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A Elements of optimization1

In this section, we introduce some basic definition and theory about optimization. In the following2

discussion, we consider a standard form inequality constrained optimization problem:3

min
x∈Rd

f(x)

s.t. gi(x) ≤ 0, i = 1, 2, · · · , n
(1)

In addition, we assume all of those functions f and gi are twice differentiable. A point x ∈ Rd is4

said to be feasible if and only if it satisfies all of the constraints in (1), i.e. gi(x) ≤ 0, i = 1, 2, · · · , n.5

And the Lagrangian of problem (1) is defined as following:6

L(x, λ) = f(x) +

n∑
i=1

λigi(x) (2)

A.1 Karush Kuhn Tucker Conditions7

Now let’s first introduce the Karush Kuhn Tucker (KKT) point and approximate KKT point. Here we8

follows the definition of (ε, δ)-KKT point as in [5].9

Definition A.1 (Definition of KKT point). A feasible point is said to be KKT point of problem (1) if10

there exist λ1, λ2, · · · , λn ≥ 0 such that the following Karush Kuhn Tucker (KKT) conditions hold:11

1. ∇f(x) +
∑n
i=1 λi∇gi(x) = 012

2. λigi(x) = 0,∀i = 1, 2, · · · , n13

Definition A.2 (Definition of (ε, δ)-KKT point). ∀ε, δ > 0, a feasible point is said to be (ε, δ)-KKT14

point of problem (1) if there exist λ1, λ2, · · · , λn ≥ 0 such that:15

1. ||∇f(x) +
∑n
i=1 λi∇gi(x)|| ≤ ε16

2. λigi(x) ≥ −δ, ∀i = 1, 2, · · · , n17

Generally speaking, KKT conditions may be not necessary for global optimum. We need some18

additional regular conditions to obtain the make it necessary, for example, as shown in [1] we can19

require the problem satisfy the following Mangasarian-Fromovitz constraint qualification (MFCQ):20

Definition A.3 (Mangasarian-Fromovitz constraint qualification (MFCQ) ). For a feasible point x of21

(1), problem (1) is said to satisfy (MFCQ) at x if there exist a vector v ∈ Rd such that:22

〈∇xgi(x), v〉 > 0,∀i ∈ [n] (3)
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Moreover, when MFCQ holds we can build a connection between approximate KKT point and KKT23

point, see detailed proof in [1]:24

Theorem A.1 (Relationship between Approximate KKT point and KKT point). Let25 {
xk ∈ Rd : k ∈ N

}
be a sequence of feasible points of (1) , {εk > 0 : k ∈ N} and {δk > 0 : k ∈ N}26

be two sequences. xk is an (εk, δk)-KKT point for every k, and εk → 0, δk → 0. If xk → x as27

k → +∞ and MFCQ holds at x, then x is a KKT point of (P ).28

B Omitted proofs from Section 3.129

Recall our ULPM problem:30

min
W ,H

L(W ,H) = −
K∑
k=1

n∑
i=1

log

(
exp(w>k hk,i)∑K
j=1 exp(w>j hk,i)

)
(4)

Let’s review some basic notation defined in the main body. Let sk,i,j = w>k hk,i −w>j hk,i,∀k ∈31

[K], i ∈ [n], j ∈ [K], the margin of a single feature hk,i is defined to be qk,i(W ,H) :=32

minj 6=k sk,i,j = w>k hk,i −maxj 6=kw
>
j hk,i. We define the neural collapse margin of entire dataset33

as qmin = qmin(W ,H) = mink∈[1,K],i∈[1,n] qk,i(W ,H). Then an immediate result is the relation-34

ship between neural collapse margin and neural collapse.35

Lemma B.1 (Neural Collapse Margin as an Indicator of Neural Collapse). The neural collapse
margin is always smaller than

qmin(W ,H) ≤ ‖W ‖
2
F + ‖H‖2F

2(K − 1)
√
n

and (W ,H) must satisfies the neural collapse conditions when the inequality above is reduced to an36

equality.37

Proof. First we can find that the margin will not change if we minus a vector a for all wj , so38

we can first denote w̃i = wi − 1
n

∑K
i=1 wi and then we have w>k hk,i − maxj 6=kw

>
j hk,i =39

w̃>k hk,i −maxj 6=k w̃
>
j hk,i ≥ qmin(W ,H), that is:40

w̃>k hk,i − w̃>j hk,i ≥ qmin(W ,H),∀j 6= k ∈ [K], i ∈ [n] (5)

Note that
∑K
j=1 w̃

>
j hk,i = 0 then sum this inequality over j we have:41

(K − 1)w̃>k hk,i −
∑
j 6=k

w̃>j hk,i = Kw̃>k hk,i ≥ (K − 1)qmin(W ,H),∀k ∈ [K], i ∈ [n] (6)

By Cauchy inequality, we have:42

1

2
(

1√
n
||w̃k||22 +

√
n||hk,i||22) ≥ w̃>k hk,i ≥

K − 1

K
qmin(W ,H) (7)

Sum (7) over k and i we have:43

1

2

√
n(||W̃ ||2F + ||H||2F ) ≥ n(K − 1)qmin(W ,H) (8)

On the other hands, we know that:44

||W̃ ||2F =

K∑
i=1

||wi −
1

n

K∑
i=1

wi||22 ≤
K∑
i=1

||wi||22 = ||W ||2F (9)

Then we can conclude that:45

qmin(W ,H) ≤ ‖W ‖
2
F + ‖H‖2F

2(K − 1)
√
n

(10)
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as desired. When the equality holds, first we have ||W̃ ||2F = ||W ||2F . The equality holds if and only46

if 1
n

∑K
i=1 wi = 0, w̃i = wi. Take it back into (8), then we must have all of the equality holds in (7)47

and (5), which give us:48

wk =
√
nhk,i, ||wk||22 = n||hk,i||22 =

||W ||2F + ||H||2F
2K

(11)

Take this into (5) we have:49

hk,i = hk,i′ ,h
>
k,ihj,i′ = w>k wj = −||W ||

2
F + ||H||2F

2K(K − 1)
√
n
, (12)

which implies neural collapse conditions.50

Now let’s turn to the training dynamics, our main theorem about training convergence is as following:51

Theorem B.1. For problem (4), let (W (t),H(t)) be the path of gradient flow at time t, if there52

exist a time t0 such that LCE(W (t0),H(t0)) < log 2, then any limit point of {(Ĥ(t), Ŵ (t)) :=53

( H(t)√
‖W (t)‖22+‖H(t)‖22

, W (t)√
‖W (t)‖22+‖H(t)‖22

)} is along the direction of an Karush-Kuhn-Tucker (KKT)54

point of the following minimum-norm separation problem:55

min
W,H

1

2
||W ||2F +

1

2
||H||2F

s.t. ∀k 6= j ∈ [K], i ∈ [n], w>k hk,i −w>j hk,i ≥ 1.

