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ABSTRACT

This paper introduces a new imitation learning framework based on energy-based
generative models capable of learning complex, physics-dependent, robot mo-
tion policies through state-only expert motion trajectories. Our algorithm, called
Noise-conditioned Energy-based Annealed Rewards (NEAR), constructs several
perturbed versions of the expert’s motion data distribution and learns smooth, and
well-defined representations of the data distribution’s energy function using de-
noising score matching. We propose to use these learnt energy functions as reward
functions to learn imitation policies via reinforcement learning. We also present a
strategy to gradually switch between the learnt energy functions, ensuring that the
learnt rewards are always well-defined in the manifold of policy-generated sam-
ples. We evaluate our algorithm on complex humanoid tasks such as locomotion
and martial arts and compare it with state-only adversarial imitation learning algo-
rithms like Adversarial Motion Priors (AMP). Our framework sidesteps the opti-
misation challenges of adversarial imitation learning techniques and produces re-
sults comparable to AMP in several quantitative metrics across multiple imitation
settings. Code and videos available at anishhdiwan.github.io/noise-conditioned-
energy-based-annealed-rewards/

1 INTRODUCTION

Learning skills through imitation is probably the most cardinal form of learning for human beings.
Whether it is a child learning to tie their shoelaces, a dancer learning a new pose, or a gymnast
learning a fast and complex manoeuvre, acquiring new motor skills for humans typically involves
guidance from another skilled human in the form of demonstrations. Acquiring skills from these
demonstrations typically boils down to interpreting the individual features of the demonstration mo-
tion – for example, the relative positions of the limbs in a dance pose – and subsequently attempting
to recreate the same features via repeated trial and error. Imitation learning (IL) is an algorithmic in-
terpretation of this simple strategy of learning skills by matching the features of one’s own motions
with the features of the expert’s demonstrations.

Such a problem can be solved by various means, with techniques like behavioural cloning (BC),
inverse reinforcement learning (IRL), and their variants being popular choices (Osa et al., 2018).
The imitation learning problem can also be formulated in various subtly differing ways, leading to
different constraints on the types of algorithms that solve the problem. One notably challenging
version of the problem is Imitation from Observation (IfO) (Torabi et al., 2018; 2019; Zare et al.,
2024), where the expert trajectories are only comprised of state features and no information about
the expert’s actions is available to the imitator. This means that learning a policy is not as straight-
forward as capturing the distribution of the expert’s state-action pairs. Instead, the imitator must also

∗Corresponding author: Anish Abhijit Diwan (anishhdiwan@gmail.com)

1

https://anishhdiwan.github.io/noise-conditioned-energy-based-annealed-rewards/
https://anishhdiwan.github.io/noise-conditioned-energy-based-annealed-rewards/
anishhdiwan@gmail.com


Published as a conference paper at ICLR 2025

learn to capture the dynamics of its environment. From a practical perspective, the IfO problem is
quite relevant as obtaining action-rich data for real-world tasks – across several agent embodiments
and at large scales – is rather challenging. In most tasks, the expert only has an implicit represen-
tation of the policy. Imagine how a dancer cannot realistically convey their low-level actions – like
muscle activations or positional targets – in a dance routine. Further, collecting action-rich data by
teleoperating the agent requires significant human effort and often offers limited motion complexity.
Imitation from observation hence closely depicts the data-limited reality of applying IL in the real
world. Unfortunately, because BC relies on the expert’s actions, a large fraction of BC techniques
(including state-of-the-art diffusion-based algorithms like (Chi et al., 2023)) are inapplicable to the
problem of imitating from observation. Inverse reinforcement learning, on the other hand, can still
be applied to such problems.

In this work, we mainly focus on observation-based inverse reinforcement learning, where the
agent recovers a scalar reward signal from the demonstrations that when maximised by updating
the agent’s policy, provides the agent with the “correct” motivation to imitate the expert. While
reward learning in itself is a broad field of study, recent works that leverage generative adversarial
techniques for this task have shown markedly good results (Tessler et al., 2023; Peng et al., 2021; Ho
& Ermon, 2016; Torabi et al., 2018). The fundamental idea in adversarial imitation learning (AIL)
is to simultaneously learn and optimise the return from the reward function implied in the expert
demonstrations through an optimisation objective derived from Generative Adversarial Networks
(GANs) (Goodfellow et al., 2014). This GAN-inspired min-max optimisation procedure considers
the agent’s closed-loop policy as a generator and simultaneously trains a discriminator to differen-
tiate between the motions in the expert data distribution and the motions produced by the agent’s
policy. The discriminator aims to correctly label samples from both distributions while the gener-
ator aims to return an action that when applied to the environment, leads to features that resemble
those in the expert’s data distribution. The discriminator’s prediction is used as a reward signal in
reinforcement learning (RL) and the policy and the discriminator are updated iteratively until con-
vergence. Although methods like AMP (Peng et al., 2021), GAIL (Ho & Ermon, 2016), GAIfO
(Torabi et al., 2018) (purely adversarial IL), and DiffAIL (Wang et al., 2024), DIFO (Huang et al.,
2024) (diffusion enhanced adversarial IL) have achieved impressive results in a wide variety of imi-
tation tasks, they are prone to challenges intrinsic to their theoretical formulation. The simultaneous
min-max optimisation used to learn the reward function in these techniques is highly sensitive to hy-
perparameter values. This causes adversarial learning techniques to have unstable training dynamics
and learn non-smooth probability densities (Saxena & Cao, 2021; Kodali et al., 2017; Arjovsky &
Bottou, 2017; Goodfellow et al., 2014). These limitations ultimately lead to instability and poor
reinforcement learning when using adversarial techniques to learn reward functions.

