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Appendix for PEMs: Pre-trained Epidemic Time-Series Models

A RELATED WORKS

Neural models for time-series analysis Deep neural networks have been widely used in many
time series forecasting applications with great success. DeepAR Salinas et al. (2020) is a popular
forecasting model that trains an auto-regressive recurrent network to predict the parameters of the
forecast distributions. Other works including deep Markov models Krishnan et al. (2017) and deep
state space models Rangapuram et al. (2018); Li et al. (2021); Gu et al. (2021) explicitly model
the transition and emission components with neural networks. Recent works have also leveraged
transformer-based models, which have been widely used for language modeling, on general time-
series forecasting Oreshkin et al. (2019). Other works have extended the transformer architecture to
improve efficiency and better capture long-term temporal trends resulting in state-of-art performance
in many long-term forecasting benchmarks Zhou et al. (2021); Chen et al. (2021); Zhou et al. (2022);
Liu et al. (2021). However, all these methods do not leverage pre-training. They follow the typical
supervised learning paradigm of leveraging training data from past values of the same dataset to
forecast future values and do not leverage cross-domain heterogenous datasets or aim to provide
generalized models that can be used for a wide range of heterogeneous tasks.

Self-supervised learning for time-series Recent works have shown the efficacy of self-supervised
representation learning for time-series for various classification and forecasting tasks in wide range of
applications such as modeling behavioral datasets Merrill & Althoff (2022); Chowdhury et al. (2022),
power generation Zhang et al. (2019), health care Zhang et al. (2022). Franceschi et al. (2019) used
triplet loss to discriminate segments of the same time-series from others. TS-TCC used contrastive
loss with different augmentations of time-series Eldele et al. (2021). TNC Tonekaboni et al. (2021)
use the idea of leveraging neighborhood similarity for unsupervised learning of local distribution
of temporal dynamics. TS2Vec leveraged hierarchical contrastive loss across multiple scales of the
time-series Yue et al. (2022). However, all these methods apply SSL on the same dataset that is used
for training and may not adapt well to using time-series multiple sources such as time-series from
multiple diseases. Our work, in contrast, tackles the problem of learning general models from a
wide range of heterogenous datasets that can be fine-tuned for a wide variety of tasks on multiple
datasets that may not be used during pre-training. Therefore, we design SSL tasks that can adapt to
multiple time-series datasets and capture useful underlying properties from these datasets for superior
performance on multiple downstream applications on various disease forecasting tasks.

Statistical models for epidemic forecasting Due to recent advances in machine learning and
deep learning as well as the availability of datasets from various surveillance sources, statistical
and deep-learning-based models are increasingly used for epidemic forecasting tasks with great
success Rodríguez et al. (2022b). Classical auto-regressive time-series models like ARIMA and its
variants have been adapted for disease forecasting Soebiyanto et al. (2010); Yang et al. (2015). Other
models use Bayesian generative approach Brooks et al. (2015; 2018) to provide probabilistic forecasts
and have been successful in past epidemic forecasting competitions like Flusight Reich et al. (2019).
Other classical machine-learning methods like Gaussian Processes Zimmer & Yaesoubi (2020), Gen-
eralized Linear models Chakraborty et al. (2018) and nearest-neighbor-based regression Chakraborty
et al. (2014) have also been adapted.

Recent works have also used deep learning-based methods that are flexible to various data sources and
capture complex temporal patterns. While some use off-the-shelf recurrent neural models Venna et al.
(2018), others exploit important characteristics of epidemic dynamics such as dynamically modeling
sequence similarity across seasons Adhikari et al. (2019) and uncertainty with past seasons Kamarthi
et al. (2021), exploiting spatial relations Deng et al. (2020); Kamarthi et al. (2022) as well as
leveraging priors from traditional mechanistic models Rodríguez et al. (2022a); Gao et al. (2021).
However, most previous works train only from past data for epidemics they forecast and do not
leverage useful background knowledge from a large amount of epidemic data of other diseases
collected in the past.
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B ADDDITIONAL DETAILS ON MODEL ARCHITECTURE AND TRAINING

We use a 6-layer transformer encoder with 8 attention heads each for PEM. For all pre-training and
all downstream tasks, we set the segment size P = 4 and γ as 0.2 for RANDMASK and 0.1 for
LASTMASK tasks. We use learning rate of 10−4 for pre-training on all SSL tasks and during training
simultaneously and use early stopping for training, training to a maximum of 5000 epochs. We found
that pre-training for up to 5000 epochs on all SSL tasks simultaneously was sufficient, as longer
pre-training did not improve SSL-related losses or downstream performance significantly. During
training, we set 5000 epochs as the maximum, but we observed that most downstream tasks required
1500-2500 epochs to converge and reach the early stopping criteria. Since the datasets in most tasks
could fit into the GPU, we set the batch size to be equal to the number of training data points.