(13)

To prove Theorem B.1, we need to introduce some additional notations. Since the W and H are all56

optimization variable here, we denote θ = vec(W ,H) as the whole parameter for simplicity and all57

of previous function can be defined on θ by matching the corresponding parameter. Denote ρ = ‖θ‖58

as the norm of θ and γ̃ = − log(eL(θ)−1)
ρ2 . Now we can state our first lemma to show how does training59

dynamics of gradient flow on ULPM objective (4) related to a KKT point of (13).60

Lemma B.2. If there exist a time t0 such that L(θ(t0)) < log 2, then for any t > t0 θ̃ :=
θ/qmin(θ)1/2 is a (ε, δ) - approximate KKT point of the following minimum-norm separation problem.
More precisely, we have

ε =

√
2(1− β(t))

γ̃(t)
, δ =

K2(K − 1)n

2γ̃(t)qmin(t)

where:
β = 〈 θ

||θ||2
,
dθ

dt
/||dθ
dt
||2〉

is the angle between θ and its corresponding gradient.61

Proof. The training dynamics is given by gradient flow:62

dθ

dt
= −∂L(θ)

∂θ
(14)

Then by the chain rule we have:63

−dL(θ)

dt
= −∂L

∂θ

dθ

dt
=

∥∥∥∥dθdt
∥∥∥∥2
2

(15)

It indicates that the loss function L is monotonically decreasing. If L(θ(t0)) < log 2, we have64

L(θ(t)) < log 2,∀t > t0. On the other hand,65

L(θ(t)) =

K∑
k=1

n∑
i=1

log(1 +
∑
j 6=k

e−sk,i,j(t)) ≥ log(1 + exp(−qmin(t))) (16)

which gives us qmin(t) > 0,∀t > t0.66

67
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Let g = dθ
dt , note that we can rewrite the ULPM objective function (4) as L(θ) =

∑K
k=1

∑n
i=1 log(1+∑

j 6=k e
−sk,i,j ). By the chain rule and the gradient flow equation we have

g = −∂L
∂θ

K∑
k=1

n∑
i=1

∑
j 6=k

e−sk,i,j

1 +
∑
l 6=k e

−sk,i,l
gk,i,j ,

where gk,i,j is the gradient of sk,i,j , i.e. gk,i,j = ∇θsk,i,j(θ). Now let g̃k,i,j = gk,i,j/q
1/2
min =68

∇θsk,i,j(θ̃) and construct λk,i,j = ρ
||g||2

e−sk,i,j

1+
∑
l 6=k e

−sk,i,l , we only need to show:69

||θ̃ −
K∑
k=1

n∑
i=1

∑
j 6=k

λk,i,j g̃k,i,j ||22 ≤
1− β
γ̃

(17)

70

K∑
k=1

n∑
i=1

∑
j 6=k

λk,i,j(sk,i,j(θ̃)− 1) ≤ K2(K − 1)n

2eqminγ̃
(18)

To prove (17), we only need to compute (Recall that θ̃ = θ/qmin(θ)1/2):

||θ̃ −
K∑
k=1

n∑
i=1

∑
j 6=yn

λk,i,j g̃k,i,j ||22 =
ρ2

qmin
|| θ

||θ||2
− g

||g||2
||22 =

ρ2

qmin
(2− 2β)

Note that:71

γ̃ =
− log(eL(θ) − 1)

ρ2
, L(θ) =

N∑
n=1

log(1 +
∑
j 6=yn

e−snj ) ≥ log(1 + exp(−qmin)) (19)

Then we have the following inequality:72

γ̃ ≤ qmin
ρ2

(20)

take this back into (19) we have (17) as desired.73

74

To prove (18), first by our construction:75

K∑
k=1

n∑
i=1

∑
j 6=k

λk,i,j(sk,i,j(θ̃)− 1) =
ρ

qmin||g||2

K∑
k=1

n∑
i=1

∑
j 6=k

e−sk,i,j

1 +
∑
l 6=k e

−sk,i,l
(sk,i,j − qmin) (21)

Note that ||g||2 ≥
〈
g, θ
||θ||2

〉
= 1

ρ 〈g, θ〉 and 〈gk,i,j , θ〉 = 2sk,i,j since sk,i,j = w>k hk,i −w>j hk,i,76

we have:77

||g||2 ≥
1

ρ
〈g, θ〉 =

1

ρ

K∑
k=1

n∑
i=1

∑
j 6=k

e−sk,i,j

1 +
∑
l 6=k e

−sk,i,l
〈gk,i,j , θ〉

=
2

ρ

K∑
k=1

n∑
i=1

∑
j 6=k

e−sk,i,j

1 +
∑
l 6=k e

−sk,i,l
sk,i,j

≥2

ρ

qmin
K

K∑
k=1

n∑
i=1

∑
j 6=k

e−sk,i,j (since sk,i,j ≥ qmin > 0 and e−sk,i,l ≤ 1)

≥2

ρ

qmin
K

e−qmin

(22)
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Take this inequality back into the (21) we have:78

K∑
k=1

n∑
i=1

∑
j 6=k

λk,i,j(sk,i,j(θ̃)− 1) ≤ Kρ2

2q2min

K∑
k=1

n∑
i=1

∑
j 6=k

eqmin−sk,i,j

1 +
∑
l 6=k e

−sk,i,l
(sk,i,j − qmin)

