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1 A Elements of optimization

2 In this section, we introduce some basic definition and theory about optimization. In the following
3 discussion, we consider a standard form inequality constrained optimization problem:

min f(x)
zeR _ (1)
s.t.gi(x) <0,i=1,2,---,n
4 In addition, we assume all of those functions f and g; are twice differentiable. A point z € R¢ is
5 said to be feasible if and only if it satisfies all of the constraints in (1), i.e. g;(xz) < 0,i=1,2,--- ,n.
6 And the Lagrangian of problem (1) is defined as following:

L N) = £)+ 37 hilo) @)

7 A.l Karush Kuhn Tucker Conditions
8 Now let’s first introduce the Karush Kuhn Tucker (KKT) point and approximate KKT point. Here we
o follows the definition of (¢, §)-KKT point as in [5].

10 Definition A.1 (Definition of KKT point). A feasible point is said to be KKT point of problem (1) if
11 there exist A1, A2, - -+ , A, > 0 such that the following Karush Kuhn Tucker (KKT) conditions hold:

12 1. Vi(z)+ > AiVg(x) =0

13 2. Nigi(x)=0,Vi=1,2,---.n

14 Definition A.2 (Definition of (¢, §)-KKT point). Ve, d > 0, a feasible point is said to be (e, §)-KKT
15 point of problem (1) if there exist A1, Ag, - -+ , A, > 0 such that:

16 L (IVf(z) + 32 AiVgi(@)l| < e

17 2. Nigi(x) > =6,Vi=1,2,--- ,n

8 Generally speaking, KKT conditions may be not necessary for global optimum. We need some
9 additional regular conditions to obtain the make it necessary, for example, as shown in [1] we can
o require the problem satisfy the following Mangasarian-Fromovitz constraint qualification (MFCQ):

N =

21 Definition A.3 (Mangasarian-Fromovitz constraint qualification (MFCQ) ). For a feasible point x of
2 (1), problem (1) is said to satisfy (MFCQ) at «x if there exist a vector v € R? such that:

(Vagi(z),v) > 0,Vi € [n] 3)

n
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Moreover, when MFCQ holds we can build a connection between approximate KKT point and KKT
point, see detailed proof in [1]:

Theorem A.1 (Relationship between Approximate KKT point and KKT point). Let
{z € R : k € N} be a sequence of feasible points of (1), {ex > 0 : k € N} and {6, > 0 : k € N}
be two sequences. xy, is an (e, 0r)-KKT point for every k, and ¢, — 0,0 — 0. If xx, — x as
k — 400 and MFCQ holds at x, then x is a KKT point of (P).

B Onmitted proofs from Section 3.1

Recall our ULPM problem:

n

K Th )
min LW, H) ==Y S ) @

log ( T
k=1 i=1 > e eXP(’ijhk,i)

Let’s review some basic notation defined in the main body. Let s ; ; = wghkﬂ- — 'ijhk,,', vk €
[K],i € [n],j € [K], the margin of a single feature hy ; is defined to be g (W, H) =
mingy Sk = w;hm — max;-k w;-rh;mv. We define the neural collapse margin of entire dataset
as ¢min = qmin(W, H) = minge(1 x),ic[1,n] &,«(W, H). Then an immediate result is the relation-
ship between neural collapse margin and neural collapse.

Lemma B.1 (Neural Collapse Margin as an Indicator of Neural Collapse). The neural collapse
margin is always smaller than

W% + | H|7
2K — 1)v/n

and (W, H) must satisfies the neural collapse conditions when the inequality above is reduced to an
equality.

Qmin(W7 H) S

Proof. First we can find that the margin will not change if we minus a vector a for all w;, so
we can first denote W, = w; — %Zle w; and then we have w)] hy; — max;, w] hy; =
W), hyi — max;sp W, Py > Gin (W, H), that is:
W) hiei — W) i > Gin(W, H),Vj # k € [K],i € [n] (5)

Note that Z;il ﬁJjTh;m' = 0 then sum this inequality over j we have:

(K = Vv by — > W) hii = Ko by i > (K = 1)qumin(W, H),VE € [K],i € [n]  (6)

ik

By Cauchy inequality, we have:

1, 1, . - K—-1
2 (@l + Vallhail ) = ] i > = ain (W, H) ©)
Sum (7) over k and i we have:
1 -
SVrlllWI[E + | H[E) = n(K = 1)gmin (W, H) @®)
On the other hands, we know that:
3 K | K K
W7 =) llwi—=> willz <> |lwll3 =[|W]E )
n
i=1 i=1 i=1
Then we can conclude that:
W% + | H|%
min(W,H) < ————7—F7— 10
Gmin( ) S SE ) (19)
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as desired. When the equality holds, first we have ||W||2 = ||W||%. The equality holds if and only

if % Zfil w; = 0,w; = w;. Take it back into (8), then we must have all of the equality holds in (7)
and (5), which give us:

Wi+ +||H

Wi = Vithi, w3 = nl g g = IV AE L I (in
2K
Take this into (5) we have:

W% + [ H]J
hipi;=hgy k) hiy=wl = Wl + 1 Hl 12
k, kyirs P e = Wy w; SK(K — 1)/n (12)
which implies neural collapse conditions. O

Now let’s turn to the training dynamics, our main theorem about training convergence is as following:

Theorem B.1. For problem (4), let (W (t), H(t)) be the path of gradient flow at time t, if there
exist a time to such that Log(W (to), H (to)) < log2, then any limit point of {(H (t), W (t)) :=

H(t) W (t)
(\/HW(t)H§+HH(t)H \/HW(t EITEOR —)} is along the direction of an Karush-Kuhn-Tucker (KKT)
point of the following minimum-norm separation problem:

! , 1 )
gg§MWb+5Wﬂb 13)
st. Vk#je[Kli€n], w)hp;—w) hy;>1.

To prove Theorem B.1, we need to introduce some additional notations. Since the W and H are all
optimization variable here, we denote 6 = vec(W, H) as the whole parameter for simplicity and all
of previous function can be defined on 6 by matching the corresponding parameter. Denote p = ||0||

£(6) _
as the norm of # and ¥ = log(e =1 Now we can state our first lemma to show how does training

dynamics of gradient flow on ULPM objective (4) related to a KKT point of (13).

Lemma B.2. If there exist a time to such that L(0(ty)) < log2, then for any t > to 0 =
0/ qmin(0)Y/? is a (€, ) - approximate KKT point of the following minimum-norm separation problem.
More precisely, we have

2(1-B(t) . _ KK —1)n
:/(t) ’ Qﬁ(t)Qmin (t)

€ =

where: 9
8= (o /g )

is the angle between 0 and its corresponding gradient.

Proof. The training dynamics is given by gradient flow:

o oC
"o a9
Then by the chain rule we have:
_M__%ie_ a9 ’ (15)
a — 00dt | dt|,

It indicates that the loss function £ is monotonically decreasing. If £(0(fy)) < log2, we have
L(0(t)) < log2,¥t > . On the other hand,

Zlog (1+ Ze‘s" 211 > log(1 + exp(—gmin(t))) (16)
k=11i=1 J#k

which gives us gpin (t) > 0,V > to.
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Let g = 9, note that we can rewrite the ULPM objective function (4) as £(6) = Zszl Yo log(1+

> ok € T ). By the chain rule and the gradient flow equation we have

—Sk,i,j

ZZZ 1+Zl —qkyugk,i,jv

k 1i=1 j#k

1/2
min

where gy ; ; is the gradient of sy ; ;, i.e. gri; = Vs, ;(0). Now let Gri; = Gr.i;/q

~ —Sk,i,j
Vosk.i;(0) and construct A ; ; = o —=—2——,
gy gy lgll2 1+Zl¢ke kil

we only need to show:

16 — ZZZAmgmllﬁ— (17

k=1 i=1 j#k
K n
K?(K — 1)n
Z Z/\k i, Sk 7,j 1) < % (18)
=1 i=1 j£k qmin”Y

To prove (17), we only need to compute (Recall that 0=10 [ Qmin (0)Y/?):

0 S 2 p? p?
_ZZ Z )‘kﬂ%jgk,i,jHZ ||||9H || || ||2 ; (2_25)
k=1 i=1 j 2y qmin 2 gll2 dmin
Note that:
_ —log(er® —
= — 7 log(1 + ~%n3) > log(1 + exp(—gmin)) (19)
r Z J;yn

Then we have the following inequality:

~ qmin
7 (20)

take this back into (19) we have (17) as desired.
To prove (18), first by our construction:
—Sk,i,j

K n
Z Z Z Akyiyi(Sk,i5(0) = 1) = . m|\9||2 Z Z Z e Zl vy (Skyij — Qmin) 21)

k=1 i=1 j#k k=1 i=1 j#k

Note that ||g]|2 > <g, H99||2> = % (g,0) and (g i j,0) = 25, ; since sj; j = w) i — ijhk,i,
we have:

K n
1 1 e Sk
llglla > = (g,0) == —— (Gk.ij» 0)
P p;—l;; L Y et 20
K n
2 e ki
:722 +Z e~ Skyi,l ki,
Pi=1i=1 j7k Ik (22)

K n
2 . . . _ .
Ao Z Z e ki (since Sgij > Gmin > 0and e” "1 < 1)