This paper explores a non-adversarial generative framework for reward learning that completely
sidesteps the limitations of previous generative imitation learning techniques. Our primary contri-
bution is to use energy-based generative models as the backbone of the reward learning framework
to learn smooth and accurate representations of the data distribution. We propose to use the learnt
energy functions as reward functions and present a new imitation learning algorithm called Noise-
conditioned Energy-based Annealed Rewards (NEAR) that has better, more stable learning dynam-
ics, and learns smooth and unambiguous reward signals. NEAR produces motions comparable
to state-of-the-art adversarial imitation learning methods like AMP Peng et al. (2021). Before diving
into our proposed framework (Sections 4 and 5), we first briefly discuss the challenges of adversarial
IL in Section 2 and score-based generative modelling in Section 3.

2 BACKGROUND: ADVERSARIAL IMITATION LEARNING

Given an expert motion dataset M containing i.i.d. data samples x ≡ (s, s′) ∈ X implying a
distribution pD, where X is the space of state transitions 1, adversarial IL methods aim to learn
a differentiable generator (policy) πθG(s) : S → A where S is the state space, A is the action
space, and s ∈ S is a sample drawn from the occupancy measure of the policy ρπ . Similarly to
a standard GAN, the idea here is to learn a differentiable discriminator DθD (x) : X → [0, 1] that
returns a scalar value representing the probability that the sample x was derived from pD. However,

1In this paper we define all expressions for the partially observable case, however, the same results also
apply to the fully observable cases.
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Figure 1: A comparison of reward functions (probability density approximations) learnt in a 2D
target-reaching imitation task (left). In this task, an agent aims to reach a goal and expert demon-
strations (pD) pass through an L-shaped maze. The learnt reward function is expected to encourage
the agent to pass through the maze. In the middle, we show rew(s′|s) for all reachable states around
a state s (green circle) at different training epochs. On the right, we show an illustration of the non-
smooth reward landscape of adversarial IL. The energy-based reward is a smooth (with continuous
gradients), accurate representation of pD and is constant regardless of the distribution of policy-
generated motions (pG). In contrast, the adversarial reward is non-smooth and prone to instability.
Additionally, it changes depending on pG (the discriminator tends to minimise policy predictions)
and can provide non-stationary reward signals (additional details in Appendix B.3).

Figure 2: Degradation of an adversarially learnt policy (AMP) in a stylised walking imitation task.
With sufficient training, the policy does learn to complete the task, however, performance fluctuates
substantially throughout training (with degradation seen at 16e6 training samples).

now there exists an additional function W (πθG(s)) : A → X that maps the output of the policy
to the discriminator’s input space. The discriminator is learnt assuming that W (πθG(s)) is an i.i.d.
sample in X and the generator is learnt via policy gradient methods by using logDθD (W (πθG(s)))
as a reward function (Peng et al., 2021; Torabi et al., 2018). The AIL optimisation procedure is as
follows (J is the performance measure as per the policy gradient theorem Sutton et al. (1999)).

min
θD

Ex∼pD
[logDθD (x)] + Es∼ρπθG

[log(1−DθD (W (πθG(s)))] (1)

max
θG

J where ∇θGJ(πθG) = EπθG
[QπθG (s, a)∇θG log πθG(s, a)]

where QπθG (s, a) = EπθG
[logDθD (W (πθG(s)))]

Similarly to standard sample-generation-focused GANs, AIL algorithms also suffer from having a
perfect discriminator (Arjovsky & Bottou, 2017). This leads to low discriminator predictions on the
policy-generated samples, causing zero or constant rewards for the RL policy and ultimately leading
to poor training dynamics. Moreover, the iterative nature of the AIL problem leads to a constantly
changing manifold of policy-generated samples and an arbitrarily changing discriminator decision
boundary. This causes unpredictability in the rewards and introduces drastic non-stationarity in the
RL problem. Lastly, the rewards learnt via adversarial techniques are non-smooth and do not always
provide an unambiguous signal for improvement. Here, smoothness refers to the ability of a reward
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function to convey informative gradients in the sample space 2. These challenges compound to cause
fluctuations in the learnt policy and convergence to local minima (elaborated in Appendix E).

To conclude this section, we point to Figures 1 and 2 that show a visual example of the non-smooth
nature of the discriminator and qualitative results demonstrating instability of an adversarially learnt
policy. Having discussed several issues with adversarial IL, the next section introduces an alterna-
tive method of learning the expert’s data distribution using which we subsequently propose a new
imitation learning algorithm.