≤ Kρ2

2q2min

K∑
k=1

n∑
i=1

∑
j 6=k

eqmin−sk,i,j (sk,i,j − qmin)

≤ K

2qminγ̃

K∑
k=1

n∑
i=1

∑
j 6=k

eqmin−sk,i,j (sk,i,j − qmin)

≤ K2(K − 1)n

2eqminγ̃

(23)

Where the last inequality is obtained from the fact xe−x ≤ 1
e ,∀x > 0, which can be proved by some79

elementary calculus.80

Based on the Lemma B.2, we have shown that the (W ,H) will be a (ε, δ)-KKT point, if we can81

show (ε, δ) converge to zero, then by Theorem A.1 we know the limit point will be along the direction82

of a KKT point. Ignoring the constant term, we only have to show how does γ̃(t), β(t) and qmin(t)83

evolves with time t. Now we provide the following lemmas to illustrate the dynamics of them. The84

first lemma aims at proving that the norm of parameter ρ(t) and γ̃(t) is monotonically increasing.85

Lemma B.3. If there exist t0 such that L(θ(t0)) < log 2, then ∀t > t0 we have:86

dρ2

dt
> 0,

dγ̃

dt
≥ 0 (24)

Proof. We can disentangle the whole training dynamics into the following two parts:87

• the radial part: v := θ̂θ̂> dθdt ,88

• the tangent part: u = (I − θ̂θ̂>)dθdt .89

First analyze the radial part, by chain rule: ||v||2 = |θ̂> dθdt | = |
1
ρ

〈
θ, dθdt

〉
| = | 1ρ

1
2
dρ2

dt |. For dρ
2

dt , we90

have the following equation:91

1

2

dρ2

dt
=

〈
θ,
dθ

dt

〉
= 2

K∑
k=1

n∑
i=1

∑
j 6=k

e−sk,i,j

1 +
∑
l 6=k e

−sk,i,l
sk,i,j (25)

where the last equality holds by equation (22).Then when t > t0, we have shown that qmin(t) ≥ 0,92

combine this with the fact sk,i,j ≥ qmin we obtain the first inequality in (24)93

1

2

dρ2

dt
=2

K∑
k=1

n∑
i=1

∑
j 6=k

e−sk,i,j

1 +
∑
l 6=k e

−sk,i,l
sk,i,j

≥2

K∑
k=1

n∑
i=1

∑
j 6=k

e−sk,i,j

1 +
∑
l 6=k e

−sk,i,l
qmin ≥ 0

(26)

Next, we aim to prove the monotonicity of γ̃(t), we compute the derivative of γ̃(t):94

γ̃ =
− log(eL(θ) − 1)

ρ2
,

d

dt
log γ̃ =

d

dt
(log(− log(eL(θ) − 1))− 2 log ρ) (27)

95

d

dt
log(− log(eL(θ) − 1)) =

1

log(eL(θ) − 1)

eL(θ)

eL(θ) − 1

dL(θ)

dt
≥ −dL(θ)

dt

1

qmin

eL(θ)

eL(θ) − 1
(28)
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Recall we have:96

1

2

dρ2

dt
=2

K∑
k=1

n∑
i=1

∑
j 6=k

e−sk,i,j

1 +
∑
l 6=k e

−sk,i,l
sk,i,j

≥2

K∑
k=1

n∑
i=1

∑
j 6=k e

−sk,i,j

1 +
∑
j 6=k e

−sk,i,j
qmin

=

K∑
k=1

n∑
i=1

log(1 +
∑
j 6=k

e−sk,i,j )
1

log(1 +
∑
j 6=k e

−sk,i,j )

∑
j 6=k e

−sk,i,j

1 +
∑
j 6=k e

−sk,i,j
qmin

≥2

K∑
k=1

n∑
i=1

log(1 +
∑
j 6=k

e−sk,i,j )
eL(θ) − 1

L(θ)eL(θ)
qmin

=2
eL(θ) − 1

eL(θ)
qmin

(29)

Then second last line is because the definition of th loss function L(θ) =
∑K
k=1

∑n
i=1 log(1 +97 ∑

j 6=k e
−sk,i,j ) ≥ log(1 +

∑
j 6=k e

−sk,i,j ) and the monotonicity of ex−1
xex (in fact, d

dx
ex−1
xex =98

e−x(x−ex+1)
x2 ≤ 0,∀x > 0).99

As a result, we notice that100

1

2

d

dt
log γ̃(t) ≥ −

(
1

2

dρ2

dt

)−1
dL
dt
− d

dt
log ρ (30)

At the same time, we notice that ‖v‖22 = 1
ρ2

(
1
2
dρ2

dt

)2
= 1

2
dρ2

dt ·
d
dt log ρ on the one hand, and by the

chain rule:
d

dt
θ̂ =

1

ρ2

(
ρ
dθ

dt
− dρ

dt
θ

)
=

1

ρ2

(
ρ
dθ

dt
−
(
θ̂>
dθ

dt

)
θ

)
=
u

ρ

Combine this with radial term:

−dL
dt

=

∥∥∥∥dθdt
∥∥∥∥2
2

= ‖v‖22 + ‖u‖22 =
1

2

dρ2

dt
· d
dt

log ρ+ ρ2

∥∥∥∥∥dθ̂dt
∥∥∥∥∥
2

2

Dividing 1
2
dρ2

dt on both sides, we have101

−dL
dt
·
(

1

2

dρ2

dt

)−1
=

d

dt
log ρ+

(
d

dt
log ρ

)−1 ∥∥∥∥∥dθ̂dt
∥∥∥∥∥
2

2

(31)

d

dt
log ρ+

(
d

dt
log ρ

)−1 ∥∥∥∥∥dθ̂dt
∥∥∥∥∥
2

2

≤ −dL(θ)

dt

1

qmin

eL(θ)

2(eL(θ) − 1)
(32)

Now by equation (27) and (28) we obtain:102

1

2

d

dt
log γ̃ ≥ −dL(θ)

dt

1

qmin

eL(θ)