>2q"ﬂ6_‘hnin
) K
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Take this inequality back into the (21) we have:

K n B Kp2 K n edmin=Sk,i,j
Z Z Z)\ku(skw(e) -1< Y Z Z 145, e or (Sk,ij — Qmin)
k=1i=1 j#k Tmin = i=1 j#k I#k
K 2 K n o N
= 2q2p. DD D T (s~ dmin)
AN k=1 4=1 j#k (23)
K K n
= 2minA DD D et T (ki — Gmin)
Imin’ 7 i Gk
K%*(K —1)n
< - a___ ~
2€qmin’Y

Where the last inequality is obtained from the fact ze™" < é, Vx > 0, which can be proved by some
elementary calculus. O

Based on the Lemma B.2, we have shown that the (W, H) will be a (¢, §)-KKT point, if we can
show (e, §) converge to zero, then by Theorem A.1 we know the limit point will be along the direction
of a KKT point. Ignoring the constant term, we only have to show how does ¥(t), 8(t) and ¢in (t)
evolves with time t. Now we provide the following lemmas to illustrate the dynamics of them. The
first lemma aims at proving that the norm of parameter p(t) and 5(¢) is monotonically increasing.

Lemma B.3. If there exist to such that L(0(to)) < log2, then ¥t > to we have:
dp? dy
— >0,— >0 24
at = dt < @)
Proof. We can disentangle the whole training dynamics into the following two parts:

: e HAT d6
* the radial part: v := 60 S

* the tangent part: u = (I — éé—r)%.

First analyze the radial part, by chain rules [[v]l2 = |7 42| = |1 (9, %) | = [L12"|. For %", we
have the following equation:
1 dp2 < d0> K n e_Skmj
—— =(0,—)=2 Z Z s Sk (25)
2 dt dt s by B DI

where the last equality holds by equation (22).Then when ¢ > ¢y, we have shown that ¢, (t) > 0,
combine this with the fact s, ; ; > gmin We obtain the first inequality in (24)

-— =2 ——Skyi,j
2 dt k=1 i=1 jZk RIS
K n (26)
e_“‘k,i.j
>2) 3N ——Gmin > 0
et Dppp €
Next, we aim to prove the monotonicity of 4(¢), we compute the derivative of 5(t):
_ —log(ef® —1) 4. _ 4 o
V= 2 & logy = %(log(—log(e (9 — 1)) - 2log p) (27
d 1 e£0) dL(s) dc(d) 1 £
— log(—log(e*® — 1)) = — 28
dt og(—log(e ) log(e£(®) —1)e£® —1 dt = dt  Gmin €£0 — 1 (28)
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Recall we have:
K

1d
icliot _2222 +Zl e~ Skyi,l Sk,i,j

k=114=1 j#k

Zn: Dipk €

W
[\]
Mx

S ”(Jmm
k=1 i= 11+Zﬁéke i
K n —SL ;s
L Z#e 29

= 10g1+ e Skl]) J len (29)

K n (9)__1
ZQ;;lOg 1+Z¢;€€ kl] eL(Q)szn

i= J
e£0) _ 1

ZQqum

Then second last line is because the definition of th loss function £(6 ) Zk D 1og(1 +
D€ eid) > log(l + 32, e " 47) and the monotonicity of e—1 (in fact, =1

> dx we®
M<OV$>O)

As a result, we notice that

1d. 1dp?\ 'dc  d
-4 LA 30
s 87 = (2 dt ) @t %% G0

2 2 2
At the same time, we notice that [|v[|3 = p% (% %) = %dd% - & log p on the one hand, and by the

d, 1 (d0 dp)\ 1 (d§ (rdd\,\ wu
dto_pz(pdt dto)_ (dt (9 dt)9>_p

Combine this with radial term:

chain rule:

~ 112

o ||? ) , ldp* d
—_— = _— = = — 1 _—
|55 = ot iz = 5% Gromos 2| 2
Dividing d{% on both sides, we have
ac [(1dp*\~' d d di ||’
P
-2 1 1 = 31
dt (2 dt> et <dt ng) at |, Gl
~ 112
d d do dc(d) 1 e (0)
1 —1 — - 32
Pl <dt ng> d )= 7Tt quan 250 1) 32)
Now by equation (27) and (28) we obtain:
1d., __ dc@ 1 £ d d !
~Zlogy > — ~ Zlogp> [ =1 — 33
2dt 87 = At qmin 2 (€O — 1) dt 08P =\ gt 08P dt , (33)

By (26) we know the p is monotonically increasing, we have % log p > 0 and then we get the second
inequality in (24) O