3 NOISE-CONDITIONED SCORE NETWORKS (NCSN)

Score-based generative models are a family of techniques recently popularised for generating realis-
tic images and video samples. They model the unknown data distribution as a Boltzmann distribution
and generate samples by an iterative denoising process by traversing along the gradient of the data
distribution’s log probability (Song & Kingma, 2021). Score-based models approximate the gradient
of the log probability (called the score function) through a procedure called denoising score match-
ing (Vincent, 2011). Similarly to GANs, the aim here is to learn a probability distribution pG that
closely resembles the data distribution pD, with pG ≜ e−E(x)/Z (Boltzmann distribution) and E(x)
called the energy function of the distribution. Intuitively, the energy function is a measure of the
closeness of a sample to pD while the score (∇x log pG(x)) is a vector pointing towards the steep-
est increase in the likelihood of pD. Learning the score function implicitly also learns the energy
function as ∇x log pG(x) = ∇x log(e

−E(x)/Z) = −∇xE(x). In this paper, we propose to explicitly
learn the energy function to then use the energy of a sample to guide reinforcement learning. To do
so, we make modifications to a score-based framework called Noise Conditioned Score Networks
(NCSN) (Song & Ermon, 2019; 2020).

The underlying idea of NCSN is to learn the score function by a process of artificial perturbation
and denoising. Data samples are first perturbed by adding variable amounts of Gaussian noise. The
score function is then learnt by estimating the denoising vectors that point from the perturbed data
samples to the original ones. Given i.i.d. data samples {x ∼ pD ∈ RD}, NCSN (Song & Ermon,
2019) formulates a perturbation process that adds Gaussian noise N (x, σ) to each sample x, where
σ is the standard deviation representing a diagonal covariance matrix and is sampled uniformly from
a geometric sequence {σ1, σ2, ..., σL}. Following this perturbation process, we obtain a conditional
distribution qσ(x

′|x) = N (x′|x, σI) from which a marginal distribution qσ(x
′) can be obtained as∫

qσ(x
′|x)pD(x)dx. Given this perturbed marginal distribution, NCSN attempts to learn a score

function sθ(x, σ) : RD → RD that points from the perturbed samples back to the original ones. The
idea is to learn a conditional function to jointly estimate the scores of all perturbed data distributions,
i.e., ∀σ ∈ {σi}Li=1 : sθ(x

′, σ) ≈ ∇x′ log qσ(x
′). The score network is learnt via denoising score

matching (DSM) (Vincent, 2011) on samples drawn from the conditional distribution qσ(x
′|x) 3.

The final DSM loss is averaged over the various σ values assigned to data samples in the training
batch.

By perturbing individual data samples with Gaussian noise, NCSN essentially creates a perturbed
distribution that is a smooth and dilated version of pD (illustrated in Figure 1) – with the standard
deviation σ controlling the level of dilation. This perturbation strategy ensures that pD is supported
in the whole sample space and not just a low-dimensional manifold in RD (manifold hypothesis
(Fefferman et al., 2016; Cayton et al., 2008)), ensuring well-defined gradients and allowing a better
score function approximation. It also ensures that the score function is accurately approximated in
data-sparse regions in pD by increasing sample density in such regions (Song & Ermon, 2019).

4 NOISE-CONDITIONED ENERGY-BASED ANNEALED REWARDS (NEAR)

In NCSN, the perturbed conditional distribution q(x′|x) is formulated as a Boltzmann distribution
such that q(x′|x) = eDIST(x

′,x)/Z where DIST() is a function that defines some distance measure

2While the gradient of the reward function is not a direct part of the policy update in policy gradient methods,
a smooth reward function is necessary for “sensible” policy updates.

3We leverage the fact that LDSM(qσ(x
′)) = LDSM(qσ(x

′|x)) + const. (Song & Kingma, 2021; Vincent,
2011).
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Algorithm 1: Noise-conditioned Energy-based Annealed Rewards

Data:M≡ {(s, s′)}, {σi}Li=1
Initialise energy network eθ, policy πθG , and rollout horizon ; // Appendix B.2.2
Initialise replay buffer B ← ∅, annealing buffer A ← ∅, and annealing threshold α
Subroutine EnergyNCSN():

while not done do
bM ← sample a batch of transitions fromM ;
bsigma ← sample a batch of noise levels σk uniformly from {σi}Li=1 ;
Update eθ according to Equation (2) using pairing bM : bsigma

end
Subroutine RL():

Initialise σk = σ1

while not done do
for i = 0, 1, · · · do

τi ← {[s, a, s′, r′ = rew-tf(eθ(s, s′, σk))]
till horizon}πθG

; // Section 5.1

Store τi in B & {(s, s′)till horizon} in A
end
progress = eθ(A,σk)

mean energy on switching to σk
− 1 ;

Switch σk = σk+1 if progress > α and σk = σk−1 if progress < −α ; // Annealing
A ← ∅ & update πθG using B

end
Algorithm:

Call EnergyNCSN
Call RL

between a sample and its perturbed form. In our case, DISTσ() is the energy function of a Gaussian
distribution with σ standard deviation and is a smooth, dilated representation of the energy landscape
of the expert data distribution pD. Our approach leverages the fact that for a sample x ∈ X ,
DISTσ(x) is essentially just a scalar-valued measure of the closeness of x to pD, meaning that it
can be used as a reward signal to guide a policy to generate motions that gradually resemble those
in pD.

This approach sidesteps several of the shortcomings of adversarially learnt rewards. Since DISTσ()
is learnt via score matching on samples arbitrarily far away from the pD, it is both well-defined
and continuous in the relevant parts of the sample space X . Further, since DISTσ() is a dilated
version of the energy function of pD, it is also not prone to being constant valued. Continuity and
informativeness in the whole space indeed require an infinitely large σ, however, realistically a σ that
is sufficiently large to cover the worst-case policy would guarantee that the rewards are both smooth
and non-constant in the parts of X where the policy-generated samples are realistically expected
to lie (proof: Appendix A.1). Moreover, DISTσ() is learnt using perturbed samples from pD and
hence does not rely on the policy-generated samples. This means that it is disconnected from the
policy and is not prone to issues of high variance that come with simultaneous training. Finally, we
propose to train NCSN before training the reinforcement learning policy, eliminating any concerns
of non-stationarity. The following sections discuss the procedure to learn these energy functions and
other algorithmic details of our approach (Algorithm 1).