2
(
eL(θ) − 1

) − d

dt
log ρ ≥

(
d

dt
log ρ

)−1 ∥∥∥∥∥dθ̂dt
∥∥∥∥∥
2

2

(33)

By (26) we know the ρ is monotonically increasing, we have d
dt log ρ > 0 and then we get the second103

inequality in (24)104

Lemma B.3 gives us the monotonicity of γ̃, note that since the loss function L(θ(t0)) < log 2, we105

have γ̃(t) ≥ γ̃(t0) > 0, then we can treat γ̃(t) in Lemma B.2 as a positive constant. The remaining106

work is to show qmin(t) grows to infinity and β(t)→ 1. To show qmin(t)→∞, it’s equivalent to107

show L(t)→ 0 and we have the following lemma:108
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Lemma B.4. If there exist t0 such that L(θ(t0)) < log 2, then L(θ) → 0 and qmin(θ) → ∞ as109

t→∞110

Proof. By (15) and (25), the evolution of loss function L(θ) can be written as:

dL(θ)

dt
= −

∥∥∥∥dθdt
∥∥∥∥2
2

≤ −
〈
dθ

dt
,

θ

||θ||2

〉2

= −(2

K∑
k=1

n∑
i=1

∑
j 6=k

e−sk,i,j

1 +
∑
l 6=k e

−sk,i,l
sk,i,j)

2

Combine it with (16),(26) and (29) we have:111

2

K∑
k=1

n∑
i=1

∑
j 6=k

e−sk,i,j

1 +
∑
l 6=k e

−sk,i,l
sk,i,j ≥ 2

eL(θ) − 1

eL(θ)
qmin ≥ −2

eL(θ) − 1

eL(θ)
log(eL(θ) − 1) (34)

which indicates:112

dL(θ)

dt
≤ −4(

eL(θ) − 1

eL(θ)
log(eL(θ) − 1))2 (35)

Since we have shown thatL is monotonically decreasing, then if theL doesn’t decrease to zero, it must113

stay larger than a positive number C1 > 0 and we know that ∃C2, C3 > 0 such that C2 < eL(θ) <114

C3 < log 2,∀t > t0 which further implies ∃C4 > 0 such that (eL(θ) − 1) log((eL(θ) − 1)) < −C4115

Take them back into (36), we must have:116

dL(θ)

dt
≤ − 4

eL(θ)
C2

4 ≤ −C2
4 (36)

Then we know that the loss function will exponentially decrease to zero and contradicts with previous117

assumption. Thus we must have L(θ)→ 0 and combine this with qmin ≥ − log(eL(θ)− 1) we know118

qmin(θ)→∞ as desired.119

To bound β(t), we first need an useful lemma to bound the changes of the direction of θ.120

Lemma B.5. If there exist t0 such that L(θ(t0)) < log 2, then for any t > t0121 ∥∥∥∥∥dθ̂dt
∥∥∥∥∥ ≤ 1

γ̃(t0)

d

dt
log ρ (37)

Proof. First we know that:122 ∥∥∥∥∥dθ̂dt
∥∥∥∥∥
2

=
1

ρ

∥∥∥∥(I − θ̂θ̂>)
dθ

dt

∥∥∥∥
2

≤ 1

ρ

∥∥∥∥dθdt
∥∥∥∥ (38)

123 ∥∥∥∥dθdt
∥∥∥∥
2

=

∥∥∥∥∥∥
K∑
k=1

n∑
i=1

∑
j 6=k

e−sk,i,j

1 +
∑
l 6=k e

−sk,i,l
gk,i,j

∥∥∥∥∥∥ ≤
K∑
k=1

n∑
i=1

∑
j 6=k

e−sk,i,j

1 +
∑
l 6=k e

−sk,i,l
‖gk,i,j‖ (39)

Recall our gk,i,j =
∂sk,i,j
∂θ and sk,i,j = w>k hk,i −w>j hk,i, we can find that ‖gk,i,j‖ ≤ 2ρ. On the124

other hand, Combine it with (25) and (20) we have:125 ∥∥∥∥∥dθ̂dt
∥∥∥∥∥
2

≤ 1

ρ

∥∥∥∥dθdt
∥∥∥∥ ≤ 1

2qmin

dρ2

dt
=

ρ2

qmin

d

dt
log ρ ≤ 1

γ̃

d

dt
log ρ ≤ 1

γ̃(t0)

d

dt
log ρ (40)

as desired. Where the second inequality holds by multiple ρ
qmin

on the right hand of (39) and the126

formulation of dρ
2

dt in equation (25), and the last inequality holds since we have shown that γ̃(t) is127

monotonically increasing in (B.3) and γ̃(t0) > 0 since L(t0) < log 2.128

Let’s turn back to β, though we can’t show directly that it increase to one, we can find a sequence of129

time {tm} for each limit point such that β(tm)→ 1130

Lemma B.6. If there exist t0 such thatL(θ(t0)) < log 2, then for every limit point θ̄ of {θ̂(t) : t ≥ 0},131

there exists a sequence of time {tm > 0 : m ∈ N} such that tm →∞, θ̂ (tm)→ θ̄, and β (tm)→ 1132
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Proof. Recall in equation (33) we have shown that:133

d

dt
log γ̃ ≥ 2

(
d

dt
log ρ

)−1 ∥∥∥∥∥dθ̂dt
∥∥∥∥∥
2

2

(41)

Since d
dt log ρ = 1

ρ
dρ
dt = 1

2ρ2
dρ2

dt = 1
ρ2

〈
θ, dθdt

〉
and:

dθ̂

dt
=

d

dt

θ

‖θ‖
=

1

ρ2
(ρ
dθ

dt
− 1

ρ
θθ>

dθ

dt
) =

1

ρ
(I − θ̂θ̂>)

dθ

dt

Plug them into (41) we have:134

d

dt
log γ̃ ≥ 2

∥∥dθ
dt

∥∥2
2
−
〈
θ̂, dθdt

〉2
〈
θ̂, dθdt

〉2 d

dt
log ρ = 2(β−2 − 1)

d

dt
log ρ (42)