Lemma B.3 gives us the monotonicity of 4, note that since the loss function £(0(¢y)) < log 2, we
have 4(t) > 4(to) > 0, then we can treat ¥(¢) in Lemma B.2 as a positive constant. The remaining
work is to Show @y, (t) grows to infinity and 5(t) — 1. To show g,in(t) — 00, it’s equivalent to
show L(t) — 0 and we have the following lemma:
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Lemma B.4. If there exist to such that L(0(tg)) < log2, then L(8) — 0 and ¢min(8) — oo as
t— o0

Proof. By (15) and (25), the evolution of loss function £(6) can be written as:

dL(6) H o ||? <d9 6 > —skig ,
=77 e Sk, i)
dt e, — dt’ ||9||2 ;;; +Zl kil J
Combine it with (16),(26) and (29) we have:
—Sk,i,j eL0) _ 1 eL(0) _ 1 P
- ) _ 0 _
2 Z Z Z 1+ Z e~ Sk,i,l Sk.ij > 2 65(9) Gmin > 2 612(9) lOg(e 1) (34)
k=1i=1 j#k I#
which indicates: Lo
dL(o) e £(0) 5
dt < _4( L(0) 10g( - 1)) (35)

Since we have shown that £ is monotonically decreasing, then if the £ doesn’t decrease to zero, it must
stay larger than a positive number C; > 0 and we know that 3C5, C3 > 0 such that Cy < e£() <
C3 < log2,Vt > to which further implies 3C, > 0 such that (e£(?) — 1)log((e£®) — 1)) < —C4
Take them back into (36), we must have:
dL(0) 4 o 2
<2<

S T C; <-C} (36)
Then we know that the loss function will exponentially decrease to zero and contradicts with previous
assumption. Thus we must have £(#) — 0 and combine this with ¢,,,;, > — log(e“(®) — 1) we know
Gmin(6) — oo as desired.

To bound /3(t), we first need an useful lemma to bound the changes of the direction of 6.
Lemma B.5. [f there exist to such that L(6(to)) < log 2, then for any t > tg

do 1 d
—| < ——1 37
dt|| = Fte) dt 2F 37)
Proof. First we know that:
do 1
—| == faoT 38
at|, P H( H H 9

3

n + ‘- - Z Z Z Ee: - llg I
ZZ Ikying|| < — kil (39
=11i=1 j#k 1 Zl;éke Skyint ’LJ 1+ 14k € Sk,i,l v

k=1i=1 j#k

Recall our gy ; ; = 6555’*-7’ and s ; j = w; hy; — ijhk,i’ we can find that ||gy ; ;|| < 2p. On the

other hand, Combine it with (25) and (20) we have:

1 dp p? d
2len dt B szn dt

d
1 4
7 08P (40)

log <1dlog !
p p<——
7 dt (to)

as desired. Where the second inequality holds by multlple on the right hand of (39) and the
formulation of < - in equatlon (25), and the last 1nequahty holds since we have shown that 4(t) is
monotonically increasing in (B.3) and §(to) > 0 since L(t) < log2. O
Let’s turn back to 3, though we can’t show directly that it increase to one, we can find a sequence of
time {¢,,} for each limit point such that 5(¢,,,) — 1

Lemma B.6. If there exist to such that L(6(to)) < log2, then for every limit point 0of {0(t) : t >0},
there exists a sequence of time {t,, > 0 : m € N} such that t,, — 00,0 (t;,) — 0, and 8 (t,,) — 1
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Proof. Recall in equation (33) we have shown that:

~ 112
d d db
logy >2( —1 = 41
71087 (dt 0gp> dt | (4D
Since%logp:%%:ﬁ%:p%@,%>and:
d d 6 1,d0 1 _-do. 1 o df
e = (p—= — =00 ) ==(I—-00T)—
R AR i
Plug them into (41) we have:
de |2 y d
d HEHQ—@ UT> d d
log log p = 1
s > v 2 108p 2872 — 1) logp (42)
(5.4)

For any ¢t > t; > to, integrate both sides from time ¢ to ¢; we have: log5(t2) — logA(t1) >
2 f:f (B#)2-1) % log pdt. By the continuity of 3 we know there exist a time ¢* such that:

to d
log 3 (t2) ~ log-i(t2) 2 2 [ (B(1) ~ 1) log

ty

2 d 43
:2(6(t*)72—1)/ %logpdt “43)

=2(8(t*)~* — 1)(log p(t2) — log p(t1))

By (20) we know that 7y < % and the right hand is bounded, and the 7 is monotonically increasing,

then there exist 4, such that ¥(t) T Jeo-
Now we are ready to construct the sequence of ¢,,, first take a sequence of {¢,, > 0, m € N} such
that €, — 0. We construct ¢,,, by induction, suppose we have already find t; < o < -+ < {1

satisfy our requirement, since @ is a limit point of {A(¢) : ¢ > 0}, then we can find a time s, such
that:

Hé(sm) - gH < €m, 1Og <e€

oo 3
Y(sm) = "

By the monotonicity and continuity of p we can find a time s/, such that log p(s},,) —1log p(sm) < €m.