4.1 LEARNING ENERGY FUNCTIONS

Given D-dimensional i.i.d. data samples {x ∼ pD ∈ RD} where pD is the distribution
of state-transition features in the expert’s trajectories, NEAR learns a parameterised energy
function eθ(x

′, σ) : RD → R that approximates the energy of samples x′ in a perturbed
data distribution obtained by the local addition of Gaussian noise N (x, σ) to each sample x.
The idea here is to jointly estimate the energy functions of several perturbed distributions,
i.e., ∀ σ ∈ {σi}Li=1 : eθ(x

′, σ) ≈ DISTσ(x
′). The sample’s score is computed by taking

the gradient of the predicted energy w.r.t. the perturbed sample, s(x′, σ) = ∇x′eθ(x
′, σ). The en-

ergy network is learnt via denoising score matching (DSM) (Vincent, 2011) using this computed
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Figure 3: Annealing (during RL) ensures that the agent always receives a focused and well-defined
reward signal, thereby motivating the policy to produce motions similar to pD. Here, pD is a dis-
tribution of the expert’s state transitions in a 2D target-reaching task (introduced in Figure 1). The
learnt energy functions eθ(·, σk) are illustrated as dilated versions (L-shaped boundaries) of pD that
are well-defined only inside their respective perturbed manifold (“inner” regions of the L-shaped
boundaries). The manifold of policy-generated motions is indicated by supp(πθG). The policy is
shown to have improved from left to right since supp(πθG) for the improved policy is closer to pD.
The reward function currently maximised by the agent is highlighted in red. During RL, the agent
starts at the energy function (reward) of a lower noise level (eθ(·, σk)) and switches to a higher one
(eθ(·, σk+1)) upon receiving a sufficiently high average return. Arrows indicate the gradient of the
rewards in supp(πθG) (avg. score).

score and the final DSM loss in a training batch is computed as an average over the various σ values
assigned to data samples in the training batch.

lDSM(σ) =
1

2
EpD

Ex′∼N (x,σ)

[∥∥∥∥x′ − x

σ2
−∇x′eθ(x

′, σ)

∥∥∥∥]
LDSM({σi}Li=i) ≜

1

L

L∑
i=1

lDSM(σi) (2)

4.2 ANNEALING

We modify the definition of the perturbed conditional distribution q(x′|x) by flipping the sign of
the energy function such that higher energies indicate closeness to pD. This is done to simplify
the downstream reinforcement learning such that the predicted energy can be maximised directly.
Following the improvements introduced in Song & Ermon (2020), we define eθ(x

′, σ) = eθ(x
′)/σ

where eθ(x
′) is an unconditional energy network 4. This allows us to learn the energy function of a

large number of noise scales with a very small sized dataset.

The appropriate selection of the noise scale ({σi}Li=i) is highly important for the success of this
framework. σL must be small enough that the perturbed distribution qσL

() is nearly identical to pD.
This ensures that the policy aims to truly generate samples that resemble those in pD. In contrast,
σ1 must be sufficiently large such that eθ(x′, σ1) is well-defined, continuous, and non-zero for any
sample that is generated by the worst-possible policy. This ensures that the agent always receives
an informative signal for improvement. Assuming that policy degradation is unlikely, σ1 must be
such that supp(qσ1

()) effectively contains the support of the distribution induced by a randomly
initialised policy network. In practice, these are dataset-dependent hyperparameters.

4The score is the gradient of the energy function and the norm of the score scales inversely with σ. The
score can hence be approximated by rescaling the energy with 1

σ
(Song & Ermon, 2020).
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The trained energy network eθ(x
′, σ) can directly be used as a reward function to train a policy

network πθG (say initialised at θG0) using some fixed noise level σk. But how do we decide on
an appropriate σk? Assuming that during training the noise scale was set appropriately, qσL

() is
nearly identical to pD but supp(qσL

()) has a low intersection with supp(πθG0
) 5. On the other hand

qσ1
() is an extremely dilated version of pD but supp(qσ1

()) is likely to have a high intersection with
supp(πθG0

). This means that any chosen noise-level σk offers a tradeoff between sample quality
and eθ(x

′, σk) being continuous and well-defined in the manifold of the samples generated by the
current policy.