For any t2 > t1 > t0, integrate both sides from time t2 to t1 we have: log γ̃(t2) − log γ̃(t1) ≥135

2
∫ t2
t1

(β(t)−2 − 1) ddt log ρdt. By the continuity of β we know there exist a time t∗ such that:136

log γ̃(t2)− log γ̃(t1) ≥ 2

∫ t2

t1

(β(t)−2 − 1)
d

dt
log ρdt

= 2(β(t∗)−2 − 1)

∫ t2

t1

d

dt
log ρdt

= 2(β(t∗)−2 − 1)(log ρ(t2)− log ρ(t1))

(43)

By (20) we know that γ̃ ≤ qmin
ρ2 and the right hand is bounded, and the γ̃ is monotonically increasing,137

then there exist γ̃∞ such that γ̃(t) ↑ γ̃∞.138

Now we are ready to construct the sequence of tm, first take a sequence of {εm > 0,m ∈ N} such139

that εm → 0. We construct tm by induction, suppose we have already find t1 < t2 < · · · < tm−1140

satisfy our requirement, since θ̄ is a limit point of {θ̂(t) : t > 0}, then we can find a time sm such141

that:142

‖θ̂(sm)− θ̄‖ ≤ εm, log
γ̃∞
γ̃(sm)

≤ ε3m (44)

By the monotonicity and continuity of ρ we can find a time s′m such that log ρ(s′m)− log ρ(sm) ≤ εm.143

Take t2 = s′m, t1 = sm in (43), there exist a time tm such that:144

2(β(tm)−2 − 1) ≤ log γ̃(t2)− log γ̃(t1)

log ρ(t2)− log ρ(t1)
≤ ε2m (45)

on the other hand, by Lemma B.5 we have:145

‖θ̂(tm)− θ̄‖ ≤‖θ̂(sm)− θ̄‖+ ‖θ̂(sm)− θ̂(tm)‖

≤εm +
1

γ̃(t0)
(log ρ(tm)− log ρ(sm)) ≤ (1 +

1

γ̃(t0)
)εm

(46)

Note that
〈
θ, dθdt

〉
> 0, then by definition we know β > 0. Combine equation (45) and (46) we have146

β(tm)→ 1 and θ̂(tm)→ θ̄ as desired.147

Now we are ready to prove the Theorem B.1:148

Proof. By Lemma B.2, we know that once t > t0, then (W (t),H(t))/qmin(W (t),H(t)) is an

(
√

2(1−β(t))
γ̃(t) , K

2(K−1)n
2γ̃(t)qmin(t)

) -approximate KKT point. We have shown that γ̃(t) > γ̃(t0) > 0 in

Lemma B.3, qmin → ∞ in Lemma B.4. And from Lemma B.6, for any limit point (W̄ , H̄)

of {(Ĥ(t), Ŵ (t)) := ( H(t)√
‖W (t)‖22+‖H(t)‖22

, W (t)√
‖W (t)‖22+‖H(t)‖22

)}, there exists a sequence of time

{tm > 0 : m ∈ N} such that tm → ∞, β(tm) → 1 and (Ĥ(tm), Ŵ (tm)) → (W̄ , H̄). Then
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(W̄ , H̄) is along the direction of a limit point of a sequence of (ε, δ)-approximate KKT point with
ε, δ → 0. On the other hand, we can verify that the problem (13) satisfies MCFQ (A.3) by simply
setting v = θ, then:

〈∇sk,i,j , θ〉 = 2sk,i,j ≥ 0

Now by Theorem A.1 we know (W̄ , H̄) is along the direction of a KKT point of problem (13)149

Theorem B.1 characterize the convergence behaviour of gradient flow, under separable conditions the150

limit point is along the direction of a KKT point of (13), next we show that the global minimum of151

(13) must satisfies neural collapse conditions152

Theorem B.2. Every global optimum of the minimum-norm separation problem (13) is also a KKT153

point and it satisfies the neural collapse conditions.154

Proof. Since we have shown that the problem (13) satisfy MCFQ, then the KKT conditions are155

necessary for global optimality, we only need to show the global optimum satisfy neural collapse156

conditions. First the constraints in (13) can be transformed to be a single constraint by the definition157

of neural collapse margin:158

∀k 6= j ∈ [K], i ∈ [n], w>k hk,i −w>j hk,i ≥ 1.⇔ qmin(W ,H) ≥ 1 (47)

Note that the neural collapse margin is homogeneous:159

qmin(αW , αH) = α2qmin(W ,H),∀α ∈ R (48)

Then for any point (W ,H) satisfies qmin(W ,H) > 0, after an appropriate scaling α,160

(αW , αH),∀α2 ≥ 1/qmin(W ,H) is feasible for (13). Take optimum among all scaling fac-161

tor α we know the minimum norm is attained if and only if α2 = 1/qmin(W ,H). And the optimum162

norm is:163
1

2
||αW ||2F +

1

2
||αH||2F =

1

2qmin(W ,H)
(||W ||2F + ||H||2F ) (49)

Then by lemma B.1 we have:164

1

2qmin(W ,H)
(||W ||2F + ||H||2F ) ≥ 2(K − 1)

√
n (50)

And the global optimum is attained only when (W ,H) satisfies neural collapse conditions165

C Omitted proofs from Section 3.2166

Let’s first finish the computation of the motivating example:167

Example C.1 (A Motivating Example). Consider the case when K = 4, n = 1, let (W ,H) be the168

following point:169

W = H = C

 1 −1 0 0
−1 1 0 0
0 0 1 −1
0 0 −1 1

 (51)

Verify this (W ,H) can classify all of the features perfectly is trivial since:170

WH = 2C2

 1 −1 0 0
−1 1 0 0
0 0 1 −1
0 0 −1 1

 (52)

It’s straightforward to verify it is along the direction of a KKT point of the minimum-norm separation171

problem (13) by our construction of Λ: (Note that the W ,H should be normalized by dividing172