The models were trained on Nvidia Tesla V100 GPU. We also provide a link to anonymized code and
datasets4.

C TRAINING TIME AND MEMORY

We compare the average training time till convergence and memory used by PEM and baselines in
Table 4. We observe that the training time and memory consumption of PEM is similar to neural
baselines while providing significantly more accurate forecasts. Note that FUNNEL and EB are
non-deel learning statistical models that use lower parameters and hence use significantly less training
time and memory but provide worse performance.

Table 4: Average training time and maximum memory taken by each of the baselines and PEM for
each disease.

Average Training time(min) Max. Memory(GB)
Model/Benchmark Flu-US Flu-Japan Crypto. Typhoid Flu-US Flu-Japan Crypto. Typhoid

AF 37.9 31.6 29.7 49.5 4.2 3.8 4.9 3.7
IF 31.6 42.5 35.9 55.1 4.5 3.7 4.3 3.2
PT 46.7 41.3 44.8 41.2 4.7 3.5 4.8 4.1
DL 32.5 31.7 31.6 47.2 3.2 3.7 3.7 3.5
TN 42.7 37.5 39.1 51.7 4.3 4.7 4.2 4.3

MICN 36.3 39.2 36.4 48.1 3.1 3.2 3.7 3.2
EF 27.4 22.5 29.3 47.2 2.8 2.1 3.5 3.1
ED 39.1 42.7 39.6 53.6 3.2 2.7 3.4 3.1
EB 3.4 3.2 3.9 3.5 0.1 0.1 0.1 0.1

FUNNEL 0.6 0.5 0.9 0.2 0.1 0.1 0.13 0.1
PEM 35.4 25.5 29.2 64.5 4.7 3.5 4.8 4.1

Further, we measure the average training time taken by PEM to match the forecast RMSE of the
baselines in Table 5. We observe that PEM matches previous state-of-art performance in much less
training time before beating it when trained to convergence.

Table 5: Comparison of training time taken by PEM to match the performance of the best-performing
baseline for each benchmark.

Flu-US Flu-Japan Cryptosporidiodia Typhoid
Avg. training time taken

to reach performance
of best baseline

19.5 20.2 23.7 25.9

TIme taken by
best baseline 27.4 22.5 29.3 48.1

4Anonymized code link: https://anonymous.4open.science/r/EmbedTS-3F5D/
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Figure 4: Performance of PEM with varying fractions of training data. Performance in averaged over
5 runs. Note that in most cases PEM’s performance is superior to best baseline using less than 80%
of data.
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D ADAPTING TO UNSEEN DISEASES DURING PRE-TRAINING (Q2)

One of the important goals of pre-training on a large number of multi-domain disease datasets is to
capture underlying patterns and information that are observed across time-series of multiple diseases
that can be generalized to newer training datasets as well as previously unseen diseases during
pre-training. The diseases considered in Section 5 had past data used during pre-training. In this
section, we evaluate how well PEM adapts to scenarios where the disease of the training dataset is
not used during pre-training.

Table 6: Comparison of forecasting performance (RMSE) of PEM removing the disease used for
training for pre-training with the original PEM and performance of the best baseline.

Dataset Best Baseline PEM PEM-ExcludeTrain
Influenza-US 0.62 0.5 0.61

Influenza-Japan 1466 957.2 997.6
Cryptosporidosis 214 192 217.8

Typhoid 4.67 3.76 4.58

Forecasting on unseen diseases For each of the training tasks, we pre-train PEM removing the
disease used for training from Dpre. We call this version of PEM as PEM-ExcludeTrain. We compare
PEM-ExcludeTrain with PEM and baselines in Table 6. While PEM-ExcludeTrain’s performance is
worse compared to PEM, in most cases its performance is comparable to if not better than the best
baseline for each of the forecasting tasks.

Table 7: Forecasting performance on the previously unseen Covid-19 mortality in US from June 2020
to June 2021.