(44)

Take to = s},,,t1 = Sy, in (43), there exist a time ¢,,, such that:
log ¥(t2) — log (¢
2(B(ty) 2 — 1) < 12BI2) ZloBA0) _ o (45)
log p(t2) —log p(t1)
on the other hand, by Lemma B.5 we have:
10(tm) = 01l <10(sm) — 01l + [10(sm) — O(tm)|
<em + = (108 pltn) ~ log p(sm)) < (1+ == )em o
SEm T — 08 pllm ) — 108 P\Sm
¥(to) ¥(to)
Note that (6, 3?) > 0, then by definition we know 3 > 0. Combine equation (45) and (46) we have
B(tm) — 1 and 6(t,,) — 0 as desired. O

Now we are ready to prove the Theorem B.1:

Proof. By Lemma B.2, we know that once ¢ > ¢, then (W (¢), H(t))/qmin(W (t), H(t)) is an

( 2(1-6(t)) K2*(K—1)n
'?(t) ’ QW(t)‘Imin (t) _ _
Lemma B.3, @i — o0 in Lemma B.4. And from Lemma B.6, for any limit point (W, H)

| i H(t) W)
of {(H(t),W(t)) := (\/HW(t)HerHH(t)H VWO ] )}, there exists a sequence of time

{tm > 0:m € N} such that ¢, — oo,B(t,,) — 1land (H 2(tm) W(tn,)) — (W, H). Then

) -approximate KKT point. We have shown that ¥(t) > ¥(t9) > 0 in
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(W, H) is along the direction of a limit point of a sequence of (¢, §)-approximate KKT point with
€,9 — 0. On the other hand, we can verify that the problem (13) satisfies MCFQ (A.3) by simply
setting v = 6, then:

(Vsk_ym, 9> = 28]67147]‘ Z 0

Now by Theorem A.1 we know (W, H) is along the direction of a KKT point of problem (13) [

Theorem B.1 characterize the convergence behaviour of gradient flow, under separable conditions the
limit point is along the direction of a KKT point of (13), next we show that the global minimum of
(13) must satisfies neural collapse conditions

Theorem B.2. Every global optimum of the minimum-norm separation problem (13) is also a KKT
point and it satisfies the neural collapse conditions.

Proof. Since we have shown that the problem (13) satisfy MCFQ, then the KKT conditions are
necessary for global optimality, we only need to show the global optimum satisfy neural collapse
conditions. First the constraints in (13) can be transformed to be a single constraint by the definition
of neural collapse margin:

Vk#je[K]i€n], wihgi—w]hy; > 1 qun(W,H)>1 (47)
Note that the neural collapse margin is homogeneous:
Gmin (aW7 O[H) = a2qmin(W7 H)7 Vo € R (48)

Then for any point (W, H) satisfies ¢min(W,H) > 0, after an appropriate scaling «,
(aW,aH),Ya? > 1/qumin(W, H) is feasible for (13). Take optimum among all scaling fac-
tor  we know the minimum norm is attained if and only if & = 1/guin(W, H). And the optimum
norm is:

1 2 1 2 1 2 2
= —||laH||% = ——=—= H 4
3 0W I3+ g o[ = 5 (W + 1) (49)
Then by lemma B.1 we have:
1
——(||[W]|? H|%)>2(K -1 50
st g WU+ IHE) > 208~ )V (50)
And the global optimum is attained only when (W, H) satisfies neural collapse conditions O

C Omitted proofs from Section 3.2

Let’s first finish the computation of the motivating example:

Example C.1 (A Motivating Example). Consider the case when K = 4,n = 1, let (W, H) be the
following point:

1 -1 0 0
-1 1 0 O
W=H=C 0 0 1 -1 (51)
o 0 -1 1
Verify this (W, H) can classify all of the features perfectly is trivial since:
1 -1 0 0
o2 -1 1 0 0
WH =2C 0 0 1 -1 (52)
0 0 -1 1

It’s straightforward to verify it is along the direction of a KKT point of the minimum-norm separation
problem (13) by our construction of A: (Note that the W, H should be normalized by dividing

2v/20)

(53)

D= O O
O ONFl-
O ONFl-

N O O

e
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Now it only remains to show Ve > 0, we can find (W', H') such that:
W|% = W% | H'|% = | HI|?,

!/ 2 / 2 ! !/ (54)
W' =Wl +||H - H||z <e, LW, H') < LW, H)