We propose an annealing framework inspired by annealed Langevin dynamics and its predecessors
(Song & Ermon, 2019; Kirkpatrick et al., 1983; Neal, 2001) to ensure that the learnt reward function
is always well-defined and continuous while also gradually changing to motivate the policy to get
closer to pD (illustrated in Figure 3). Instead of focusing on sample generation, annealing in the
context of reinforcement learning focuses on making gradual changes to the agent’s reward function.
Our annealing framework hence depends on the agent’s progress from an imitation perspective.
Training is initialised with the energy function of the lowest noise level in the geometric noise scale.
Then, at every new noise level in the scale, the agent tracks the average return of the first few policy
updates. The noise level of the energy function is increased if the average return of the last few
policy updates is higher than some percentage of the initial return. We note that changing the reward
function introduces non-stationarity in the reinforcement learning problem, meaning that the learnt
policy is susceptible to degradation. To account for this, our framework also lowers the noise level if
the return drops below some percentage of the initial return. This means that if the policy gets worse,
the noise level decreases, thereby increasing the intersection between supp(qσ()) and supp(πθG)
and ensuring that the degraded policy still has an informative reward signal for improvement.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We evaluate NEAR (Algorithm 1) on complex, physics-dependent, contact-rich humanoid motions
such as stylised walking, running, and martial arts. The chosen task set demands an understanding of
physical quantities such as gravity and the mass/moments of inertia of the character and contains a
variety of fast, periodic, and high-acceleration motions. The expert’s motions are obtained from the
CMU and SFU motion capture datasets and contain trajectories of several motions. For each motion,
a dataset of state transitionsM ≡ {(s, s′)} is created to learn an imitation policy. Rewarding the
agent for producing similar state transitions as the expert, incentivises the agent to also replicate the
expert’s unknown actions.

r̃(s, a, s′, g) = wtaskrtask(s, a, g) + wenergyeθ(s, s
′) (3)

To understand the impact of motion data availability on the algorithm, we also train NEAR in a
single-clip setting – using a single expert motion for training – on challenging motions like mummy-
style walking and spin-kick. Further, to understand the composability of the learnt rewards, we train
NEAR with both environment-supplied rewards (such as a target reaching reward) and energy-based
rewards learnt from different motion styles (to perform hybrid stylised motions). To incorporate the
environment-supplied task reward rtask(s, a, g) ∈ [0, 1], we use the same strategy from Peng et al.
(2021) and formulate learning as a goal-conditioned reinforcement learning problem, where the
policy is now conditioned on a goal g and maximises a reward r̃(s, a, s′, g) (Equation (3)). Details of
the tasks and goals can be found in Appendix B.1. We also apply an additional reward transformation
of tanh ((r̃ − r′)/10) where r′ is the mean horizon-normalised return received by the agent in the last
k = 3 policy iterations, r′ = mean({R̃t−i/horizon}ki=1). This bounds the unnormalised energy
reward to a fixed interval so that changes between the noise levels σ are smoother. Additionally,
it grounds the agent’s current progress in relation to its average progress in the last few iterations.
The policy is trained using Proximal Policy Optimisation (Schulman et al., 2017) and we use the
following quantitative metrics to measure the performance of our algorithm.

5As a shorthand, we abbreviate the support of the distribution of state transitions induced by rolling out a
policy as supp(πθG).
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Table 1: A comparison of the avg. pose error (shaded, lower is better) and spectral arc length (non-
shaded, closer to expert is better) at the end of training. Stdev. across independent runs is shown as
an error value (±).

Algorithm Walking (74 clips) Running (26 clips) Left Punch (19 clips) Crane Pose (3 clips) Mummy Walk (1 clip) Spin Kick (1 clip)
NEAR 0.51 ± 0.15 -7.52 ± 1.32 0.62 ± 0.17 -7.24 ± 1.59 0.37 ± 0.05 -6.87 ± 1.47 0.94 ± 0.15 -6.6 ± 1.97 0.66 ± 0.39 -4.72 ± 1.2 0.78 ± 0.05 -5.59 ± 2.26

AMP 0.51 ± 0.07 -8.78 ± 1.04 0.65 ± 0.01 -9.71 ± 1.54 0.32 ± 0.01 -9.93 ± 3.28 0.82 ± 0.09 -8.1 ± 1.18 0.41 ± 0.01 -13.84 ± 1.12 0.58 ± 0.1 -3.16 ± 0.73
Expert - -5.4 - -3.79 - -1.73 - -12.28 - -4.71 - -3.39

Table 2: A comparison of the avg. pose error (shaded, lower is better) and task return (non-shaded,
higher is better) at the end of training with composed reward functions. Stdev. across independent
runs is shown as an error value (±).

Algorithm Target Reaching (walking) Target Reaching (running) Target Reaching & Punching
NEAR 0.94 ± 0.11 2.75 ± 0.82 1.18 ± 0.04 1.74 ± 0.46 - 3.6 ± 2.64

AMP 1.09 ± 0.13 2.23 ± 0.24 1.77 ± 0.31 -0.15 ± 1.06 - 3.85 ± 0.76

Average Dynamic Time Warping Pose Error: This is the mean dynamic time warping (DTW)
error (Sakoe & Chiba, 1978) between trajectories of the agent’s and the expert’s poses averaged
across all expert motions in the dataset. The DTW error is computed using ∥x̂t − xt∥2 as the cost
function, where x̂t and xt are the Cartesian positions of the reference character and agent’s bodies
at time step t. To ensure that the pose error is only in terms of the character’s local pose and not its
global position in the world, we transform each Cartesian position to be relative to the character’s
root body position at that timestep (x̂t ← x̂t − x̂root

t and xt ← xt − xroot
t ).

Spectral Arc Length: Spectral Arc Length (SAL) (Beck et al., 2018; Balasubramanian et al.,
2011; 2015) is a measure of the smoothness of a trajectory and is an interesting metric to determine
the policy’s ability to perform periodic motions in a controlled manner. SAL relies on the assumption
that smoother motions are comprised of fewer and low-valued frequency domain components while
jerkier motions have a more complex frequency domain signature. It is computed by adding up the
lengths of discrete segments (arcs) of the normalised frequency-domain map of a motion (in this
case, we do not transform the positions to the agent’s local coordinate system).