2
√

2C)173

Λ =


0 0 1

2
1
2

0 0 1
2

1
2

1
2

1
2 0 0

1
2

1
2 0 0

 (53)
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Now it only remains to show ∀ε > 0, we can find (W ′,H ′) such that:174

||W ′||2F = ||W ||2F , ||H
′||2F = ||H||2F ,

||W ′ −W ||2F + ||H ′ −H||2F < ε,L(W ′,H ′) ≤ L(W ,H)
(54)

Without loss of generality, we only compute the case when C = 1 for simplicity and one can easily175

generalize it to any C 6= 0 by similar strategy. Here the (W ′,H ′) is constructed as below,176

W ′ =

√
1

1 + 2α2

 1 + α −1 + α α α
−1 + α 1 + α α α
−α −α 1− α −1− α
−α −α −1− α 1− α



H ′ =

√
1

1 + 2α2

 1 + α −1 + α −α −α
−1 + α 1 + α −α −α
α α 1− α −1− α
α α −1− α 1− α


(55)

Note that when α = −1 we have (W ′,H ′) = (W ,H). First we can compute:177

W ′H ′ =
1

1 + 2α2

 2 + 4α2 4α2 − 2 −4α2 −4α2

4α2 − 2 2 + 4α2 −4α2 −4α2

−4α2 −4α2 2 + 4α2 4α2 − 2
−4α2 −4α2 4α2 − 2 2 + 4α2

 (56)

and:178

L(W ′,H ′) =− 4 log
e2

e2 + e
2 2α2−1

1+2α2 + 2e
−2 2α2

1+2α2

(57)

Our aim is to show ∀ε > 0, there exist α such that |α| < ε and L(W ′,H ′) < L(W ,H), if that is179

true, since ‖W ′‖F = ‖W ‖F , ‖H ′‖F = ‖H‖F and ||W ′ −W ||2F + ||H ′ −H||2F → 0 as α→ 0,180

the requirement in (56) holds immediately. By the monotonicity of L(W ′,H ′), it’s sufficient to181

show that f(α) , e2
2α2−1

1+2α2 + 2e
−2 2α2

1+2α2 < f(0). Then take the derivative of f(α) we have:182

f ′(α) = e
4α2−2

1+2α2

(
8α

1 + 2α2
−

8α
(
2α2 − 1

)
(1 + 2α2)

2

)
+ 2e

− 4α2

1+2α2

(
16α3

(1 + 2α2)
2 −

8α

1 + 2α2

)
(58)

183

f ′′(α) = e
4α2−2

1+2α2

(
8α

1 + 2α2
−

8α
(
2α2 − 1

)
(1 + 2α2)

2

)2

+ 2e
− 4α2

1+2α2

(
16α3

(1 + 2α2)
2 −

8α

1 + 2α2

)2

+ e
4α2−2

1+2α2

(
− 64α2

(1 + 2α2)
2 +

64
(
2α2 − 1

)
α2

(1 + 2α2)
3 +

8

1 + 2α2
−

8
(
2α2 − 1

)
(1 + 2α2)

2

)

+ 2e
− 4α2

1+2α2

(
80α2

(1 + 2α2)
2 −

8

1 + 2α2
− 128α4

(1 + 2α2)
3

) (59)

Now we can find that f ′(0) = 0 and f ′′(0) = 16( 1
e2 − 1) < 0. Since the function f(α) is continuous184

twice differentiable, we can conclude that ∀ε > 0 we can find α such that (W ′,H ′) satisfy our185

requirement in (56). �186

Now we can first characterize the global optimum of our ULPM objective by some similar strategy as187

used in proving Lemma B.1188

Theorem C.1. The optimal value of loss function (4) on a sphere is attained (i.e. L(W ,H) ≤189

L(W ′,H ′),∀||W ′||2F +||H ′||2F = ||W ||2F +||H||2F ) if only if the (W ,H) satisfies neural collapse190

conditions and ||W ||F = ||H||F .191

Proof. Again we rewrite the ULPM objective by introducing sk,i,j = w>k hk,i −w>j hk,i:192

L(W ,H) =

K∑
k=1

n∑
i=1

log(1 +
∑
j 6=k

exp(−sk,i,j)) (60)
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In addition, we can find that centralizing wi doesn’t change the value of sk,i,j . Let w̃i = wi −193

1
K

∑K
k=1 wk,∀i ∈ [K], then sk,i,j = w>k hk,i −w>j hk,i = w̃>k hk,i − w̃>j hk,i and

∑K
i=1 w̃i = 0.194

First by the strict convexity of ex and Jensen Inequality:195

L(W ,H) ≥
K∑
k=1

n∑
i=1

log(1 + (K − 1)exp(
1

K − 1

∑
j 6=k

−sk,i,j))

=

K∑
k=1

n∑
i=1

log(1 + (K − 1)exp(−Kw̃>k hk,i
K − 1

))

(61)

Where the last equality is obtained from:196 ∑
j 6=k

sk,i,j =
∑
j 6=k

w̃>k hk,i − w̃>j hk,i = (K − 1)w̃>k hk,i −
∑
j 6=k

w̃>j hk,i = Kw̃>k hk,i (62)

Now again by the strict convexity of log(1 + (K − 1) exp(−x)) and Jensen inequality, we have:197

L(W ,H) ≥
K∑
k=1

n∑
i=1

log(1 + (K − 1)exp(−Kw̃>k hk,i
K − 1

))

≥ nK log(1 + (K − 1)exp(− 1

n(K − 1)

K∑
k=1

n∑
i=1

w̃>k hk,i))

≥ nK log(1 + (K − 1)exp(− 1

2n(K − 1)

K∑
k=1

n∑
i=1

1√
n
‖w̃k‖2 +

√
n‖hk,i‖2))

≥ nK log(1 + (K − 1)exp(− 1

2
√
n(K − 1)

(‖W ‖2F + ‖H‖2F )))

(63)

Where the last inequality holds since ‖W ‖2F =
∑K
k=1 ‖wk‖2 ≥

∑K
k=1 ‖wk‖2− 1

K ‖
∑K
k=1 wk‖2 =198 ∑K

k=1 ‖w̃k‖2.199

When all of the above inequality reduce to equality, we must have:200

1.
∑K
i=1 wi = 0, w̃i = wi (the last inequality in (63))201

2. wk =
√
nhk,i,∀i ∈ [n] (the third inequality in (63))202

3. ‖wk‖ = ‖wk′‖, ‖hk,i‖ = ‖hk′,j‖,∀k, k′ ∈ [K], i, j ∈ [n] (the second inequality in (63))203

