by me?
A: A white van passed you.

(4) Scene 
Sequence

(10) Lighting 
Dynamic

Q:What came right after the yellow façade
building?
A: Right after the yellow façade building, you
continued down the street until you turned right.

Q: How did the light change from the walkway to
the small square?
A: In the walkway, there's light from the sides
and buildings; in small square, it's much darker.

(1) Object
Recognition

(7) Action 
Recognition

Q:What item is visible on the top shelf of the
tall wooden cabinet?
A: There is a purple bowl.

Q:What did I do before the break time?
A: You first went to the fridge to find a drink,
used the water machine, and carried the filled
cup, preparing for a short break.

(6) Counting of 
Static

(12) Counting
of Dynamic

Q: Can you count the total number of chairs
visible throughout the video?
A: There are at least 57 chairs.

Q:How many cars did you see?
A: There are 5 cars I saw in total.

(2) Text
Recognition

(8) Non-Com-
mon Sense

Q:What text did I write on the whiteboard? 
A:”Hello World!”

Q:What seems to be the issue with the two
coffee tables on the right?
A: he two coffee tables on the right are merging
into eachother.

… …

… …

Day-Night Aligned QA Types Night only QA Types Using whole video to ask Highlight for better visualization Daytime Reference Image

… …
1 2

2

1
3 4

1
1

5

Figure 3: QA types with examples. The first eight are paired types, where the same question–answer applies to both
day and night clips; the last four are unpaired, evaluated only at night. QA Types have various durations, with static
or spatial tasks (e.g., 1 and 3) using short clips, while dynamic or temporal tasks (e.g., 4 and 5) use full videos.

2) Nighttime question generation. The caption, together with the corresponding night clip, is then fed into the
same MLLM to produce diverse question candidates centered on the given QA type. This step encourages variety in
phrasing and perspective while maintaining fidelity to the visual content.

3) Day-augmented pseudo answer synthesis. For paired QA types, pseudo answers are generated by consulting the
aligned daytime clip, where content is more visible and less ambiguous. For unpaired QA types or datasets without
alignment (e.g., EgoNight-Oxford), answers are instead derived directly from the nighttime clip.

All three stages are powered by GPT-4.1. Empirically, we find that both the QA-type-specific prompting and the
inclusion of daytime videos substantially improve the quality and reliability of the generated QA pairs. More examples
of VQA pairs and caption generation can be found in Appendix A.4.2 and A.7.1.

Human Annotator Refinement. Finally, human annotators refine QA pairs via three operations: i) delete, when
QA pairs are meaningless, vague, duplicated, or inconsistent across day–night counterparts (for paired QA types); ii)
modify, when the question is valid but the answer is wrong (or vice versa), or to resolve ambiguity; iii) add, when
many pairs are removed or when important, challenging questions, especially about dynamic concepts, are missing.

After the first labeling round, we performed a random double-check to refine low-quality annotations. Thus, although
our pipeline combines model generation with human refinement, every QA pair (3,658 in total) is manually verified at
least once. In total, ∼200 hours of human effort were invested, ensuring the quality and reliability of EgoNight-VQA.

Dataset Statistics. EgoNight-VQA comprises 3,658 high-quality, fully human-verified QA pairs across 12 task
types, sourced from EgoNight-Synthetic, EgoNight-Sofia, and EgoNight-Oxford, with an average of 40 pairs per
video. Detailed statistics on QA distribution, video durations, task difficulties, scenarios, and illumination are shown in
Fig. 4. The number of videos across the three subsets—Synthetic (50), Sofia (20), and Oxford (20)—is proportionally
reflected in the VQA annotations (2029 : 813 : 816). This results in an approximately 1:1 balance between synthetic
and real (Sofia + Oxford) VQA samples, ensuring that our benchmark is not dominated by synthetic content. We
provide more comparison of Egocentric VQA datasets in Appendix A.3. Overall, EgoNight-VQA provides a diverse
and comprehensive benchmark for evaluating egocentric vision models under nighttime conditions.

3.3 BENCHMARKS BEYOND EGOCENTRIC VQA

Day-Night Correspondence Retrieval. To further assess model capabilities beyond VQA, we introduce day–night
correspondence retrieval, which evaluates a model’s ability to match visual content across illumination conditions.
Specifically, we define two subtasks: i) Spatial Retrieval (Scene Recognition). Spatial retrieval, or scene recognition,
is a long-standing vision task Arandjelovic et al. (2016); Miao et al. (2024). Here, it is extended: given a query clip
and a set of N candidate clips of equal duration s, the model must retrieve the one depicting the same scene. This
evaluates a model’s ability to capture and relate spatial relations in egocentric videos, e.g., distinguishing a bedroom
from a bathroom or another bedroom. We built this benchmark with 1000 randomly generated meta-tasks. Each task
samples a query clip, and the candidate set includes its temporally aligned counterpart (with a temporal shift for added
difficulty) plus N−1 negatives from other scenes. Performance is measured by Top-1 accuracy across all tasks. In our
setup, we use N = 10, s = 10 seconds, and a temporal shift of [10, 20] frames. Both Day (query) → Day (database)
and Day → Night settings are evaluated.
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Text

(d) Scenario

(b) Video Duration (c) Difficulty Level

(e) Light Source

Synthetic

(2029)

Sofia

(813)

Oxford

(816)

(a) Number of QA Pairs

Figure 4: Statistics of EgoNight-VQA benchmark. (a) Distribution of QA pairs across QA types and sources. (b)
Video duration distribution. (c) Task difficulty levels cross scenarios. (d) Scenario coverage. (e) Illumination coverage.

ii) Temporal Localization. We further design a temporal localization task to test whether models can align video
segments across dynamics. Given a query clip of duration s, the model must localize it within the corresponding
full video by predicting its start and end timestamps (ti, tj), directly evaluating temporal reasoning (e.g., grounding
“The door is being locked” to 10–20s). We construct 1000 meta-tasks, each generated by randomly sampling one clip
from its parent full video that is also randomly selected. Inspired by temporal grounding literature Xin et al. (2024),
we adopt mean Intersection-over-Union (mIoU) between the predicted interval (ti, tj) and the ground-truth interval
(t∗i , t

∗
j ) as the evaluation metric. Consistent with spatial retrieval, we set s = 10 seconds and evaluate both Day →

Day and Night → Day settings.

Egocentric Depth Estimation at Night. Depth estimation is a fundamental component of computer vision. On the one
hand, extensive research Yang et al. (2024a;b); Wang et al. (2025a) has focused on depth estimation in non-egocentric
settings (typically not with fisheye cameras), while egocentric depth estimation remains largely underexplored, es-
pecially under nighttime conditions. On the other hand, recent works Chen et al. (2024a); Liu et al. (2025) suggest
that incorporating depth can enhance models’ spatial reasoning abilities. These two observations motivate us to con-
struct an auxiliary benchmark for egocentric depth estimation at night. Specifically, we use EgoNight-Synthetic as
the testbed, where ground-truth depth maps are provided by the rendering engine. Thanks to the day–night aligned
design, we can quantitatively evaluate models under both controlled daytime and nighttime conditions. For evalua-
tion, we adopt standard depth estimation metrics, including absolute relative error (AbsRel), δ1(1.25), δ2(1.252), and
δ3(1.25

3), where δk measures the percentage of predicted pixels whose relative error is within a threshold of 1.25k.

4 EXPERIMENTS

4.1 EVALUATED MLLMS & METRICS

We evaluate a broad set of state-of-the-art MLLMs on the proposed benchmarks. i) For EgoNight-VQA, we include
two closed-source commercial models, GPT-4.1 Achiam et al. (2023) and Gemini 2.5 Pro Comanici et al. (2025);
eight open-source models, Qwen2.5-VL (3B, 7B, 72B) Bai et al. (2023), VideoLLaMA3 (7B) Zhang et al. (2023b),
InternVL3 (8B) Chen et al. (2024b), GLM-4.1V (9B-Base) Hong et al. (2025), and LLaVA-NeXT-Video (7B) Li et al.
(2024); as well as EgoGPT Yang et al. (2025), one of the few open-source egocentric models tailored for open-ended
QA. Following prior work Plizzari et al. (2025); Fan (2019), we adopt an LLM-as-a-Judge strategy to assess semantic
consistency between predictions and ground truth, and report average accuracy across the test sets. ii)We provide
further in-depth analysis on synthetic data quality, and potential model improvements. iii) For day–night correspon-
dence retrieval, we benchmark feature-based retrieval methods, DINOv2 Oquab et al. (2023) and Perception Encoder
(Percep. Enc.) Bolya et al. (2025), alongside MLLM-based methods, GPT-4.1 and InternVL3 (8B). As described in
Sec. 3.3, Top-1 accuracy (Acc-R@1, %) and mIoU (%) are used for evaluating the spatial and temporal subtasks,
respectively. iv) For egocentric depth estimation, we test a general monocular depth model (Depth Anything Yang
et al. (2024a;b)), a 3D reconstruction-based method (VGGTStream Zhuo et al. (2025); Wang et al. (2025a)), and two
egocentric fisheye-specific models (DAC Guo et al. (2025) and UniK3D Piccinelli et al. (2025)). For Depth Anything
and VGGTStream, input fisheye RGB frames and depth maps are undistorted prior to inference for fair comparison.
Additional implementation details (e.g., fps for frame extraction, prompts, and model settings) and discussion about
LLM-as-a-Judge strategy are provided in the Appendix Sec. A.5.
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Models EgoNight-Synthetic EgoNight-Sofia EgoNight-Oxford Avg.
Easy Medium Hard Easy Medium Hard Easy Medium Hard -

Closed-Source MLLMs

GPT-4.1 29.30 26.87 18.87 32.04 29.35 31.69 39.72 37.13 40.72 30.93
Gemini 2.5 Pro 31.05 24.81 16.51 38.24 26.81 28.87 36.75 36.81 27.88 30.60

Open-source MLLMs

InternVL3-8B 20.21 15.50 16.98 24.03 21.74 20.42 22.90 20.85 16.36 20.06
Qwen2.5-VL-72B 18.39 15.25 12.26 24.03 17.03 20.42 24.81 22.80 16.36 18.99
Qwen2.5-VL-7B 13.01 13.95 13.68 15.44 12.68 12.68 13.74 13.36 12.73 13.44
Qwen2.5-VL-3B 14.69 10.34 7.08 15.50 13.04 12.68 17.18 11.40 12.12 13.41
GLM-4.1V-9B-Base 19.09 13.70 15.57 18.60 18.48 16.20 17.15 22.15 18.79 18.20
VideoLLaMA3-7B 16.85 13.44 14.62 11.11 10.87 9.15 12.26 10.46 9.15 13.64
LLaVA-NeXT-Video-7B 6.36 11.37 1.89 13.95 9.78 14.79 3.05 2.61 3.03 7.28

Egocentric MLLMs

EgoGPT 15.79 13.55 12.04 12.41 12.13 10.36 12.37 13.58 13.68 14.29

Table 1: Comparison results on EgoNight-VQA. Accuracies (%) of OpenQA results across three datasets and three
difficulty levels. We compare closed-source models, open-source models, and egocentric-specific models.