5.2 RESULTS

We compare Noise-conditioned Energy-based Annealed Rewards (NEAR) with Adversarial Motion
Priors (AMP) (Peng et al., 2021) and in both cases only use the learnt rewards to train the policy.
AMP is used as a baseline since it is an improved formulation of previous state-of-the-art techniques
(Torabi et al., 2018; Ho & Ermon, 2016) and has shown superior results in the state-only adversarial
IL literature. Each algorithm-task combination is trained 5 times independently and the mean per-
formance metrics across 20 episodes of each run are compared. Both algorithms are trained for a
fixed number of maximum iterations.

Figure 4 shows snapshots of the policies trained using NEAR. We find that NEAR achieves very
close imitation performance with the expert’s trajectory and learns policies that are visually smoother
and more natural. For the quantitative metrics, we use the average performance at the end of training
for a fair comparison and find that both NEAR and AMP are roughly similar across all metrics
(Table 1). In most experiments, NEAR is closer to the expert in terms of the spectral arc length
while AMP has a better pose error. NEAR also outperforms AMP in stylised goal-conditioned tasks,
producing motions that both imitate the expert’s style while simultaneously achieving the desired
global goal (Table 2 and Figure 4 bottom). From the experiments on spatially composed learnt
rewards, we find that NEAR can also learn hybrid policies such as waking while waving. Finally,
we notice that NEAR performs poorly in single-clip imitation tasks, highlighting the challenges of
accurately capturing the expert’s data distribution in data-limited conditions. Conversely, AMP is
less affected by data unavailability since the discriminator in AMP is simply a classifier and does
not explicitly capture the expert’s distribution.

5.3 ABLATIONS

We also conduct ablation experiments (Table 3) that help identify the crucial components of NEAR.
The main focus of these experiments is to understand the contributions of annealing and the effects of
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Figure 4: Snapshots of the policies trained with NEAR. Mummy-style walking and spin-kick are
single-clip imitation tasks. The bottom row shows goal-conditioned RL policies that also optimise
an environment-provided task reward.

Table 3: Avg. pose error (shaded, lower is better) and spectral arc length (non-shaded, closer to
expert is better) in several ablated configurations of NEAR. Stdev. across independent runs is shown
as an error value (±).

Effect of task rewards

Config Walking Running Crane Pose
σ5 & eθ 0.49 ± 0.22 -7.1 ± 1.94 0.62 ± 0.18 -6.69 ± 1.85 1.38 ± 0.8 -6.03 ± 1.79
σ5 & r̃ 0.42 ± 0.02 -8.7 ± 1.2 0.57 ± 0.04 -8.61 ± 0.86 1.23 ± 0.07 -4.34 ± 1.02

Expert - -5.4 - -3.79 - -12.28

Effect of annealing

Config Walking Running Crane Pose
anneal & eθ 0.51 ± 0.15 -7.52 ± 1.32 0.62 ± 0.17 -7.24 ± 1.59 0.94 ± 0.15 -6.6 ± 1.97
σ5 & eθ 0.49 ± 0.22 -7.1 ± 1.94 0.62 ± 0.18 -6.69 ± 1.85 1.38 ± 0.8 -6.03 ± 1.79

Expert - -5.4 - -3.79 - -12.28

using an environment-provided task reward (without goal-conditioning). For walking and running,
the task reward favoured forward motion and episode length while for the crane pose task it only
favoured episode length. Given these parameters of interest, we train ablated configurations of
NEAR with either annealing or a reward function conditioned on a fixed noise level (σ5 ≈ 9.21) and
with either only a learnt reward (eθ) or a composed reward function (r̃: Equation (3)).

It can be seen that the addition of the task reward leads to an improvement in the pose error. This is
especially apparent in tasks like walking and running where the task reward is closely aligned with
the imitation objective. It must however be noted that the addition of the task reward does mean that
the agent has a reduced closeness to specific characteristics of the expert’s motion like spectral arc
length, velocity, and jerk. Ultimately the closeness of the imitation under a combined reward still
highly depends on the harmony between the two reward functions.

Annealing does not have a significant impact on performance in walking and running, however, leads
to an improvement in more complex, non-periodic cases like the crane-pose task. It is possible that
for complex tasks, the expert distribution is more densely concentrated. In this case, a higher noise
level for a complex task might be more informative than one for a simpler task for which the expert
distribution is more spread out (examples in Appendix A.2). The increased information available
from annealing might hence be the reason for better results with annealing in complex tasks.

6 LIMITATIONS & CONCLUSIONS

While NEAR is capable of generating high-quality, life-like motions and also outperforms AMP in
several tasks, it is still prone to some limitations. The annealing strategy discussed in Section 4.2
does lead to progressively improving rewards, however, annealing at high noise levels also tends
to cause unpredictability in the received rewards. We attribute this unpredictability to the static
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nature of our annealing strategy. While the geometric nature of the noise scale indeed maximises the
intersection between supp(qσk

()) and supp(qσk+1
()) (Song & Ermon, 2019), at higher values of k, a

fixed percentage increase in the return does not always ensure that supp(πθ) is outside supp(qσk
())\

supp(qσk+1
) (refer to Figure 3). This means that a change in noise level suddenly causes the energy

function to be ill-defined on a portion of the manifold of policy-generated motions, leading to poor
rewards for these transitions and the introduction of non-stationarity in the problem. This can be
verified with the energy return plot, where the return often drops at noise level changes indicating
that the changed noise level is suddenly low-rewarding (Figure 5). Degradation at higher noise
levels highlights the sensitivity of NEAR to the noise scale and is a limitation of this framework.
Improvements can perhaps be made by experimenting with a linear noise scale, even more noise
levels, or a more dynamic form of annealing.
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Figure 5: Annealing at
higher noise levels causes a
drop in the energy reward’s
return.