Without loss of generality, we only compute the case when C' = 1 for simplicity and one can easily

generalize it to any C' # 0 by similar strategy. Here the (W', H') is constructed as below,

F 1+a —-14a« « « T
[ 1 —14a 1+« o o
/ J—
W= 14 2a2 —« —a l-a —-1-«
- - —1—-a 1—«
: N (55)
l1+a -1+« - -
H — 1 —14+a 14+« - -
V14202 « « l—-a —-1-—«
i «a o —1—-a 1-a
Note that when o = —1 we have (W', H') = (W, H). First we can compute:
24402 40?2-2 —4a? —4a?
1 402 -2 2+440% —4a? —4a?
! !
WH =155 402 40 2+40% 4a2—2 (56)
—402 —402 402 — 2 24 4a?
and:
/ / e?
LW',H') = —4log 221 2 (57

e+ 62 1+2a2 26_2 1«2309
Our aim is to show Ve > 0, there exist v such that |a| < e and L(W', H') < L(W, H), if that is
true, since |W'||p = |W||p, |H'||F = |H||r and ||W' = W||5 + || H — H||% — 0as a — 0,
the requirement in (56) holds immediately. By the monotonicity of £L(W', H'), it’s sufficient to

a?— 202
show that f(a) £ 21t + 2 71T < £(0). Then take the derivative of f(a) we have:
4022 8 8a (202 — 1 __ae? 16a° 8
['(@) = eri2e? N 7 ( 2) +2¢7 T - 2 = . 2 (58)
1+ 2a (1+ 202) (14202)° 1+2a
4a2-2 8a 8a (2a2 - 1) ’ — _4a® 1603 Sa 2
f(@) = et ;- o | 2 R
142« (1+2a2) (1+ 2a?) 1+2a
102 = 6402 64 (2042 — 1) o? 8 8 (2042 — 1) 59
+ e12a? | — Szt 28 T o0 Y (59
(1+2a2) (1+2a2) + 2a (1+2a2)
oot 800* 8 128"
(142a2)> 1+222  (142a2)°

Now we can find that f/(0) = 0 and f”(0) = 16(Zs — 1) < 0. Since the function f(cv) is continuous
twice differentiable, we can conclude that Ve > 0 we can find « such that (W', H') satisfy our
requirement in (56).

Now we can first characterize the global optimum of our ULPM objective by some similar strategy as
used in proving Lemma B.1

Theorem C.1. The optimal value of loss function (4) on a sphere is attained (i.e. LW H) <
LW' H")V||W'||%+||H'||% = |[|W||%+||H||%) if only if the (W, H) satisfies neural collapse
conditions and ||\W || = ||H]||F.

Proof. Again we rewrite the ULPM objective by introducing s ; ; = w) hgi — w by i

n

K
LW, H) =YY log(1+ > exp(—s.i;)) (60)

k=1i=1 j#k
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204
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206

207

208
209

210
211

In addition, we can find that centralizing w; doesn’t change the value of s ; ;. Let w; = w; —

K , ~ T - T K -
+ Y oney Wk, Vi € [K], then sy, ; j = w) hy; —w] hyi = Wy, hy; — w; hy; and Y,;0 ) w; = 0.
First by the strict convexity of e” and Jensen Inequality:

K n
LV H) > 303 loa(1 + (K — Deap( = 3 ~s1))

k=1i=1 j#k ©1)
K n ~ T
Kwk hki
= E E log(14+ (K —1 —_——
k=1 1i=1 Og( ’ ( )exp< K-1 ))

Where the last equality is obtained from:
D sk = Wphii—w] by = (K = 1)) hy; — > ) hpi = K] hy;  (62)
j#k j#k j#k

Now again by the strict convexity of log(1 + (K — 1) exp(—=z)) and Jensen inequality, we have:

(K—1) k=1i=1 (63)
1 &1
> nKlog(l+ (K — 1)€$P(—m Z \/ﬁHwkHQ +v/nlheil*))
k=1 i=1

> nK log(1 + (K — (W% +IH%)))

1
1 S
Jear( =5 =Rk =)
Where the last inequality holds since [|W |2 = S5 [lwi]|2 > Sop, [Jwil? = 2| Sp, wil? =
K .
> w1

When all of the above inequality reduce to equality, we must have:

1. Zfil w; = 0, w; = w; (the last inequality in (63))
. wy = v/nhy,;, Vi € [n] (the third inequality in (63))

2
3. lwkl = lwe |, |hw,i ill,Vk, k' € [K],i,j € [n] (the second inequality in (63))
4

Shig = wlhe; —w] ey = 5wl he i, VEj € [K] i € [n] (the first inequality in
(61))

These four conditions are exactly equivalent to neural collapse conditions and |W|p = | H||p O