4.2 RESULTS ON EGONIGHT-VQA

The main results of all MLLMs are shown in Tab. 1. In addition, we provide per-QA performance comparisons
between day (striped bars) and night (solid bars) for paired QA types (Fig. 5(a)) and report nighttime performance
across all QA types (Fig. 5(b)), based on averages across all models. Note that non–common case detection is available
only in EgoNight-Synthetic, while dynamic events and actions are included only in the real-world data.

From the results in Tab. 1, we observe that almost all MLLMs struggle on our benchmark, with maximum averaged
accuracies of 30.93% from the closed-source GPT-4.1, 20.06% from the open-source InternVL3-8B, and 14.29% from
the egocentric EgoGPT. The wide performance spread also confirms that our dataset is sufficiently challenging and
effective for distinguishing model capabilities. Fig. 5(a) further highlights the performance gap, showing declines
of 32.8% and 25.0% on EgoNight-Synthetic and EgoNight-Sofia, respectively. Together, these results underscore
the substantial challenges posed by our benchmark, exposing the limitations of current MLLMs under nighttime
scenarios and highlighting the need for more illumination-robust models. Beyond the overall trends, we note three
additional insights from Tab. 1: i) Closed-source models perform best. Within open-source models, Qwen2.5-VL
generally improves with scale, yet InternVL outperforms the larger Qwen2.5-VL (72B), suggesting that size alone
is insufficient. The relatively low results of EgoGPT further emphasize the need for more robust egocentric models.
ii) EgoNight-Oxford achieves the highest scores, but its illumination conditions are more challenging than those in
EgoNight-Synthetic and EgoNight-Sofia (Sec. A.4.2, Appendix). This indicates that without paired day videos and
our day-augmented auto-labeling strategy, even human annotators face difficulties generating challenging QA pairs,
underscoring the practical value of our dataset design; iii) Overall, performance declines across task levels (easy,
medium, hard), validating the diversity and difficulty of our benchmark.

From the per-QA results in Fig. 5(a) and Fig. 5(b), we further observe three key trends: i) Models perform better
on perception-oriented tasks (e.g., object recognition, text recognition, scene sequence) than reasoning-oriented tasks
(e.g., navigation, counting, non-common-sense reasoning cases) under daytime conditions. However, at night, per-
ception tasks suffer larger performance drops, indicating their higher sensitivity to illumination, whereas reasoning
tasks, though harder overall, are relatively less affected since they rely more on temporal and contextual cues. ii)
MLLMs achieve substantially lower accuracy on our newly proposed tasks, such as lighting recognition, lighting dy-
namics, scene sequence, dynamic detection, navigation, and non-common-sense reasoning, suggesting that existing
MLLMs generalize poorly to novel tasks compared with well-studied ones like object recognition. iii) Each dataset
in Fig. 5(b) emphasizes distinct aspects of nighttime challenges, together providing complementary perspectives that
ensure EgoNight spans a balanced range of perception–reasoning difficulties under low-light conditions.

4.3 MORE IN-DEPTH ANALYSIS

What is the Quality of EgoNight Synthetic. More examples of synthetic visualization can be found in Ap-
pendix A.4.2 and A.1. To further show the quality of our synthetic dataset, we calculate the Pearson correlation
of the average score per-model shown in Appendix A.6 between synthetic and Sofia (0.9359 with p-value 6.84710−5),
synthetic and Oxford (0.8588 with p-value 1.462 × 10−3). These strong and statistically significant correlations in-
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EgoNight-Synthetic

EgoNight-Sofia

(a) Day-Night Performance Gap on Paired QATypes (b) Performance Comparison on All QATypes

32.8%

25.0%

Figure 5: Performance analysis of MLLMs on EgoNight-VQA. (a) Day–night performance gap across paired QA
types, showing consistent degradation at night. (b) Nighttime performance across all 12 QA types. NonC means
non–common-sense reasoning.

dicate that performance on synthetic data is highly predictive of performance on real-world data, further validating
its representativeness. We also finetune Qwen2.5-VL-7B model with Supervised-Fine-Tuning(SFT) using only the
synthetic data and evaluate it on the real dataset. This improves the model accuracy from 14.83% to 20.57%, which
demonstrates that our synthetic data can effectively enhance model performance in real-world scenarios.

Could fine-tuning help to enhance performance? To explore potential solutions for improving low-light egocentric
QA, we proactively conduct pilot studies using the EgoNight benchmark. We split EgoNight into 70% training and
30% testing subsets, and fine-tune Qwen2.5-VL-7B using supervised fine-tuning (SFT) under three configurations: i)
Full Fine-Tuning. ii) Fine-tuning vision encoder only. iii) Fine-tuning LLM only. As shown in Tab. 2, our observations
are as follows:

• Fine-tuning on EgoNight leads to substantial performance improvements, demonstrating that EgoNight-style
nighttime data effectively helps models adapt to low-light egocentric scenarios.

• Both vision-encoder tuning and LLM tuning independently contribute to performance gains. Interestingly,
fine-tuning the LLM only yields even larger improvements, suggesting that visual representation is not the
only bottleneck. LLM fine-tuning plays a crucial role in aligning uncertain visual features to language space.

• Full fine-tuning consistently outperforms partial fine-tuning, indicating that EgoNight requires both strong
visual perception and robust visual–language alignment.

How perception vs. reasoning-oriented tasks benefit from fine-tuning? To further dive into the impact of fine-
tuning, we compare perception-oriented tasks (Object, Text Recognition) and reasoning-oriented tasks (Navigation,
Counting) accuracy in Tab. 3. We can observe that:

• Perception-oriented tasks are significantly easier to enhance through fine-tuning compared to reasoning-
oriented tasks, indicating that visual feature learning benefits more from data adaptation than higher-level
reasoning.

• Fine-tuning the vision encoder improves perception-oriented tasks by 2–4 times but provides limited gains
for reasoning-oriented tasks, revealing the substantial challenges posed by reasoning-centric scenarios.

• Fine-tuning the language model yields improvements for both perception and reasoning-oriented tasks, with
larger boosts for perception tasks. This suggests that the main benefit arises from aligning uncertain visual
features with language space, while enhancement of true reasoning ability remains limited.

We provide more failure case analysis in Appendix. A.8.1.

4.4 RESULTS ON DAY-NIGHT CORRESPONDENCE RETRIEVAL

9
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Setting Synthetic Real
Qwen7B (Base) 23.23 16.40
Enc. FT 29.74 20.92
LLM. FT 35.50 22.26
Full FT 36.25 25.61

Table 2: Fine-tuning performance comparison across
datasets. FT means Fine-tuning.

Task Qwen7B Enc. FT LLM FT
Object 8.435 34.718 35.855
Text 18.440 49.890 50.988
Navigation 17.870 19.495 19.918
Counting 16.558 16.945 24.275

Table 3: Fine-tuning performance comparison across
tasks.

Models Spatial Retrieval (Acc - R@1 % ↑) Temporal Localization (mIoU % ↑)

EgoNight-Synthetic EgoNight-Sofia EgoNight-Synthetic EgoNight-Sofia

Day→Day Night→Day Day→Day Night→Day Day→Day Night→Day Day→Day Night→Day

DINOv2 45.7 28.7 84.5 74.5 - 33.7 - 33.1
Percep. Enc. 65.4 41.6 89.8 80.9 - 32.9 - 33.4
GPT-4.1 75.6 54.1 92.5 84.5 14.7 10.0 21.2 15.5
InternVL3-8B 39.4 27.7 73.9 56.3 10.2 9.9 12.5 13.3

Table 4: Night-to-Day retrieval performance. Each dataset is evaluated on both Day→Day and Night→Day settings.

The results of day–night retrieval are reported in Tab. 4. The gap between Night–Day and Day–Day shows that
cross-illumination retrieval remains highly challenging compared with in-domain retrieval. For spatial retrieval, GPT-
4.1 consistently outperforms other methods, achieving over 80% accuracy. This suggests that Retrieval-Augmented
Generation methods could further improve performance, as Fig. 5(a) already shows that daytime inputs significantly
benefit the models. For temporal retrieval, however, GPT-4.1, despite its strong results on egocentric VQA (Tab. 1) and
spatial retrieval, shows a substantial drop compared with feature-based methods (DINOv2 and Perception Encoder). A
similar degradation is observed for InternVL3-8B. These findings suggest that while MLLMs excel at spatial semantic
understanding, they struggle with temporal reasoning, such as timestamp prediction, which is critical for temporal
localization. Further results on temporal limitations are provided in Appendix A.6.

4.5 RESULTS ON DEPTH ESTIMATION

Results for depth estimation are reported in Tab. 5. The relatively low scores across all models highlight the difficulty
of our EgoNight dataset, which combines egocentric motion, complex geometry, and extreme lighting variations.
A clear gap between daytime and nighttime performance again underscores the challenges of low-light conditions.
Among the methods, fisheye-based methods (DAC and UniK3D) outperform general depth estimators, suggesting the
need for egocentric-specific algorithms. Additional qualitative results are provided in Sec. A.7.3.

Method Abs Rel ↓ δ1 (1.25) ↑ δ2 (1.252) ↑ δ3 (1.253) ↑

Day Night Day Night Day Night Day Night

Depth Anything (U) 0.297 0.302 0.249 0.237 0.463 0.447 0.622 0.60
VGGTStream (U) 0.293 0.298 0.234 0.232 0.447 0.442 0.615 0.609
DAC (F) 0.245 0.292 0.255 0.216 0.495 0.425 0.684 0.602
UniK3D (F) 0.224 0.253 0.280 0.254 0.524 0.481 0.706 0.658

Table 5: Depth estimation results on EgoNight-Synthetic. U: undistorted input; F: fisheye input.