Interestingly, ablation studies show that the addition of a task reward
reduced the overall unpredictability of NEAR at the later stages of
training. A reason for this could be the reduction in non-stationarity
by the addition of a fixed component to the reward function. Finally,
state-only reward learning techniques like NEAR and AMP are also
quite sensitive to the motion dataset. We find that the policy is prone
to converging to locally optimal behaviour if the dataset contains bi-
directional state transitions (such that (s, s′) and (s′, s) are equally
likely to occur).

Despite these limitations, the fundamental idea of using energy func-
tions as reward functions still seems quite promising. Improvements
can be made in several directions in the future. For example, it might
be interesting to explore the effects of different noise distributions
(instead of Gaussian noise) in the NCSN component of NEAR. Im-
provements to the annealing strategy could perhaps also be made by
introducing softer noise-level changing criteria. One interesting idea
could be to only use the updated reward function (post-annealing)
for the portion of the transitions that are within the support of the
new energy function and maintain the old reward function for other
transitions. This might greatly reduce the negative effects of anneal-
ing shown in Figure 5. Other reinforcement learning improvements
could also be made through ideas like targeted exploration, domain
randomisation, or by changing the action sampling distribution from
being Gaussian to a different probability distribution (Eberhard et al., 2023).

To conclude, this paper proposes an energy-based framework for imitation learning in partially ob-
servable conditions. Our framework builds on Noise-conditioned Score Networks (Song & Ermon,
2019) to explicitly learn a series of smooth energy functions from a dataset of expert demonstration
motions. We propose to use these energy functions as reward functions to learn imitation policies
via reinforcement learning. Further, we propose an annealing framework to gradually change the
learnt reward functions, thereby providing a more focused and well-defined reward signal to the
agent. Our proposed imitation learning algorithm called Noise-conditioned Energy-based Annealed
Rewards (NEAR) outperforms state-of-the-art methods like Adversarial Motion Priors (AMP) in
several quantitative metrics as well as qualitative evaluation across a series of complex contact-rich
human imitation tasks.
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Martin Arjovsky and Léon Bottou. Towards principled methods for training generative adversarial
networks. arXiv preprint arXiv:1701.04862, 2017.

Sivakumar Balasubramanian, Alejandro Melendez-Calderon, and Etienne Burdet. A robust and
sensitive metric for quantifying movement smoothness. IEEE transactions on biomedical engi-
neering, 59(8):2126–2136, 2011.

Sivakumar Balasubramanian, Alejandro Melendez-Calderon, Agnes Roby-Brami, and Etienne Bur-
det. On the analysis of movement smoothness. Journal of neuroengineering and rehabilitation,
12:1–11, 2015.

Yoav Beck, Talia Herman, Marina Brozgol, Nir Giladi, Anat Mirelman, and Jeffrey M Hausdorff.
Sparc: a new approach to quantifying gait smoothness in patients with parkinson’s disease. Jour-
nal of neuroengineering and rehabilitation, 15:1–9, 2018.

Lawrence Cayton et al. Algorithms for manifold learning. eScholarship, University of California,
2008.

Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and Shu-
ran Song. Diffusion policy: Visuomotor policy learning via action diffusion. arXiv preprint
arXiv:2303.04137, 2023.

Jack Choquette, Wishwesh Gandhi, Olivier Giroux, Nick Stam, and Ronny Krashinsky. Nvidia a100
tensor core gpu: Performance and innovation. IEEE Micro, 41(2):29–35, 2021. doi: 10.1109/
MM.2021.3061394.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303–314, 1989.

Onno Eberhard, Jakob Hollenstein, Cristina Pinneri, and Georg Martius. Pink noise is all you
need: Colored noise exploration in deep reinforcement learning. In The Eleventh International
Conference on Learning Representations, 2023.

Charles Fefferman, Sanjoy Mitter, and Hariharan Narayanan. Testing the manifold hypothesis.
Journal of the American Mathematical Society, 29(4):983–1049, 2016.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256. JMLR Workshop and Conference Proceedings, 2010.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural
information processing systems, 29, 2016.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are uni-
versal approximators. Neural networks, 2(5):359–366, 1989.

Bo-Ruei Huang, Chun-Kai Yang, Chun-Mao Lai, Dai-Jie Wu, and Shao-Hua Sun. Diffusion imita-
tion from observation. arXiv preprint arXiv:2410.05429, 2024.

Scott Kirkpatrick, C Daniel Gelatt Jr, and Mario P Vecchi. Optimization by simulated annealing.
science, 220(4598):671–680, 1983.

Naveen Kodali, Jacob Abernethy, James Hays, and Zsolt Kira. On convergence and stability of gans.
arXiv preprint arXiv:1705.07215, 2017.

Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles Macklin,
David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, et al. Isaac gym: High performance
gpu-based physics simulation for robot learning. arXiv preprint arXiv:2108.10470, 2021.