4. sk,i,j = w>k hk,i − w>j hk,i = K
K−1w

>
k hk,i,∀k, j ∈ [K], i ∈ [n] (the first inequality in204

(61))205

These four conditions are exactly equivalent to neural collapse conditions and ‖W ‖F = ‖H‖F206

The global optimality is not enough to illustrate how does gradient flow converge to neural collapse207

since there may exist some bad local minimum. W e will provide the following second order analysis208

to eliminate spurious local minimum. First define the cross entropy loss on a matrix Z ∈ RK×nK :209

L(Z) =

K∑
k=1

n∑
i=1

− log
ezk,i,j∑K
l=1 e

zk,i,l
(64)

where zk,i,j denote the j-th row and (k − 1)K + i-th column elements of Z. Then we have210

L(W ,H) = L(WH) . Now compute the gradient of L(Z) to each element:211

∂L(Z)

∂zk,i,k
= −1 +

zk,i,k∑K
l=1 e

zk,i,l

∂L(Z)

∂zk,i,j
=

zk,i,j∑K
l=1 e

zk,i,l
,∀k 6= j

(65)
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If u ∈ RK satisfies u>∇L(Z) = 0, denote up as the maximum element of u, then we have:212

0 = up
∂L(Z)

∂zp,i,p
+
∑
q 6=p

uq
∂L(Z)

∂zp,i,q
=up(−1 +

zp,i,p∑K
l=1 e

zp,i,l
) +

∑
q 6=p

uq
zp,i,q∑K
l=1 e

zp,i,l

=−
∑
q 6=p

(up − uq)
zp,i,q∑K
l=1 e

zp,i,l
≤ 0

(66)

Where the last inequality holds if and only if uq = up,∀q ∈ [K]. Which indicates that the rank of213

∇L(Z) is K − 1 and u>∇L(Z) = 0⇔ u = 1. Again we introduce the definition of tangent space:214

Definition C.1 (tangent space). The tangent space of (W ,H) is defined to be a set of directions that215

are orthogonal to (W ,H) :216

T (W ,H) = {∆W ∈ RK×d,∆H ∈ Rd×nK) : 〈∇WL(W ,H),∆W 〉+〈∇HL(W ,H),∆H〉 = 0}
(67)

Now we are ready to state our result about the landscape of ULPM in the tangent space:217

Theorem C.2. If (W ,H) is not the optimal solutions in Theorem C.1 and qmin(W ,H) > 0, then218

∃(∆W ,∆H) ∈ T (W ,H),M > 0 such that219

∀0 < δ < M,L(W + δ∆W ,H + δ∆H) ≤ L(W ,H) (68)

. Further more, it implies that ∀ε > 0,∃(W ′,H ′) such that:220

||W ′||2F + ||H ′||2F = ||W ||2F + ||H||2F ,
||W ′ −W ||2F + ||H ′ −H||2F < ε,L(W ′,H ′) ≤ L(W ,H)

(69)

Proof. First compute the gradient of ULPM objective (4), by the chain rule we have:

∇WL(W ,H) = ∇L(WH)H>,∇HL(W ,H) = W>∇L(WH)

If there exist a vector (∆W ,∆H) ∈ T (W ,H) such that 〈∇WL(W ,H),∆W 〉 +221

〈∇HL(W ,H),∆H〉 6= 0, moreover we can assume 〈∇WL(W ,H),∆W 〉 +222

〈∇HL(W ,H),∆H〉 < 0 since we can take the negative direction if the formula is greater than223

zero, then by Taylor expansion:224

L(W + δ∆W ,H + δ∆H) = L(W ,H) + δ〈∇WL(W ,H),∆W 〉+ δ〈∇HL(W ,H),∆H〉+O(δ2)
(70)

we know that (∆W ,∆H) satisfies our requirement.225

226

Now let’s discuss the case when:

〈∇WL(W ,H),∆W 〉+ 〈∇HL(W ,H),∆H〉 = 0,∀(∆W ,∆H) ∈ T (W ,H)

by definition of T (W ,H), it contains all vectors that are orthogonal to (W ,H), so227

(∇WL(W ,H),∇HL(W ,H)) is parallel to (W ,H), that is, there exist λ such that:228

∇L(WH)H> = λW ,W>∇L(WH) = λH (71)

Further more, from equation (25) and dθ
dt = −∂L∂θ , we know that qmin(W ,H) > 0 implies the229

inner product of (W ,H) and (∇WL(W ,H),∇HL(W ,H)) must be negative and thus λ < 0230

If there doesn’t exist (∆W ,∆H) satisfies the requirement, we know that for any feasible curve231

φ(t) = (W (t),H(t)) with φ(0) = (W ,H) on the sphere S = {(W ′,H ′) : ‖W ′‖2F + ‖H ′‖2F =232

‖W ‖2F + ‖H‖2F }, we know that t = 0 admits the local minimum of L(φ(t)) and thus:233

0 ≤ d2

dt2
L(φ(t))|t=0 = φ′(0)T∇2L(W ,H)φ′(0) +∇L(W ,H)φ′′(0) (72)

On the other hand, since the curve lies on the sphere S , denote h(W ,H) = ‖W ‖2F + ‖H‖2F , then234

h(φ(t)) must stay as a constant, take twice derivative we have:235

0 =
d2

dt2
h(φ(t))|t=0 = φ′(0)T∇2h(W ,H)φ′(0) +∇h(W ,H)φ′′(0) (73)
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Then sum these two conditions together, we have:236

0 ≤ d2

dt2
(L(φ(t))− λ

2
h(φ(t)))|t=0 = φ′(0)T∇2(L − λ

2
h)(W ,H)φ′(0) +∇(L − λ

2
h)(W ,H)φ′′(0)