5 CONCLUSION

In this work, we introduced EgoNight, the first benchmark suite designed to systematically evaluate egocentric mul-
timodal large language models (MLLMs) under challenging nighttime conditions. EgoNight integrates synthetic and
real-world videos with day–night alignment, enabling rigorous analysis of illumination effects. Building upon this
data, we proposed EgoNight-VQA, spanning 12 QA types with 3,658 human-verified pairs, alongside two comple-
mentary benchmarks: day–night correspondence retrieval and egocentric depth estimation. Experiments reveal that
even state-of-the-art MLLMs struggle under low-light conditions, with performance dropping substantially compared
to daytime. This highlights that nighttime egocentric vision remains far from being solved, motivating future research
into illumination-robust egocentric perception and reasoning. More discussion about contribution and future works is
provided in Appendix. A.8.2 and A.8.3. We believe EgoNight provides a valuable and timely benchmark that will
drive progress toward more reliable egocentric AI assistants.
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A APPENDIX

A.1 MORE VIDEO SOURCE CONSTRUCTION DETAILS

EgoNight-Synthetic Construction. For EgoNight-Synthetic Construction, we first use the coarse progressive gener-
ation method with a fast solver in infinigen Raistrick et al. (2023) to generate 3D scenes in Blender format. Then, a
human annotator will edit the scene in the following sequence:

• Explore and edit the scene to remove unreasonable cases and make the indoor scene as natural as possible.

• Add light source in the scene if the generated scene does not include enough illumination to create enough
illumination gap between the day and night.

• Record camera trajectory by exploring the whole indoor scene.

• Change the camera model and resolution. Set rendering samples and frames. For all synthetic dataset, we use
the Blender build-in Panoramic Fisheye Equisolid camera with Lens 10.5 and field of view 180°.

• Create night scene by modifying the light source, motion blur, and environment map.

• Render the day and night pair using Blender Iraci (2013).

During the dataset construction, we apply home light source during night for 30 scenes and spot light source for 20
scenes to simulate torch light in real life. To create different difficulty levels, we apply different rendering sample size
(higher sample size gives lower noise in the final image), spot light size, and motion blur to part of the data as shown
in Tab. 6. We also show different modality and difficulty level in Fig. 6

difficulty level sample size light condition motion blur shutter
Easy 4096 105°/ few light on -

Medium 512 40°-50°spot light / all light off -
Hard 512 40°-50°spot light / all light off 1-2

Table 6: Difficulty level and corresponding rendering settings.

Figure 6: More examples and modalities of synthetic datasets.

EgoNight-Sofia Construction. In total, four participants were involved. The recording setup included three different
GoPros, a head-mounted rig to fix the camera on the forehead and mimic human-eye perspective, several phones for
live preview or daytime video guidance, and diverse lighting sources such as flashlights, spotlights, and candles. The
process followed a video-guided recording strategy, as introduced in Sec. 3.1: the ego-wearer first recorded a daytime
video while previewing the live feed on a phone, and for the nighttime counterpart replayed the daytime video on the
phone as guidance to replicate the same setup, walking speed, viewpoints, and actions. Videos were collected across a
wide range of environments, including indoor scenes (apartments, workplaces, grocery shops, building receptions) and
outdoor scenarios (fitness areas, tourist landmarks, and street views). Post-trimming was applied to each day–night
pair to further ensure alignment. On average, it took around 2-3 hours to produce one paired data.
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EgoNight-Oxford Construction. We credit the contribution of Seeing in the Dark dataset Wang et al. (2025b), which
provides multiple sequences of egocentric videos in the night in a various environment. We built our EgoNight-VQA
dataset partially upon this work. Firstly, We enumerated all nighttime clips in Oxford Day–Night and performed
a two-stage filtering. (1) Screening for uniqueness of place. We cross-checked scene metadata (route notes/time
stamps) to avoid repeated paths within the same landmark. (2) Stratified diversity & quality sampling. Remaining
clips were scored on a 1–5 rubric along axes designed for egocentric, low-light evaluation: illumination type (ambient
only / mixed artificial / high-contrast point sources), illumination hardness (soft vs. specular/point), exposure stability
(auto-gain pumping, blown highlights), scene dynamics (pedestrians/vehicles, occlusions), camera motion pattern
(walk, run, head turns), and task context (navigation, road-crossing, object interaction, signage reading). The final
set comprises 20 sequences that maximize lighting/task diversity under egocentric night settings while avoiding place
overlap and task overlap.

In total, collecting the three video sources required over 100 hours of human effort.

A.2 MORE BENCHMARK IMPLEMENTATION DETAILS

As described in Sec. 3.2, our auto-labeling pipeline is QA-type specific and involves three customized prompts: one
for captioning, one for question generation, and one for answer synthesis. The detailed prompts are shown in Fig. 8.

A.2.1 EGONIGHT-VQA HUMAN LABELING

We hired several participants to review and refine the QA pairs generated by our three-stage day-augmented auto-
labeling pipeline, compensating them at a rate of C20 per video. Each participant was provided with a detailed labeling
instruction document and an onboarding meeting to ensure the guidelines were clearly conveyed. A simplified version
of the labeling tutorial is included as in Fig. 7.

Annotation Tutorial (Simplified)

Read Me First: Please follow the labeling pipeline carefully and complete each step as instructed. On average, annotating
one video takes about 2 hours. Easier cases may take less time, but in general, each video should take no less than 1.5
hours to ensure high-quality annotations. (The first video may take longer, as you will need to familiarize yourself with
the pipeline.) We will randomly check the labeled data afterward, and annotators will be required to refine their work if
the quality does not meet expectations.
Step 1: Preparation. You are expected to first download the paired day.mp4 and night.mp4 videos (aligned in time,
except for unpaired tasks), together with the QA text file (.txt), which contains candidate QAs grouped by QA type (e.g.,
counting.txt). Before starting annotation, you should carefully watch both the daytime and nighttime videos to fully
understand the scenario and activities.
Step 2: QA Verification and Refinement. For each QA pair, you should apply one of three operations:

• Delete: You should remove QAs that are meaningless, vague, irrelevant, duplicated, or inconsistent between
day–night pairs (for paired QA types).

• Modify: If the question is reasonable but the answer is incorrect (e.g., counting errors, wrong action duration),
you should correct the answer. You may also rephrase the question to eliminate ambiguity (e.g., clarifying
“left/right” as relative to the ego-wearer).

• Add: If too many pairs are deleted, or if you notice interesting and challenging cases missing, you need to add
new QAs. This is especially important for low-frequency tasks, e.g., dynamic detection or counting of dynamics.

Step 3: Special Cases.
• For paired QA types (e.g., object recognition, spatial reasoning), you must ensure the same QAs apply to both

day and night videos.

• For unpaired QA types (e.g., lighting recognition, dynamic detection), you only need to ensure correctness on
the nighttime video.

• For dynamic events, you are expected to specify temporal spans, e.g., Q: “Around which time does a red car
pass by?” A: “At frames 4–6.”

Step 4: Post-processing. Once QAs were validated, the answer field should be renamed from ‘‘answer’’ to
‘‘human answer’’.
Appendix: Paired & Non-Paired QA Types. The same as described in the main file.

Figure 7: Simplified version of annotation tutorial.
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QA Type Object Recongnition Spatial Reasoning Text Recongnition Scene Sequence

Caption 

Prompt

I am specifically focusing on visual recognition related QA

type, thus can caption my input video frames paying

attention to the information that is closely related to

visual information, for example, scene, objects, color,

texture. Please give a detailed caption that enumerate

everything you can identify.

Now, I am specifically focusing on spatial relationship

between object pairs (please give more than 4 pairs). Also

give the estimation of how many step between me and the

object.

Now I am focusing on text recongnition, please identify text in

the video that is interesting and specify the corresponding frame

number (sequence number among the input images). When you

descrive the text, describe in detail and better to guess what it

is used for.

I am specifically focusing on Scene Sequence, thus can caption my input

video frames paying attention to the information that is closely related

to sequence of object and environment passed by. Please give a detailed

caption that enumerate everything you can identify

Question

Prompt

Please work as a VQA assistant, treat the subject (behind

the camera) in the video as I and the language model as

you when generate question (ask question from human

perspective). By analyzing both the video and the

corresponding caption, generate questions that evaluate

fine-grained understanding of visual . Please ensure

comprehensive video reasoning capabilities and more

challenging to be answered during a low light condition

(illumination), and ask questions that more focus on

perception, for example, scene, objects, rooms, buildings,

color, texture, avoid questions regarding the light

condition (illumination), dynamic objectsand humans exists

in the video Make sure the question can be answered with

a precise answer. The question doesn't need to be aligned

with the frames. Please provide only 1 questions and focus

on question not subjective and can be answered using few

words.

Please work as a VQA assistant, treat the subject

(behind the camera) in the video as I and the language

model as you when generate question (ask question from

human perspective). By analyzing both the video and the

corresponding caption, generate questions that evaluate

fine-grained understanding of spatial relation. Please

ensure comprehensive video reasoning capabilities, and

more challenging to be answered during a low light

condition. Also it is good to come up with real world

scenario open vocabulary questions. Avoid questions

regarding the light condition (illumination), dynamic

objectsand humans exists in the video. Please provide

only 1 questions and focus on question not subjective and

can be answered using few words.

Please work as a VQA assistant, treat the subject (behind the

camera) in the video as I and the language model as you when

generate question (ask question from human perspective). By

analyzing both the video and the corresponding caption, generate

questions that evaluate fine-grained understanding of text

recongnition. Please ensure comprehensive video reasoning

capabilities, and more challenging to be answered during a low

light condition. Also it is good to come up with real world scenario

open vocabulary questions. Consider both text recognition (what

text is shown), and text reasoning (Which office do I see the

text in? How many times does the text appear? What does the

text implies). Avoid questions regarding the light condition

(illumination), dynamic objectsand humans exists in the video.

Please provide 8 questions.

Please work as a VQA assistant, treat the subject (behind the camera)

in the video as I and the language model as you when generate question

(ask question from human perspective). By analyzing both the video and

the corresponding caption, generate questions that evaluate fine-

grained understanding of scene sequence. Avoid questions that can be

answered from a few frames; instead, design questions that require

understanding the entire video, ensuring comprehensive video reasoning

capabilities, and more challenging to be answered during a low light

condition (illumination). Ask questions that more focus on scene

sequence, for example What’s the sequence of scenes I just passed?