The global optimality is not enough to illustrate how does gradient flow converge to neural collapse
since there may exist some bad local minimum. W e will provide the following second order analysis
to eliminate spurious local minimum. First define the cross entropy loss on a matrix Z € RE*nK:

Zk,i,g

ZZ log ; (64)

k=114i=1 g €Fmit

where zj,; ; denote the j-th row and (k — 1)K + i-th column elements of Z. Then we have
L(W,H) = L(W H) . Now compute the gradient of L(Z) to each element:

8L(Z) Zkik
P = ea—
kyisk Yoo €7kl 65)
L(Z 0vin )
OUZ) _ _feii iz

- K )
Drkiy T, et

11
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230
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If u € RE satisfies uTVL(Z ) = 0, denote u,, as the maximum element of u, then we have:

OL(Z
0= Z Uy —Up(*lJFE s Jrzuqzzplq
Zp,i,p Zp,isq episl epyisl
=1 q#p =1 (66)
:_Z Zpyisg <0
q#p Zl p e

Where the last inequality holds if and only if u, = u,, Vg € [K]. Which indicates that the rank of
VL(Z)is K —land u"VL(Z) = 0 < u = 1. Again we introduce the definition of tangent space:

Definition C.1 (tangent space). The tangent space of (W, H) is defined to be a set of directions that
are orthogonal to (W, H) :

T(W,H) = {AW € REXU AH ¢ R>*"E) . (Vi LW, H), AW) (Vg L(W,H),AH) = 0}
(67)

Now we are ready to state our result about the landscape of ULPM in the tangent space:

Theorem C.2. If (W, H) is not the optimal solutions in Theorem C.1 and Gupinn (W, H) > 0, then
AW, AH) ¢ T(W,H),M > 0 such that

VO<d<MLW+6AW,H+06AH) < L(W,H) (68)
. Further more, it implies that Ve > 0,3(W' H') such that:
IWII% + [ =% = [[WIIE + [ H[E,

/ 2 / 2 ! !/ (69)
W =Wl +||H — H|z <e, LW, H') < LW, H)

Proof. First compute the gradient of ULPM objective (4), by the chain rule we have:
VwL(W,H)=VLWH)H" ,VgL(W, H)=W 'VL(WH)

If there exist a vector (AW,AH) € T(W,H) such that (VwL(W,H),AW) +
(Val(W,H),AH) # 0, moreover we can assume (VwL(W,H) AW) +
(VaL(W H),AH) < 0 since we can take the negative direction if the formula is greater than
zero, then by Taylor expansion:

LW 4+ 6AW , H + AH) = LW, H) + §(Vw LW, H),AW) 4+ §(Vg LW, H), AH) + O(5%)
(70)
we know that (AW, A H) satisfies our requirement.

Now let’s discuss the case when:
(VwL(W,H),AW)+ (Vg L(W ,H),AH) =0,YV(AW ,AH)e T(W,H)

by definition of 7 (W, H), it contains all vectors that are orthogonal to (W, H), so
(VwL(W H), Vg L(W, H)) is parallel to (W, H), that is, there exist A such that:

VL(WH)HT = \W,W'VL(WH) = \H (71)
Further more, from equation (25) and = %: , we know that ¢y, (W, H) > 0 implies the

inner product of (W, H) and (VWE(W H),VygL(W,H)) must be negative and thus A < 0
If there doesn’t exist (AW, AH) satisfies the requirement, we know that for any feasible curve
¢(t) = (W (t), H(t)) with ¢(0) = (W, H) on the sphere S = {(W', H') : [W'||3. + | H'||% =
W% + ||H||%}, we know that ¢ = 0 admits the local minimum of E(qﬁ( )) and thus:
d2
0 < —5L(8(1)li=0 = ¢'(0)" VZL(W, H)¢'(0) + VLW, H)¢"(0) (72)
On the other hand, since the curve lies on the sphere S, denote h(W, H) = |W ||% + || H||%, then
h(¢(t)) must stay as a constant, take twice derivative we have:
d2
0= 25 h(6(t))li=0 = ¢/(0)" V(W H)¢/ (0) + VR(W, H)¢" (0) (73)

12



236 Then sum these two conditions together, we have:
d2 A / Tx72 A ! A /"
0 < 43 (£(6(1)) = Sh(6(1) im0 = &' (O)TVA(L = SHY(W, H)S(0) + V(L — Sh)(W, H)$"(0)
(714)
237 By equation (71) we know that V(£ — 2h)(W, H) = 0 Note that ¢'(0) € T (W, H) since the
238 curve lies on S and for any (AW ,AH) € T(W,H) we can construct a curve ¢(¢) such that
239 ¢'(0) = (AW, AH). Then (74) indicates that V(AW ,AH) € T(W, H) we have:

0 <(AW,AH)"V2L(W,H)(AW,AH) — g(AW, AH)"V?hW(W H)(AW,AH) 5)
=(AW,AH)"V*L(W,H)(AW,AH) — \(|AW|% + |AH||%)
240 Since A < 0, combine the two equations in (71) we know:
MWW =W'VLWHH"' =\ HH' = W'W =HH" (76)
241 which further implies:
Wl =[Hl|F, [[W]2=]|H] (77

242 On the other hands, we also have (Note that when W = H = 0 we must have A = 0):
VLWH)H" =AW = —\||W||, < ||[VL(WH)||o| | H]||2
= A< |[|[VL(WH)||;

243 Now when —\ < ||VL(W H)||2, we can show that it will contradict with (75): We have shown that
244 therank of VL(Z) is K — 1, so by (71) and (76) there exist a vector a such that Wa = H'a=0,

245 let w and v are the left and right singular vectors corresponding to the largest singular value of
26 VL(WH), construct AW =wua' ,AH = —av', then (AW ,AH) € T(W, H) and:
(AW, AH)"V2L(W, H)(AW,AH) = \(|AW |3 + [|AH| %)
=(WAH + AWH)V?’L(WH)(WAH + AWH) +2(VL(WH),AWAH) — \(|AW |} + |AH| %)
<2||a|[3(-=\ —u"VL(WH)v) < 0

247 Then it only remains to analyze the —\ = ||VL(W H)||2 cases, construct another convex optimiza-
248 tion problem:
mZinL(Z)—)\HZH* (78)

209 suppose Z has SVD Z = UXV' T, as we know that the subgradient of || Z||, can be written as (see
250 [6] for a proof):

ozl = {UVT + W W e REUK [UTW =0, WV =0, [W], <1} (79)
251 On the other hand, we know that:
H' HH ' H=H'"W WH=Vvx?v"T &0)
WW WW' =WHH W' =Ux*U"

252 which indicates that H' H = VEV T and WW T = UXU . Combine them with (71) we have:
VLWH)H H=\MWH < VLWH)VEVT = \USV T
& VL(WH)V = \U
WW VL(WH) = \WH < USU"VLWH) =\UZV"
s U'VLWH)=\V"

253 Note that —\ = ||VL(W H)||2, then by (79) we know that —VL(W H) € —\9||W H ||.. Then
254 by the strict convexity of (85) we know W H is the global minimum of it. In addition, we have
255 ||W|% + || H||3 = 2tr(X?) = 2||W H]||... In addition, previous works [2] have shown that:

81

: 1 2 2
120 = jmin = (W13 + | H|3) (82)
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which is equivalent to:

1
IWH]|. < S(IWI%+ 1 H%)

Now for any (W', H'), we know that:

A
LW, H) - S(IWllE + |HIE) = LIWH) - \|WH||. < LW'H') - \|W'H'|.

< L(W' H')

_A
2

(W75 + 11 H'[[7)

(83)

(84)

which indicates (W, H) must attained global minimum of the following optimization problem:

min L(W, H)
W.H

_A
2

(W% + 1 HI%)

(85)

If (W, H) doesn’t satisfies neural collapse conditions, by Theorem C.1 we know there exists another
point (W', H') such that L(W' H') < L(W,H) and |W % + ||H||% = |W'||% + || H'||% thus:

A A
LW, H) = S(IWIIE + [ HIF) > LW, H') = S(IW 5 + [1H|[7)

(86)

which contradicts with the global optimality of (W', H ), thus (W', H) must satisfy all of the neural

collapse conditions and we finish the proof.

D Experiment details and additional results

O

In addition to the experiments in Section 4, we also train a ResNet18 [3] on FashionMNIST, a
VGG-13 and another ReesNet18 on CIFAR-10 dataset [4]. All the networks are trained for 500
epochs, using a stochastic gradient descent with learning rate 0.01, momentum 0.3, batch size 128 and
in particular, without weight decay. The results are plotted in Figure 4, Figure 5 and Figure 6. Again,
we observe that in all three experiments, after 100 epochs, the variation of norms become small after
500 epochs; the with-in class variation decreases at rate O(1/log(t))); the cosines between pairs of
last layer features and that of the classifiers converge to the equiangular state with maximum angles
atrate O(1/log(t))); The distance between normalized centered classifier and normalized last layer
feature decreases at rate O(1/log(t))). All the experiments are run in Python (version 3.6.9) on

Google Colab.
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Figure 4: Training ResNet18 without weight decay on FashionMNIST. The scale of the axes are set to be the
same as that in Figure 3. The patterns of the curves are also similar to those in Figure 3.
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