(74)
By equation (71) we know that ∇(L − λ

2h)(W ,H) = 0 Note that φ′(0) ∈ T (W ,H) since the237

curve lies on S and for any (∆W ,∆H) ∈ T (W ,H) we can construct a curve φ(t) such that238

φ′(0) = (∆W ,∆H). Then (74) indicates that ∀(∆W ,∆H) ∈ T (W ,H) we have:239

0 ≤(∆W ,∆H)>∇2L(W ,H)(∆W ,∆H)− λ

2
(∆W ,∆H)>∇2h(W ,H)(∆W ,∆H)

=(∆W ,∆H)>∇2L(W ,H)(∆W ,∆H)− λ(‖∆W ‖2F + ‖∆H‖2F )

(75)

Since λ < 0, combine the two equations in (71) we know:240

λW>W = W>∇L(WH)H> = λHH> ⇒W>W = HH> (76)

which further implies:241

||W ||F = ||H||F , ||W ||2 = ||H||2 (77)
On the other hands, we also have (Note that when W = H = 0 we must have λ = 0):242

∇L(WH)H> = λW ⇒ −λ||W ||2 ≤ ||∇L(WH)||2||H||2
⇒ −λ ≤ ||∇L(WH)||2

Now when −λ < ||∇L(WH)||2, we can show that it will contradict with (75): We have shown that243

the rank of ∇L(Z) is K − 1, so by (71) and (76) there exist a vector a such that W a = H>a = 0,244

let u and v are the left and right singular vectors corresponding to the largest singular value of245

∇L(WH), construct ∆W = ua>,∆H = −av>, then (∆W ,∆H) ∈ T (W ,H) and:246

(∆W ,∆H)>∇2L(W ,H)(∆W ,∆H)− λ(‖∆W ‖2F + ‖∆H‖2F )

=(W∆H + ∆WH)∇2L (WH) (W∆H + ∆WH) + 2 〈∇L(WH),∆W∆H〉 − λ(‖∆W ‖2F + ‖∆H‖2F )

≤2||a||22(−λ− u>∇L(WH)v) < 0

Then it only remains to analyze the −λ = ||∇L(WH)||2 cases, construct another convex optimiza-247

tion problem:248

min
Z
L(Z)− λ||Z||∗ (78)

suppose Z has SVD Z = UΣV >, as we know that the subgradient of ||Z||∗ can be written as (see249

[6] for a proof):250

∂‖Z‖∗ =
{
UV > + W ,W ∈ RK×nK | U>W = 0,WV = 0, ‖W ‖2 ≤ 1

}
(79)

On the other hand, we know that:251

H>HH>H = H>W>WH = V Σ2V >

WW>WW> = WHH>W> = UΣ2U> (80)

which indicates that H>H = V ΣV > and WW> = UΣU>. Combine them with (71) we have:252

∇L(WH)H>H = λWH ⇔ ∇L(WH)V ΣV > = λUΣV >

⇔ ∇L(WH)V = λU

WW>∇L(WH) = λWH ⇔ UΣU>∇L(WH) = λUΣV >

⇔ U>∇L(WH) = λV >

(81)

Note that −λ = ||∇L(WH)||2, then by (79) we know that −∇L(WH) ∈ −λ∂‖WH‖∗. Then253

by the strict convexity of (85) we know WH is the global minimum of it. In addition, we have254

‖W ‖2F + ‖H‖2F = 2tr(Σ2) = 2‖WH‖∗. In addition, previous works [2] have shown that:255

‖Z‖∗ = min
Z=WH

1

2

(
‖W ‖2F + ‖H‖2F

)
(82)
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which is equivalent to:256

‖WH‖∗ ≤
1

2
(‖W ‖2F + ‖H‖2F ) (83)

Now for any (W ′,H ′), we know that:257

L(W ,H)− λ

2
(‖W ‖2F + ‖H‖2F ) = L(WH)− λ‖WH‖∗ ≤ L(W ′H ′)− λ‖W ′H ′‖∗

≤ L(W ′,H ′)− λ

2
(‖W ′‖2F + ‖H ′‖2F )

(84)

which indicates (W ,H) must attained global minimum of the following optimization problem:258

min
W ,H

L(W ,H)− λ

2
(‖W ‖2F + ‖H‖2F ) (85)

If (W ,H) doesn’t satisfies neural collapse conditions, by Theorem C.1 we know there exists another259

point (W ′,H ′) such that L(W ′,H ′) < L(W ,H) and ‖W ‖2F +‖H‖2F = ‖W ′‖2F +‖H ′‖2F thus:260

261

L(W ,H)− λ

2
(‖W ‖2F + ‖H‖2F ) > L(W ′,H ′)− λ

2
(‖W ′‖2F + ‖H ′‖2F ) (86)

which contradicts with the global optimality of (W ,H), thus (W ,H) must satisfy all of the neural262

collapse conditions and we finish the proof.263

D Experiment details and additional results264

In addition to the experiments in Section 4, we also train a ResNet18 [3] on FashionMNIST, a265

VGG-13 and another ReesNet18 on CIFAR-10 dataset [4]. All the networks are trained for 500266

epochs, using a stochastic gradient descent with learning rate 0.01, momentum 0.3, batch size 128 and267

in particular, without weight decay. The results are plotted in Figure 4, Figure 5 and Figure 6. Again,268

we observe that in all three experiments, after 100 epochs, the variation of norms become small after269

500 epochs; the with-in class variation decreases at rate O(1/ log(t))); the cosines between pairs of270

last layer features and that of the classifiers converge to the equiangular state with maximum angles271

at rate O(1/ log(t))); The distance between normalized centered classifier and normalized last layer272

feature decreases at rate O(1/ log(t))). All the experiments are run in Python (version 3.6.9) on273

Google Colab.274
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Figure 4: Training ResNet18 without weight decay on FashionMNIST. The scale of the axes are set to be the
same as that in Figure 3. The patterns of the curves are also similar to those in Figure 3.
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Figure 5: Training VGG-13 without weight decay on CIFR-10. The scale of the axes are set to be the same as
that in Figure 3.
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Figure 6: Training ResNet18 without weight decay on CIFAR-10. The scale of the axes are set to be the same
as that in Figure 3.
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