What did I pass before the kitchen? Which room connects the living

room and the kitchen? Make sure the question can be answered with a

precise answer. The question doesn't need to be aligned with the

frames. Avoid questions regarding the light condition (illumination),

dynamic objectsand humans exists in the video. Please provide 10

questions.

Answering

Prompt

Please work as a VQA assistant, treat the subject (behind

the camera) in the video as I and the language model as

you when generate answer (answer from human

perspective). Given the frame of videos, and the questions,

generate answers for each question. Please ensure the

answers are consistent with the video and the questions.

Make sure the answer is easy to be evaluated and not

vague. Avoid answers regarding the light condition

(illumination), dynamic objectsand humans exists in the

video.

Please work as a VQA assistant, treat the subject

(behind the camera) in the video as I and the language

model as you when generate answer (answer from human

perspective). Given the frame of videos, and the

questions, generate answers for each question. Please

ensure the answers are consistent with the video and the

questions. Make sure the answer is easy to be evaluated

and not vague. Avoid answers regarding the light

condition (illumination), dynamic objects and humans

exists in the video.

Please work as a VQA assistant, treat the subject (behind the

camera) in the video as I and the language model as you when

generate answer (answer from human perspective). Given the

frame of videos, and the questions, generate answers for each

question. Please ensure the answers are consistent with the video

and the questions. Make sure the answer is easy to be evaluated

and not vague. Avoid answers regarding the light condition

(illumination), dynamic objects and humans exists in the video.

Please work as a VQA assistant, treat the subject (behind the camera)

in the video as I and the language model as you when generate answer

(answer from human perspective). Given the frame of videos, and the

questions, generate answers for each question. Please ensure the

answers are consistent with the video and the questions. Make sure the

answer is easy to be evaluated and not vague. Avoid answers regarding

the light condition (illumination), dynamic objects and humans exists in

the video.

QA Type Light Recongnition Light Change Counting Dynamic Counting

Caption

Prompt

I am specifically focusing on light source recognition

related QA type, thus can caption my input video frames

paying attention to the information that is closely related

to light information. Please give a detailed caption that

enumerate everything you can identify

I am specifically focusing on light changing among the

video, thus can caption my input video frames paying

attention to the information that is closely related to

light information. Please give a detailed caption that

enumerate everything you can identify

Now I am focusing on counting question, please identify more

than 5 interesting object which is useful during daily life and

count the existence number of the object in the full video

sequence.

I am specifically focusing on counting dynamic human or objects among

the video, thus can caption my input video frames paying attention to

the information that is closely related to anything moving except the

subject. Please give a detailed caption that enumerate everything you

can identify

Question

Prompt

Please work as a VQA assistant, treat the subject (behind

the camera) in the video as I and the language model as

you when generate question (ask question from human

perspective). By analyzing both the video and the

corresponding caption, generate questions that evaluate

fine-grained understanding of Light attribute. Please

ensure comprehensive video reasoning capabilities and

more challenging to be answered during a low light

condition (illumination), and ask questions that more focus

on illumination, for example, light Source type, direction,

color, number, shape or strength, avoid questions

regarding dynamic objects and humans exists in the video

Make sure the question can be answered with a precise

answer. The question doesn't need to be aligned with the

frames. Please provide only 1 questions and focus on

question not subjective and can be answered using few

words.

Please work as a VQA assistant, treat the subject

(behind the camera) in the video as I and the language

model as you when generate question (ask question from

human perspective). By analyzing both the video and the

corresponding caption, generate questions that evaluate

fine-grained understanding of Light changing. Please

avoid questions that can be answered from a few frames

and ensure comprehensive video reasoning capabilities

and more challenging to be answered during a low light

condition (illumination), and ask questions that more focus

on illumination, for example, “Did the lights turn on/off?”

“Is it getting darker/brighter? “Is the light approaching

me?” “Did a car’s headlights just pass by? Please provide

8 questions.

Please work as a VQA assistant, treat the subject (behind the

camera) in the video as I and the language model as you when

generate question (ask question from human perspective). By

analyzing both the video and the corresponding caption, generate

questions that evaluate fine-grained understanding of counting.

Avoid questions that can be answered from a few frames;

instead, design questions that require understanding the entire

video, ensuring comprehensive video reasoning capabilities, and

more challenging to be answered during a low light condition. Ask

questions that more focus on counting, for example object, room,

buildings etc. Make sure the question can be answered with a

precise answer. The question doesn't need to be aligned with the

frames. Avoid questions regarding the light condition

(illumination), dynamic objectsand humans exists in the video.

Please provide 10 questions.

Please work as a VQA assistant, treat the subject (behind the camera)

in the video as I and the language model as you when generate question

(ask question from human perspective). By analyzing both the video and

the corresponding caption, generate questions that evaluate fine-

grained understanding of counting dynamic object or human. Please

avoid questions that can be answered from a few frames and ensure

comprehensive video reasoning capabilities and more challenging to be

answered during a low light condition (illumination), and ask questions

that more focus on the current moving object but not include me

(person holding the camera). For examples: How many cars approach

me? Please avoid question regarding illumination. Please provide 8

questions.

Answering

Prompt

Please work as a VQA assistant, treat the subject (behind

the camera) in the video as I and the language model as

you when generate answer (answer from human

perspective). Given the frame of videos, and the questions,

generate answers for each question. Please ensure the

answers are consistent with the video and the questions.

Make sure the answer is easy to be evaluated and not

vague. Avoid answers regarding dynamic objects and

humans exists in the video.

Please work as a VQA assistant, treat the subject

(behind the camera) in the video as I and the language

model as you when generate answer (answer from human

perspective). Given the frame of videos, and the

questions, generate answers for each question. Please

ensure the answers are consistent with the video and the

questions. Make sure the answer is easy to be evaluated

and not vague. Avoid answers regarding dynamic objects

and humans exists in the video.

Please work as a VQA assistant, treat the subject (behind the

camera) in the video as I and the language model as you when

generate answer (answer from human perspective). Given the

frame of videos, and the questions, generate answers for each

question. Please ensure the answers are consistent with the video

and the questions. Make sure the answer is easy to be evaluated

and not vague. Avoid answers regarding the light condition

(illumination), dynamic objects and humans exists in the video.

Please work as a VQA assistant, treat the subject (behind the camera)

in the video as I and the language model as you when generate answer

(answer from human perspective). Given the frame of videos, and the

questions, generate answers for each question. Please ensure the

answers are consistent with the video and the questions. Make sure the

answer is easy to be evaluated and not vague. Please avoid answer

regarding illumination.

QA Type Non-Common Navigation Dynamic Recognition Action

Caption

Prompt

Now, I am specifically focusing on non-common sense

reasoning, which means you should find all the wierd things

violate common sense or physical law in the given video and

give an improvement suggestion for that. Only focus on the

layout design (the furniture or object shouldn't be there),

or simulator related drawback (something looks unrealistic,

or there are some mesh clipping, object floating etc.)

I am specifically focusing on navigation, thus can caption

my input video frames paying attention to the information

that is closely related to actions such as turn left turn

right and how many steps for each action. Please give a

detailed caption that enumerate everything you can

identify

I am specifically focusing on dynamic human or objects among

the video, thus can caption my input video frames paying

attention to the information that is closely related to anything

moving except the subject. Please give a detailed caption that

enumerate everything you can identify, and add the start and end

frame of the dynamic object or human.

Now, I am specifically focusing on action of the subject (behind

camera). Please give detailed explaination of the action conducted,

object interacted, as well as the possible purpose and consequence.

Question

Prompt

Please work as a VQA assistant, treat the subject (behind

the camera) in the video as I and the language model as

you when generate question (ask question from human

perspective). By analyzing both the video and the

corresponding caption, generate questions that evaluate

fine-grained understanding of the non-common wierd or

wrong scenario. Please ensure comprehensive video

reasoning capabilities, and more challenging to be

answered during a low light condition. Only consider

questions that is presenting in the video and don't ask

anything that cannot be observed in the video, avoid

questions regarding the light condition (illumination),

dynamic objectsand humans exists in the video. Only focus

on the layout design (the furniture or object shouldn't be

there), or simulator related drawback (something looks

unrealistic, or there are some mesh clipping, object

floating etc.)

Please work as a VQA assistant, treat the subject

(behind the camera) in the video as I and the language

model as you when generate question (ask question from

human perspective). By analyzing both the video and the

corresponding caption, generate questions that evaluate

fine-grained understanding of navigation. Generate QA

pairs regarding navigation, for example, Which way should

I go to reach the kitchen? What’s the fastest way back

to the living room? How do I get to the bus stop from

here? Avoid questions that can be answered from a few

frames; instead, design questions that require

understanding the entire video, ensuring comprehensive

video reasoning capabilities, and more challenging to be

answered during a low light condition (illumination). Make

sure the question can be answered with a precise answer.

The question doesn't need to be aligned with the frames.

Avoid questions regarding the light condition

(illumination), dynamic objects, and humans exists in the

video. Please provide 10 questions.

Please work as a VQA assistant, treat the subject (behind the

camera) in the video as I and the language model as you when

generate question (ask question from human perspective). By

analyzing both the video and the corresponding caption, generate

questions that evaluate fine-grained understanding of dynamic

object or human. Please avoid questions that can be answered

from a few frames and ensure comprehensive video reasoning

capabilities and more challenging to be answered during a low

light condition (illumination), and ask questions that more focus

on the current moving object but not include me (person holding

the camera). Also it is good to come up with real world scenario

open vocabulary questions. For examples: Did a new object

appear?” Did a car approach me? Has the door fully closed? Has

the bus departed? Did a person walk to me? When? Time

duration where? Please avoid question regarding illumination.

Please work as a VQA assistant, treat the subject (behind the camera)

in the video as I and the language model as you when generate question

(ask question from human perspective). By analyzing both the video and

the corresponding caption, generate questions that evaluate fine-

grained understanding of my action. Please ensure comprehensive video

reasoning capabilities, and more challenging to be answered during a low

light condition. Also it is good to come up with real world scenario open

vocabulary questions. Avoid questions regarding the light condition

(illumination), dynamic objectsand humans exists in the video. Please

provide 8 questions.