Week ahead AF IF PT DL TN MICN EF ED EB PEM
1 36.3 25.2 31.6 26.1 29.3 27.4 32.7 48.2 45.2 29.7
2 44.5 37.1 42.7 42.4 44.7 41.5 38.9 53.2 49.7 38.4
3 59.3 69.2 55.2 56.9 59.1 54.7 53.7 79.3 73.4 48.6
4 66.2 84.7 59.1 59.2 63.3 59.1 68.2 81.4 85.9 52.6

Avg 51.6 54.1 47.2 46.2 49.1 45.7 48.4 65.5 63.6 42.3

Case-study on Covid-19 We further provide a realistic case study to illustrate the importance of
adapting to unseen diseases from pre-training by evaluating the performance of PEM and baselines
on the novel Covid-19 pandemic. We focus on forecasting weekly mortality from Covid-19 in the
US Cramer et al. (2022). We do not use any Covid-19 related data in Dpre and only use past Covid-19
data for training PEM for each prediction week via the real-time forecasting setup similar to Section
5. The results are summarized in Table 7. On average, we observe a 2% improvement in forecasting
performance over the best baseline with respectable 4% and 12% improvement in harder three and
four-week ahead forecasts. Therefore, PEM can successfully leverage pre-training to adapt to even
unseen novel pandemics like Covid-19.

E ABLATION STUDIES (Q4)

In this section, we study the impact of various model design choices on the performance of PEM as
well as the parameter sensitivity of some important hyperparameters of PEM.

Importance of segmentation and reversible instance normalization The superior performance
of PEM is the result of various design choices related to model architecture as well as pre-training
methods. We studied the impact of each of the SSL tasks in Section 5. Here, we observe the impact
of important architectural choices of PEM on top of the transformer architecture: using segmentation
and instance normalization Kim et al. (2021). Segments of input time-series are used as tokens
instead of individual time-stamps to provide a better semantic representation of the temporal locality
of the time-series. We use reversible instance normalization to accommodate time-series of various
magnitudes as well as provide robustness against the distributional shift in individual time-series data.
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Table 8: Ablation study of the impact of SSL, segmentation and normalization on PEM performance.

Task Disease PEM-No Segments PEM-No Reversible Norm. PEM

Forecasting

Flu-US 0.96 0.54 0.5
Flu-Japan 1373.7 10165 957.2
Crypto. 257.2 229.4 192
Typhoid 4.81 4.16 3.76

Peak week Flu-US 7.26 5.39 5.18
Flu-Japan 6.33 6.39 4.72

Peak intensity Flu-US 0.81 0.95 0.72
Flu-Japan 1197 1083 864

The ablation study is summarized in Table 8. First, we observe that PEM with both components
performs better than its ablation variants. We also observe that without segmentation, the performance
decreases by about 75% in forecasting, 35% in peak week prediction and 27% in peak intensity
prediction, underperforming many baselines. Finally, using reversible instance normalization has the
most impact on peak intensity prediction at 31% whereas only decreases forecasting performance by
about 8%. Therefore, reversible instance normalization helps adapt to and model data around the
peaks which can cause distributional shifts in time-series.

Table 9: Influence of important hyperparameters on average forecasting performance. The default
hyperparameter values are underlined.

Hyperparameter Value Flu-US Flu-Japan Cryptosporidiosia Typhoid

Segment size
2 0.79 1366.8 247.4 5.77
4 0.5 957.2 192 3.76
8 0.59 996.2 229.8 4.69

RANDMASK γ
0.1 0.55 973.7 219.5 4.13
0.2 0.5 957.2 192 3.76
0.4 0.62 1079.5 286.9 6.05

LASTMASK γ
0.1 0.5 957.2 192 3.76
0.2 0.53 1026.8 186.3 3.51
0.4 0.68 1277.5 287.2 5.37

Hyperparameter sensitivity analysis We also study important hyperparameters of PEM on
performance in downstream forecasting tasks. We vary the length of the segments P of the input
time-series as well as tune the hardness of the SSL tasks RANDMASK and LASTMASK by tuning
the value of γ for each of the tasks. The average forecasting performance is summarized in Table 9.
We observe that the default hyperparameters of the segment size (P = 4), γ = 0.2 for RANDMASK
and γ = 0.1 for LASTMASK generally perform the best if not close to best across multiple diseases.
Therefore, the important hyperparameters are not sensitive to specific downstream tasks. We also
observe that increasing γ to a higher value of 0.4 quickly degrades the performance in general since
the reconstruction task gets increasingly harder with an increase in γ.
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