Answering

Prompt

Please work as a VQA assistant, treat the subject (behind

the camera) in the video as I and the language model as

you when generate answer (answer from human

perspective). Given the frame of videos, and the questions,

generate answers for each question. Please ensure the

answers are consistent with the video and the questions.

Make sure the answer is easy to be evaluated and not

vague. Avoid answers regarding the light condition

(illumination), dynamic objects and humans exists in the

video.

Please work as a VQA assistant, treat the subject

(behind the camera) in the video as I and the language

model as you when generate answer (answer from human

perspective). Given the frame of videos, and the

questions, generate answers for each question. Please

ensure the answers are consistent with the video and the

questions. Make sure the answer is easy to be evaluated

and not vague. Avoid answers regarding the light

condition (illumination), dynamic objects and humans

exists in the video.

Please work as a VQA assistant, treat the subject (behind the

camera) in the video as I and the language model as you when

generate answer (answer from human perspective). Given the

frame of videos, and the questions, generate answers for each

question. Please ensure the answers are consistent with the video

and the questions. Make sure the answer is easy to be evaluated

and not vague. Please avoid answer regarding illumination.

Please work as a VQA assistant, treat the subject (behind the camera)

in the video as I and the language model as you when generate answer

(answer from human perspective). Given the frame of videos, and the

questions, generate answers for each question. Please ensure the

answers are consistent with the video and the questions. Make sure the

answer is easy to be evaluated and not vague. Avoid answers regarding

the light condition (illumination), dynamic objects and humans exists in

the video.

Figure 8: The prompts used during auto-labeling.

After the first round of labeling, we performed an additional quality check and summarized common issues for refine-
ment. For example, the concept of “left” or “right” should always be defined relative to the ego-wearer, and questions
should be phrased clearly to avoid ambiguity. Participants were then asked to address the identified issues. In the
end, we ensured that every QA pair in the EgoNight-VQA dataset was verified by at least one human annotator. On
average, above 200 hours of human annotation effort were spent for the labeling refinement. To further evaluate inter-
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annotator statistics, we select randomly VQA pairs from 20 videos out of 90, and add four human annotators without
GPT annotation. The average pairwise cosine similarity normalized to (0, 1) based on language feature extracted by
BLIP-2 Li et al. (2023b) is 0.8458. This shows that human annotators are in general consistent in interpreting scenes.
And answers are semantically aligned, even when worded differently.

A.3 COMPARISONS WITH PRIOR EGOCENTRIC VQA BENCHMARKS.

In Tab. 7, we compare our EgoNight-VQA with prior egocentric VQA benchmarks, including EgoVQA Fan (2019),
EgoTaskQA Jia et al. (2022), EgoSchema Mangalam et al. (2023), EgoThink Cheng et al. (2024), EgoTempo Plizzari
et al. (2025), EgoCross Li et al. (2025b), EgoMemoria Ye et al. (2024), HourVideo Chandrasegaran et al. (2024),
and EgoLifeQA Yang et al. (2025), listing their lighting conditions (mainly daytime or nighttime), video duration
length, the number of testing QA examples, number of QA type categories, if temporal-oriented tasks are included or
emphasized, and the evaluation metric.

We highlight that EgoNight-VQA is the first to explore nighttime egocentric VQA with aligned day–night video pairs.

Dataset Lighting Video Length # Test # Categories Temporal Metric Type

EgoVQA ☼ (25s, 100s) 250 3 ✗ OpenQA
EgoTaskQA ☼ 25s 8k 4 ✗ OpenQA
EgoSchema ☼ 180s 500 - ✗ CloseQA
EgoThink ☼ - 750 12 ✗ OpenQA
EgoTempo ☼ 45s 500 10 ✓ OpenQA
EgoCross ☼ 23s 957 15 ✓ CloseQA & OpenQA
EgoBlind ☼ (0s, 120s) 5311 6 ✓ OpenQA
EgoMemoria ☼ (30s, 1h) 7026 - ✓ CloseQA
HourVideo ☼ (20min, 120min) 12976 - ✓ CloseQA
EgoLifeQA mostly ☼ 44.3 h 6000 5 ✓ CloseQA

EgoNight-VQA Aligned ☼& � (24s, 214s) 3658 12 ✓ OpenQA

Table 7: Comparison between EgoNight-VQA and prior egocentric VQA benchmarks. ☼ means dayytime, while �
indicates nighttime.

A.4 MORE EGONIGHT-VQA EXPLANATIONS AND EXAMPLES

A.4.1 QA TYPE DEFINATION

We present the 12 QA types with their detailed definitions in Tab. 8.

Table 8: Detailed descriptions of the 12 QA types in EgoNight-VQA. Paired QA types share the same QAs across
day–night counterparts, while unpaired QA types are evaluated only on nighttime videos.

QA Type Attribute Description
Object Recognition Paired Identify and recognize specific objects in the scene (e.g., “What is on the table?”).
Text Recognition Paired Read and interpret visible text or logos (e.g., “What does the sign say?”).
Spatial Reasoning Paired Understand spatial relations between objects (e.g., “What is left of the chair?”).
Scene Sequence Paired Recall the temporal order of visited scenes (e.g., “Which room did I enter after the kitchen?”).
Navigation Paired Working as an navigation assistant after watched the whole video (e.g., “How can I reach place B from place A?”).
Counting of Statics Paired Count static objects visible in the scene (e.g., “How many chairs are in the room?”).
Action Recognition Paired Identify human actions or interactions (e.g., “What action is being performed?”).
Non-Common-Sense Reasoning Paired Judge unusual or physically implausible cases, for synthetic videos. (e.g., “Is the door embedded inside the wall?”).

Lighting Recognition Unpaired Recognize the illumination source, also include counting. (e.g., “How many light sources are in the room?”).
Lighting Change Unpaired Detect changes in lighting conditions (e.g., “Did the light turn off during the clip?”).
Dynamic Detection Unpaired Detect dynamic moving objects (e.g., “Is a car/person moving across the scene?”).
Counting of Dynamics Unpaired Count the number of dynamic objects or events (e.g., “How many people walked by?”).

A.4.2 QA EXAMPLES

We show more QA examples of EgoNight-Synthetic in Fig. 9, EgoNight-Sofia in Fig. 10, and EgoNight-Oxford in
Fig. 11. For those paired QA types, we show both day and night frames, while for those unpaired QA types, we
demonstrate nighttime frames only. Three frames are shown if the QA is spatial or static related, while more frames
are given if the QA is temporal or more dynamic related.
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QA Type: Object Recognition (3s)

Q: What type of furniture is located at the center of the dining area?

A: The furniture located at the center of the dining area is a rectangular

dining table surrounded by chairs.

QA Type: Counting (whole video)

Q: How many beds can be seen throughout the different rooms in the

video?

A: There are two beds visible.

D
a
y

N
ig
h
t

QA Type: Scene Sequence (whole video)

Q: What was the sequence of rooms as I moved through the video?

A: You started in the room with a bed, moved to the hallway, then the

bathroom, then returned to the open area where the living room and the

dining room with kitchen is.

D
a
y

N
ig
h
t

D
a
y

N
ig
h
t

QA Type: Text Recognition (3s)

Q: What text is visible on the TV?

A: The text visible on the TV is "Rud4kg".

QA Type: Spatial Reasoning (3s)

Q: What object is directly to the left of the wall with the poster?

A: The object directly to the left of the wall with the poster is a door.

QA Type: Non Common (whole video)

Q: Do you notice anything weird about the door?

A: The door is merging with the wall.

D
a
y

N
ig
h
t

QA Type: Navigation (whole video)

Q: What is the best route to return to the main hallway from the kitchen

room?

A: The hallway is the first room you reach upon exiting the kitchen.

D
a
y

N
ig
h
t

QA Type: Light Recognition (3s)

Q: What is the main color of the light emitted by the computer screen? 

A: The main color of the light emitted by the computer screen appears to

be green. 

D
a
y

N
ig
h
t

Unpaired QA

Figure 9: More QA examples from EgoNight-Synthetic dataset.
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QA Type: Object Recognition (3s)

Q: What is placed on top of the stove?

A: On top of the stove, there are 2 pots, one of which is with a lid.

D
a
y

N
ig
h
t

QA Type: Counting (whole video)

Q: What type of furniture is located at the center of the dining area?

A: The furniture located at the center of the dining area is a rectangular

dining table surrounded by chairs.

D
a
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N
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h
t

QA Type: Text Recognition (3s)

Q: What specific text is visible in frame 24 of the video?

A: In frame 24 of the video, the specific text visible is "ICE COLD Coca-

Cola SOLD HERE".
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y
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QA Type: Scene Sequence (whole video)

Q: What sequence of areas did I navigate to get to the living area?

A: You moved from the hallway into the kitchen, which is connected to the

living area.

D
a
y

N
ig
h
t

QA Type: Spatial Reasoning (3s)

Q: What architectural feature is directly above the columns at the

building's entrance?

A: Directly above the columns at the building's entrance are a series of

arches.

D
a
y
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QA Type: Navigation (whole video)

Q: After the open area with a structure or fountain, which direction should

I continue to find the gym equipments?

A: Turn around, go straight back along the yellow brick road.

D
a
y

N
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h
t

QA Type: Light Recognition (3s)

Q: What is the direction of the primary light source illuminating the table

and cups?

A: The primary light source illuminating the table and cups is coming from

the camera’s direction. The light is directed towards the table and cups,

highlighting them against the dark background.
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y

N
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t

QA Type: Dynamic Counting (whole video)

Q: How many people did I pasted by?

A: 2 person walked past you.

D
a
y
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h
t

QA Type: Action (whole video)

Q: What did you do with your keys, after securely locking the door?

A: I put the keys on a side shelf of the kitchen cabinet.

D
a
y

N
ig
h
t

QA Type: Dynamic (whole video)

Q: What kind of vehicle passed by me?

A: A white van passed by you.

D
a
y
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h
t

Unpaired QA

Unpaired QA

Unpaired QA

Figure 10: More QA examples from EgoNight-Sofia dataset.
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N
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QA Type: Navigation (whole video)

Q: How do I reach the entrance of the building from 
the outdoor area?

A: You walk past the minibus and into the passageway.

N
ig
ht

QA Type: Text Recognition (whole video)

Q: What texts can be seen on the shop signs, and what 
types of shops do they indicate?

A: Texts like ‘Manga’, ‘Science’, ‘Booksellers’, 'Fiction' 
can be noticed, indicating that the shop is a bookstore.

N
ig
ht

QA Type: Dynamic Detection (3s)

Q: What is the person walking towards?

A: The person is walking towards a white van.

N
ig
ht

QA Type: Spatial Reasoning (3s)

Q: What is positioned along the sidewalk and 
approximately 15-25 steps from you?
A: Along the sidewalk, approximately 15-25 steps from 
you, there is a parked van.

N
ig
ht

QA Type: Object Recognition (3s)

Q: What architectural feature is prominent on the 
building across the street on the left?
A: The building across the street on the left features 
prominent rectangular windows.

N
ig
ht

QA Type: Light Recognition (3s)

Q: How many windows are brightly illuminated from 
inside?
A: There are 11 windows brightly illuminated from inside.

N
ig
ht

QA Type: Light Change (whole video)

Q: Did a vehicle's headlights pass by, casting additional 
illumination?
A: A vehicle's headlights passed by, briefly adding 
illumination.

N
ig
ht

QA Type: Counting of Statics (whole video)

Q: Can you count the total number of lights embedded 
along the stairs in the video? 

A: There are 8 lights embedded along the stairs.

N
ig
ht

QA Type: Counting of Dynamics (whole video)

Q: How many times did you see another person 
exploring the area?

A: I saw another person exploring the area 2 times.

N
ig
ht

QA Type: Scene Sequence (whole video)

Q: Before ascending the staircase, what architectural 
feature did I see in the corridor?

A: In corridor, you saw brick walls with horizontal stripes.

Figure 11: More QA examples from EgoNight-Oxford dataset.

A.5 MORE EXPERIMENTS SETUPS

A.5.1 SETUPS FOR EGONIGHT-VQA EXPERIMENTS.

In this section, we describe the model setup, how GPT is used as the judge, the prompting strategy, the GPU re-
sources, and the approximate runtime for each dataset. For the closed-source model, we directly use the API call.
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Model Inference Speed (min)
GPT-4.1 <5

Gemini 2.5 Pro <5
InternVL3-8B <5

Qwen2.5-VL-72B 25
Qwen2.5-VL-7B <5
Qwen2.5-VL-3B <5

GLM-4.1V-9B-Base <5
VideoLLaMA3-7B <5

LLaVA-NeXT-Video-7B 50
EgoGPT <5

Table 9: Inference speed for different models (per Video).

For open source models, we use LLama-Factory Zheng et al. (2024) except VideoLLama3 Zhang et al. (2023b) and
EgoGPT Yang et al. (2025). We use NVIDIA A6000 GPUs for all the model, except for Qwen2.5-VL-72B, we use 2
NVIDIA H200 GPUs for larger GPU memory. The inference speed for each model is shown in Tab. 9. Video frames
are sampled at 2 fps for EgoNight-Synthetic, and 1 fps for EgoNight-Sofia and EgoNight-Oxford, without imposing a
maximum frame limit. To further ensure fairness and consistency, the exact prompts used for each task are provided
below.

Model Evaluation Prompt. For evaluating the language model, we use the following prompt:

Please carefully read the question, use the visual cues in the {video} to answer the question: {question}.

The original FPS of the video is {original video fps}. This image set is obtained by sampling at {sampling} fps.

Do not include any other content. You need to answer the question in any case and not demand additional context information.
Note: All the actions mentioned refer to the person who recorded the video.

Evaluation Protocol. Since the questions and answers are open-ended, we utilize GPT-4.1 Achiam et al. (2023) as
a judge. Here is the prompt for evaluating the score given the model prediction, the ground truth answer, and the
corresponding question:

role: system,
content: You are an intelligent chatbot designed for evaluating the correctness of AI assistant predictions for question−answer

pairs.
Your task is to compare the predicted answer with the ground−truth answer and determine if the predicted answer is correct or

not. Here’s how you can accomplish the task:
INSTRUCTIONS:
1. Focus on the correctness and accuracy of the predicted answer with the ground−truth.
2. Consider uncertain predictions, such as ’it is impossible to answer the question from the video’, as incorrect, unless the ground

truth answer also says that.
role: user,
content: Please evaluate the following video−based question−answer pair:
Question: {question}
Ground truth correct Answer: {answer}
Predicted Answer: {predicted answer}
Provide your evaluation as a correct/incorrect prediction along with the score where the score is an integer value between 0 (fully

wrong) and 5 (fully correct). The middle score provides the percentage of correctness. For question that counting the
number of objects, if the predicted answer fells in the range of the ground truth answer, it should be considered as correct.

Please generate the response in the form of a Python dictionary string with keys ’pred’, ’score’ and ’reason’, where value of ’pred
’ is a string of ’correct’ or ’incorrect’,

value of ’score’ is in INTEGER, not STRING and value of ’reason’ should provide the reason behind the decision.”

To further validate the LLM-as-a-Judge strategy, we divide all annotations into two groups: (a) answers verified
but not modified by humans (preserving the GPT style) and (b) answers modified or created by humans. The ratio is
approximately 4 : 6, indicating a high human modification rate. When evaluating the accuracy of GPT-4.1 separately in
the two subsets, we obtain 26.73% for group (a) and 27.87% for group (b). The similar scores show that GPT-as-Judge
does not prefer GPT-generated answers over human-authored ones. Further more, We randomly sampled 300 QA pairs

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

(questions, ground truth, model answers, and the corresponding LLM-assigned scores) and asked human evaluators
to judge whether each score from the LLM was correct. This yielded an agreement rate of 95.67%, indicating strong
alignment between human judgment and the LLM-as-a-Judge decisions, and thus demonstrating the reliability of the
LLM-based evaluation.

A.5.2 SETUPS FOR DAY-NIGHT CORRESPONDENCE RETRIEVAL.

In this section, we describe the setup of the model, method, e.g. how feature-based retrieval for vision encoders, how
prompt VLMs, metric, result, GPU, cost time, and other details.
i) Spatial Retrieval (Place Recognition). For feature-based methods Oquab et al. (2023); Bolya et al. (2025), we
calculate the CLS tokens f i of each frame within the video clip with the vision encoder, with i the frame index in the
clip. Then, the ”best matching” strategy is implemented to calculate the similarity between the query clip vq and the
database clip vd. The best cosine similarity between the features of the query clip f i

q and the database clip f j
d ,

σ(vq, vd) = max
i∈[0,s−1],j∈[0,s−1]

cos(f i
q, f

j
d). (1)

The database video clips are ordered based on the similarity σ and then the most similar clip is retrieved.

Similarly, for MLLM-based methods Achiam et al. (2023); Chen et al. (2024b), we ask the MLLM to assess the
”pairwise” similarity between each query-database pair and order the database clips by similarity. The prompt to the
MLLM is as follows:

You are given two video clips from different scenes.
Your task is to evaluate how similar these two scenes are based on their spatial layout, furniture, objects, architectural features,

and overall room structure.

CLIP STRUCTURE:
− Images 1−>(s−1) from Query Scene
− Images s−>{2s−1} from Database Scene

TASK:
Please carefully analyze and compare the spatial layout, furniture placement, objects, architectural features, and overall room

structure between these two video clips.

IMPORTANT: Please respond with ONLY a single numerical similarity score between 0.0 and 1.0, where:
− 0.0 = Completely different scenes (different rooms/locations)
− 1.0 = Identical or nearly identical scenes (same room/location)
− Values in between represent varying degrees of similarity

Example responses: ”0.85”, ”0.23”, ”0.67”
1.0 should be used when the two scenes are identical, so don’t use 1.0 if the two scenes are not 100% identical.
Please provide only the numerical score without any additional text or explanation.

It is noticeable that existing MLLMs have difficulty in processing long-horizon and multi-scene videos. We also
conduct the “all-in-one-prompt” experiments by inputting all the images of the query clip and the database clips in one
prompt and asking the MLLM to output the ordered database clips. The “all-in-one-prompt” strategy leads to largely
degraded performance, as shown in Tab. 10.

Spatial Retrieval R@1 - Synthetic
Prompt Strategy Day → Day Night → Day

Pairwise 75.6 54.1
All-in-one 10.5 28.5

Table 10: Ablation on prompting for night-to-day spatial retrieval task.

ii) Temporal Localization. The mIoU metric is defined as:

mIoU =
1

M

M∑
m=1

∣∣[ti, tj ] ∩ [t∗i , t
∗
j ]
∣∣∣∣[ti, tj ] ∪ [t∗i , t

∗
j ]
∣∣ , (2)
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where M denotes the total number of meta-tasks (1000 in our setup). For feature-based temporal localization, we
apply the ”best-match” strategy similar as spatial localization, localizing the query clip to the frame stamp with the
best clip-to-clip similarity:

i = argmax
i

σ(vq, vd), vd = vD[i : i+ s], (3)

vD is the parent full video and the end frame will be i+ s− 1. For MLLM-based method, we input the query clip and
the parent full video in the prompt and ask the MLLM to output the start and end frame of the query within the full
video. The prompt is as follows:

You are given a query video clip and a complete video sequence from the same scene.
Your task is to find the exact temporal position where the query clip appears in the complete video sequence.
IMPORTANT CONTEXT:
− The query clip shows s consecutive frames from a video sequence
− The complete video sequence shows ALL frames from the same scene in chronological order
− The query clip appears as a consecutive subsequence somewhere within the complete video sequence
− You need to find the exact start and end frame numbers where this subsequence appears

IMAGE STRUCTURE:
− Images 1−>s: Query video clip (consecutive frames to find)
− Images {s+1}−{s+1+video len}: Complete video sequence (all frames in chronological order)

TOTAL IMAGES: {query count + database count} images

TASK:
1. Look at the query clip to understand what sequence you’re looking for
2. Search through the complete video sequence to find where this exact sequence appears
3. The query sequence should appear as consecutive frames in the complete video sequence
4. Pay attention to camera movements, object positions, and scene changes to identify the matching sequence

FRAME NUMBERING:
− The complete video sequence frames are numbered from {min(database frame numbers)} to {max(database frame numbers)}
− You need to return the actual frame numbers from this range

RESPONSE FORMAT:
Respond with ONLY two numbers separated by a comma: ”start frame,end frame”
− start frame: The frame number where the query clip begins in the complete video sequence
− end frame: The frame number where the query clip ends in the complete video sequence

Example: If the query clip appears at frames 15−19 in the complete sequence, respond: ”15,19”
Valid frame range: {min(database frame numbers)} to {max(database frame numbers)}

A.5.3 SETUPS FOR EGOCENTRIC DEPTH ESTIMATION AT NIGHT.

We evaluate four off-the-shelf monocular depth systems without night-specific fine-tuning. For each, we highlight
features pertinent to our setting. (F) denotes support for fisheye egocentric images; (U) denotes undistorted/pinhole
images.

1. Depth Anything V2 (metric). (U) Foundation MDE model (DPT head with DINOv2 backbone) trained on
large-scale synthetic labels plus pseudo-labeled real images. We use the official metric checkpoints: Indoor
(Hypersim-tuned) for indoor frames and Outdoor (VKITTI2-tuned) for outdoor frames. Outputs metric depth
in meters and is known for strong zero-shot generalization.

2. StreamVGGT. (U) A causal/streaming transformer for video geometry that processes frames sequentially
with state caching to improve temporal consistency and enable real-time inference. We run it in streaming
mode to obtain per-frame depth on egocentric sequences.

3. Depth Any Camera (DAC). (F) Zero-shot metric depth across diverse camera models via a unified ERP
(equirectangular) representation with pitch-aware image-to-ERP conversion and FoV alignment. We use the
official release with default settings on our pinhole inputs.

4. UniK3D. (F) Universal-camera monocular 3D estimation with a spherical 3D formulation and a learned
“pencil-of-rays” camera module, enabling accurate metric depth across pinhole, fisheye, and panoramic
views. We run the official model in eval mode; when available, we provide intrinsics for pinhole frames.
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Model Object Rec. Text Rec. Spatial Scene Seq. Nav. Light Rec. Counting Non-Common Overall

Closed-Source MLLMs

Gemini 25.94 39.39 32.43 35.47 30.77 31.97 21.88 15.15 28.34
GPT-4.1 25.19 54.55 35.42 28.44 27.09 35.25 20.83 16.67 27.75

Open-Source MLLMs

InternVL3-8B 17.29 10.61 28.34 20.80 10.37 18.03 16.93 21.21 18.97
Qwen2.5-VL-72B 15.41 16.67 28.88 21.41 7.02 12.30 10.94 21.21 17.15
Qwen2.5-VL-7B 6.77 13.64 17.98 11.93 9.03 15.57 14.06 18.69 13.26
Qwen2.5-VL-3B 7.89 22.73 17.17 14.37 11.37 8.20 13.02 12.63 13.06
GLM-4.1V-9B-Base 13.16 36.36 23.71 21.71 7.02 15.57 19.27 14.14 17.69
LLaVA-NeXT-Video-7B 5.26 10.61 10.08 4.59 3.01 16.39 4.69 9.60 6.85
VideoLLaMA3-7B 10.90 21.21 19.07 23.55 7.02 7.38 18.49 16.67 15.97

Egocentric MLLMs

EgoGPT 6.02 19.70 18.53 19.88 8.36 8.20 17.71 17.68 14.79

Average across all models

Average 13.38 24.55 23.16 20.21 12.11 16.89 15.78 16.36 17.38

Table 11: Night-time VQA accuracy (%) per model across all QA categories for EgoNight-Synthetic.

A.6 MORE EXPERIMENTAL RESULTS

Model Object Rec. Text Rec. Spatial Scene Seq. Action Nav. Light Rec. Counting Dyn. Light Dynamic Dyn. Count Avg.

Closed-Source MLLMs

GPT-4.1 24.44 33.78 41.32 30.09 38.10 27.27 38.33 24.62 30.00 13.33 25.00 31.06
Gemini 32.22 47.30 35.54 24.78 34.92 29.29 43.33 27.69 15.00 26.67 40.00 32.67

Open-Source MLLMs

InternVL3-8B 16.67 17.57 33.88 24.78 22.22 21.21 20.00 22.31 25.00 6.67 15.00 22.61
Qwen2.5-VL-72B 14.44 21.62 36.36 18.58 19.05 25.25 18.33 13.85 20.00 6.67 20.00 20.99
Qwen2.5-VL-7B 7.78 10.81 21.49 18.58 11.11 18.18 1.52 15.38 9.52 6.25 15.00 14.02
Qwen2.5-VL-3B 11.11 8.11 23.97 13.27 11.11 16.16 10.00 15.38 5.00 13.33 10.00 14.16
GLM-4.1V-9B-Base 12.22 12.16 30.58 15.04 14.29 17.17 11.67 25.38 15.00 6.67 10.00 18.14
VideoLLaMA3-7B 3.33 5.41 13.22 11.50 6.35 9.09 8.33 18.46 10.00 20.00 15.00 10.68
LLaVA-NeXT-Video-7B 8.89 5.41 18.18 12.39 12.70 15.15 11.67 13.85 0.00 13.33 20.00 12.67

Egocentric MLLMs

EgoGPT 9.18 3.41 19.26 16.54 6.67 7.96 10.00 14.97 0.00 0.00 10.00 11.47

Average across all models

Average 13.99 16.31 27.29 18.53 17.45 18.53 17.16 19.13 12.94 11.26 18.00 18.76

Table 12: Night-time VQA accuracy (%) per model across all QA categories for EgoNight-Sofia.

Models Object Rec. Text Rec. Spatial Scene Seq. Action Nav. Light Rec. Counting Dyn. Light Dynamic Dyn. Count Avg.

Closed-Source MLLMs

GPT-4.1 64.52 34.88 41.35 34.13 65.59 43.75 30.43 18.49 18.52 37.84 18.52 38.95
Gemini 2.5 Pro 56.14 46.51 38.30 27.27 59.55 32.65 31.11 18.97 23.33 37.14 3.70 34.83

Open-source MLLMs

InternVL3-8B 40.00 27.91 18.68 14.66 36.78 20.83 6.98 9.91 6.67 37.14 7.41 20.57
Qwen2.5-VL-72B 38.18 39.53 29.67 13.79 22.99 23.96 16.28 17.12 16.67 11.43 11.11 22.07
Qwen2.5-VL-7B 9.09 23.26 20.88 11.21 10.34 15.62 9.30 11.71 3.33 11.43 18.52 13.35
Qwen2.5-VL-3B 14.55 13.95 9.89 13.79 19.54 20.83 6.67 10.81 3.70 17.14 6.98 13.62
GLM-4V 22.81 30.23 21.43 15.52 28.74 9.38 19.57 17.12 6.67 37.14 14.81 19.57
VideoLLaMA3-7B 20.00 11.63 15.38 9.57 10.34 7.29 9.52 9.01 0.00 17.65 7.41 10.81
LLaVA-NeXT-Video-7B 9.09 4.65 10.99 0.00 0.00 0.00 6.98 0.00 0.00 2.86 0.00 2.86

Egocentric MLLMs

EgoGPT 21.13 27.08 14.14 3.42 14.61 6.25 11.11 6.25 21.62 18.92 17.86 12.44

Average across all models

Avg. 29.81 25.98 22.32 14.55 27.16 18.09 14.96 12.01 10.75 22.95 10.33 19.04

Table 13: Night-time VQA accuracy (%) per model across all QA categories for EgoNight-Oxford.
In this section, we show models per QA accuracy on each dataset for EgoNight-Synthetic in Tab. 11, EgoNight-Sofia
in Tab. 12, and EgoNight-Oxford in Tab. 13.
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A.7 MORE VISUALIZATION RESULTS

A.7.1 EGONIGHT-VQA

We further investigate failure reasons by systematically altering illumination, motion blur, and camera noise (sampling
quality) in synthetic videos, while keeping scene, annotations, and trajectory fixed in the synthetic dataset. The
procedure of generating such difficulty level is described in Appendix. A.1, we calculate the averaged accuracy from
Tab. 1 as 18.47% for Easy (moderately dark), 15.88% for Medium (very dark with camera noise), 12.95% for Hard (as
dark as medium, with motion blur). From the results, we highlight that: ii) Lower illumination together with camera
sensor noise leads to the most significant drop due to loss of contrast and missing fine details. ii) Motion blur further
harms performance by causing temporal ambiguity and object shape distortion. iii) These results confirm that night
conditions VQA is challenging, highlighting the need for specialized night-egocentric benchmarks. We also visualize
more failure cases, and give more analysis in Appendix. A.7.1. Here we provide more failure cases, which compare
the day and night VQA output in Fig. 12. This clearly shows the gap between the day and night video understanding.
Also, we provide examples of question generated and the corresponding caption to show caption reasoning ability in
Fig. 13. Here we provide a more detailed analysis of the failure reason:

• Extreme Illumination (Counting – Static): Due to strong red lighting, two doors in the scene become nearly
invisible, causing the model to undercount objects.

• Small Object Disappearance (Text Recognition): The price tag becomes too small and poorly illuminated
at night, making it unreadable and leading to text recognition failure.

• Spatial Confusion from Limited View (Navigation): Restricted field of view at night hides key spatial cues
(e.g., landmarks, corridor orientation), causing incorrect navigation decisions.

• Motion Blur (Action Recognition): Fast hand movement introduces motion blur, making the model misin-
terpret the content displayed on the screen.

Counting of Static

Text Recognition

How much is the milk?

Day answer: The price for the

milk is 4.20 lv.

Night answer: The price cannot

be infered from the given

image due to the dark light. 

4.20 lv

Count the number of visible

doors throughout the video. 

Day answer: There are five

visible doors in the video.

Night answer: There are three

visible doors in the video.

5 doors are visible.

Spatial Reasoning

How many steps would you

approximately take to reach

the cloest table with high stool

Day answer: 6 steps.

Night answer: 10 steps.

You would need to take

approximately 5-8 steps.

Scene Sequence

What is the sequence of shops I passed

starting from the first storefront?

Day answer: street with parking ->

MARKET with meat -> ANTRE ->

SESAME -> 24GRILL

Night answer: T-Market ->

ANTRE -> SESAME -> GRILL

Center. 

street with parking -> T-MARKET -

> ANTRE -> SESAME -> 24GRILL

Navigation

What is the best route to

return to the main hallway from

the kitchen room?

Day answer: Turn around and

go back from the door.

Night answer: We cannot infer

from the given video.

The hallway is the first room

you reach upon exiting the

kitchen.

Object Recognition

What architectural elements are highlighted on the

prominent multi-story building on the left?

Day answer: Arched

windows, White Trim and Moldings,

and Contrasting Facade

Night answer: arched windows

and their decorative frames

red facade with white decorative accents,

arched windows and detailed moldings

Action Recognition

Based on the opened files on the

computer monitor and laptop,

what would you assume of this

person's career 

Day answer: Probably

programmer

Night answer: We cannot tell

from the given images. 

coding and technology

Non-common Reasoning

What object , unusual for a

hallway interiror, can you see

on the left?

Day answer: A sink can be seen

on the left

Night answer: A shelving unit

with cubbies.

You can see a sink on the left.

Figure 12: More QA examples with day and night answer produced by the same model.
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Counting of Static

Text Recognition

How much is the milk?

Count the number of visible

doors throughout the video. 

Scene Sequence

What is the sequence of shops I passed

starting from the first storefront?

As the person walks forward, several

storefronts come into view. A bright sign

reading “MARKET” is clearly visible,

indicating a small convenience

shop. Another shop with neon lighting

shows the name “ANTRE”, possibly open

late into the night (24/7). The scene

reaches another storefront with a sign

labeled “SESAME”, hinting at a

restaurant or local shop. 

Navigation

What is the best route to

return to the main hallway from

the kitchen room?

The video shows a person walking

through a dim indoor space lit mostly by

red lights, passing through 4-5 doors.

They move around what appears to be a

home, interacting with common household

objects. The actions seem purposeful,

like someone checking their living space

before settling in or leaving. 

The person is checking some items in the

shop. More specificly, the person picked

up a bottle of milk. 

The person goes from the hallway to the

kitchen. 

Figure 13: More examples shows the caption together with generated questions.

A.7.2 DAY-NIGHT CORRESPONDENCE RETRIEVAL

We visualize the qualitative result on one meta sample of Night-to-Day spatial retrieval to better demonstrate the
experiment setup and the performance of the benchmarked methods. As shown in Fig. 14, the light condition of the
query video clip is drastically different from that of the database clips. Such a difference imposes a great challenge
for existing methods in distinguishing the target scenes from the other candidate databases’ clips, showing the value
of the dataset in the place recognition task.

Methods DB clip 1 DB 2 DB 3 DB 4 DB 5 DB 6 DB 7 DB 8 DB 9 DB 10
DINOv2 0.67 0.66 0.58 0.54 0.67 0.70 0.61 0.66 0.59 0.67

Percep. Enc. 0.83 0.82 0.78 0.81 0.81 0.80 0.79 0.81 0.78 0.85
GPT-4.1 0.92 0.72 0.62 0.18 0.18 0.18 0.18 0.12 0.12 0.12

InternVL 8B 0.55 0.32 0.32 0.30 0.30 0.25 0.25 0.21 0.15 0.15

Figure 14: Qualitative Result on one meta sample of spatial retrieval. The query video clip and the database video
clips are visualized in the image. The table below the figure shows the similarity score between the query and the
database clips calculated with different methods. The most similar one is in bold, and correct retrieval is in green, and
the incorrect one is in red.
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A.7.3 EGOCENTRIC DEPTH ESTIMATION AT NIGHT

We provide additional qualitative results across day–night conditions (Figs. 15, 16, 17, 18). Consistent with the
main paper, nighttime is substantially more challenging: low SNR, head-motion blur, extreme dynamic range,
color/white-balance shifts, and auto-exposure fluctuations amplify scale ambiguity and erode edge fidelity, leading
to over-smoothed surfaces, depth collapse in dark regions, halos around bright point sources, and temporal instability.
UniK3D remains the strongest overall in preserving scene structure under these conditions, though performance still
degrades under extreme darkness and sparse texture. By contrast, StreamVGGT and DAC are notably brittle at night,
frequently washing out structure, misinterpreting specular highlights, and producing flattened or unstable depth in
large low-illumination areas. The effect is most pronounced outdoors in EgoNight-Sofia and EgoNight-Oxford, where
wide dynamic range, sparse texture, and point-light saturation further depress accuracy across methods.
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Figure 15: Qualitative results of monodepth estimation in day and night on EgoNight-Synthetic dataset according to
different difficulty levels.

A.8 MORE ANALYSIS

A.8.1 FAILURECASE ANALYSIS

We further investigate failure reasons by systematically altering illumination, motion blur, and camera noise (sampling
quality) in synthetic videos, while keeping scene, annotations, and trajectory fixed in the synthetic dataset. The
procedure of generating such difficulty level is described in Appendix. A.1, we calculate the averaged accuracy from
Tab. 1 as 18.47% for Easy (moderately dark), 15.88% for Medium (very dark with camera noise), 12.95% for Hard (as
dark as medium, with motion blur). From the results, we highlight that: ii) Lower illumination together with camera
sensor noise leads to the most significant drop due to loss of contrast and missing fine details. ii) Motion blur further
harms performance by causing temporal ambiguity and object shape distortion. iii) These results confirm that night
conditions VQA is challenging, highlighting the need for specialized night-egocentric benchmarks. We also visualize
more failure cases, and give more analysis in Appendix. A.7.1.

A.8.2 LIMITATIONS AND FUTURE WORKS

We acknowledge limitations of EgoNight and insights for future research directions in night video understanding. (1)
The dataset scale remains modest compared to large-scale vision–language corpora. However, as a testbed, we argue
that the current scale of 3,600+ human-verified QA pairs is already sufficient for benchmarking. In future work, we
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Figure 16: Qualitative results of monodepth estimation in day and night on EgoNight-Sofia dataset indoor part.
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Figure 17: Qualitative results of monodepth estimation in day and night on EgoNight-Sofia dataset outdoor part.

plan to further scale up nighttime videos by synthesizing more data and recording additional real-world footage, which
will enable not only benchmarking but also pretraining and fine-tuning to improve MLLM performance.

(2) We show in the main content that fine-tuning on synthetic data improves real world performance. Therefore, we
can scale-up synthetic data to build a training set, that can be used to fine-tune the model, thus generalize to real world
scenario.

(3) We encourage the community to explore broader research avenues, such as:

• Leveraging unlabeled nighttime or partially annotated video corpora, even if not strictly egocentric;

• Integrating low-level vision techniques for illumination enhancement or robust feature extraction;
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UniK3DDAV2 SVGGT DACRGB Input

Figure 18: Qualitative results of monodepth estimation in day and night on EgoNight-Oxford dataset, note that DAV2
and SVGGT are shortened for Depth Anything V2 and StreamVGGT respectively.

• Exploring multimodal signals, particularly depth from EgoNight-Synthetic, to improve low-light understand-
ing;

• Developing training-data-free or lightweight adaptation approaches, which are more generalizable across
MLLMs.

(4) EgoNight primarily focuses on day–night illumination shifts, while other real-world challenges such as weather
variations (rain, fog) and extreme camera motion are not covered. We view these as promising directions for future
extensions of EgoNight.

A.8.3 CONTRIBUTION TO THE COMMUNITY

We believe EgoNight will serve as a valuable resource for the research community in several ways. First, it provides
the first benchmark suite dedicated to egocentric nighttime vision, a long-overlooked but practically critical setting
for robust AI assistants. Second, the dataset’s unique day–night alignment enables rigorous analysis of illumination
effects, offering insights that cannot be obtained from prior egocentric benchmarks. Third, by covering multiple tasks,
VQA, day-night correspondence retrieval, and depth estimation, EgoNight provides a comprehensive testbed that can
catalyze progress across both perception and reasoning. Finally, with all data, annotations, and evaluation code to
be released publicly, EgoNight is designed to be easily accessible, extensible, and reproducible, supporting future
research on egocentric vision understanding learning.

A.8.4 USAGE OF LARGE LANGUAGE MODELS (LLMS)

Our annotation pipeline and benchmark evaluation both leverage large language models (LLMs). For data construc-
tion, advanced multimodal LLMs are used to generate initial captions, questions, and pseudo answers, which are then
refined by human annotators. This hybrid model–human approach substantially reduces annotation cost while en-
suring quality. For evaluation, we adopt the LLM-as-a-Judge paradigm to assess the semantic correctness of model
outputs against ground-truth answers, following recent practice in egocentric VQA. Beyond annotation and evalua-
tion, we also used LLMs to support paper preparation, such as generating icons for illustration figures and assisting
with proof-reading. Importantly, while LLMs serve as practical tools throughout our workflow, all core ideas, dataset
design, experiments, and analyses are conceived and conducted independently by the authors.

A.8.5 ETHIC STATEMENT

All indoor egocentric recordings in EgoNight-Sofia were collected with explicit informed consent, and outdoor data is
fully anonymized by blurring faces, license plates, house numbers, and other identifiable details, with audio removed,
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in compliance with GDPR and privacy standards. Before release, all videos will be verified to contain no personally
identifiable information. For EgoNight-Oxford, the subset is derived from the publicly available Oxford Day-and-
Night dataset under the BSD-3-Clause license, which permits redistribution and modification with proper attribution.
We will retain all required license notices and appropriately acknowledge the original dataset.

31


	Introduction
	Related Works
	Egocentric Datasets and VQA Benchmarks
	MLLMs for Video Understanding
	Cross-Domain Generalization

	EgoNight Dataset & Benchmarks
	Video Source Collection
	EgoNight-VQA Benchmark Reconstruction
	Benchmarks Beyond Egocentric VQA

	Experiments
	Evaluated MLLMs & Metrics
	Results on EgoNight-VQA
	More in-depth analysis
	Results on Day-Night Correspondence Retrieval
	Results on Depth Estimation

	Conclusion
	Appendix
	More Video Source Construction Details
	More Benchmark Implementation Details
	EgoNight-VQA Human Labeling

	Comparisons with Prior Egocentric VQA Benchmarks.
	More EgoNight-VQA Explanations and Examples
	QA Type Defination
	QA Examples

	More Experiments Setups
	Setups for EgoNight-VQA Experiments.
	Setups for Day-Night Correspondence Retrieval.
	Setups for Egocentric Depth Estimation at Night.

	More Experimental Results
	More Visualization Results
	EgoNight-VQA
	Day-Night Correspondence Retrieval
	Egocentric Depth Estimation at Night

	More Analysis
	Failurecase Analysis
	Limitations and future works
	Contribution to the Community
	Usage of Large Language Models (LLMs)
	Ethic Statement