11



Published as a conference paper at ICLR 2025

Radford M Neal. Annealed importance sampling. Statistics and computing, 11:125–139, 2001.

Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J Andrew Bagnell, Pieter Abbeel, Jan Peters, et al.
An algorithmic perspective on imitation learning. Foundations and Trends® in Robotics, 7(1-2):
1–179, 2018.

Xue Bin Peng, Ze Ma, Pieter Abbeel, Sergey Levine, and Angjoo Kanazawa. Amp: Adversarial
motion priors for stylized physics-based character control. ACM Transactions on Graphics (ToG),
40(4):1–20, 2021.

Hiroaki Sakoe and Seibi Chiba. Dynamic programming algorithm optimization for spoken word
recognition. IEEE transactions on acoustics, speech, and signal processing, 26(1):43–49, 1978.

Divya Saxena and Jiannong Cao. Generative adversarial networks (gans) challenges, solutions, and
future directions. ACM Computing Surveys (CSUR), 54(3):1–42, 2021.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Yang Song and Stefano Ermon. Improved techniques for training score-based generative models.
Advances in neural information processing systems, 33:12438–12448, 2020.

Yang Song and Diederik P Kingma. How to train your energy-based models. arXiv preprint
arXiv:2101.03288, 2021.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning,
3:9–44, 1988.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. Advances in neural information
processing systems, 12, 1999.

Chen Tessler, Yoni Kasten, Yunrong Guo, Shie Mannor, Gal Chechik, and Xue Bin Peng. Calm:
Conditional adversarial latent models for directable virtual characters. In ACM SIGGRAPH 2023
Conference Proceedings, pp. 1–9, 2023.

Faraz Torabi, Garrett Warnell, and Peter Stone. Generative adversarial imitation from observation.
arXiv preprint arXiv:1807.06158, 2018.

Faraz Torabi, Garrett Warnell, and Peter Stone. Recent advances in imitation learning from obser-
vation. arXiv preprint arXiv:1905.13566, 2019.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural compu-
tation, 23(7):1661–1674, 2011.

Bingzheng Wang, Guoqiang Wu, Teng Pang, Yan Zhang, and Yilong Yin. Diffail: Diffusion ad-
versarial imitation learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 15447–15455, 2024.

Larry Wasserman. All of statistics: a concise course in statistical inference. Springer Science &
Business Media, 2013.

Maryam Zare, Parham M Kebria, Abbas Khosravi, and Saeid Nahavandi. A survey of imitation
learning: Algorithms, recent developments, and challenges. IEEE Transactions on Cybernetics,
2024.

12



Published as a conference paper at ICLR 2025

A PROOFS & EXTENDED EXPLANATIONS

A.1 PROOF OF ENERGY FUNCTION SMOOTHNESS

In this section, we prove that an energy function learnt via denoising score matching (Vincent, 2011)
is smooth and well-defined in the manifold of perturbed samples.

Lemma A.1. Let pD be a distribution with support contained in a closed manifoldM ⊆ Rd. We
assume that pD is continuous in this manifold. Let qσ be a distribution supported in a closed
manifold P ⊆ Rd obtained by the addition of Gaussian noise N (x, σ) ≜ (exp−Eσ(x))/Z to
each sample x in pD (s.t. qσ(x) =

∫
N (x′|x, σI)pD(x)dx). Then qσ is continuous in P and

∇x log qσ(x) = −∇xEσ(x) is smooth in P .

Proof. The convolution of a function with a Gaussian kernel results in a smooth function. By the
same reasoning,∇x log qσ(x) is differentiable in P because qσ is continuous in P .

Lemma A.1 shows that a perturbed distribution and its score function are both smooth in the mani-
fold of perturbed samples. Given this perturbed distribution, denoising score matching aims to learn
a score function s(x, σ) = ∇xeθ(x, σ) where eθ(x, σ) ≈ Eσ(x). From the universal approximation
theorem (Cybenko, 1989; Hornik et al., 1989), it follows that a sufficiently large neural network can
approximate any continuous function (score function in our case) on a compact domain to arbitrary
precision, meaning that∇xeθ(x, σ) is a smooth function.

Theorem A.2. Given a distribution qσ that is supported in a closed manifold P and is also con-
tinuous in this manifold, a parameterised energy function learnt via denoising score matching on
samples drawn from qσ is smooth in P .

Proof. Lemma A.1 implies that the gradient of the score function is smooth in P and can be approx-
imated smoothly by a neural network ∇xeθ(x, σ). Since a function with a continuous gradient in a
domain is itself continuous in that domain, it follows that eθ(x, σ) is also continuous in P .

Continuity of eθ(x, σ) in the whole space requires P to be equivalent to Rd. However, the anneal-
ing strategy introduced in this paper and a sufficiently large σ ensure that the manifold of policy-
generated samples always lies in P .

A.2 ANNEALING DISCUSSION

A.2.1 WHY ANNEAL IF THE LEARNT ENERGY FUNCTION IS SMOOTH?

If the learnt energy function eθ(., σk) is smooth, then simply maximising it should still provide an
unambiguous improvement signal to the agent. Why then must we anneal the energy functions?

Annealing not only ensures that the reward signal is well-defined, but it also progressively provides
more “focused” rewards to the agent. Given a score function s(x′, σ) = ∇x′eθ(x

′, σ) = (x′ − x)/σ2,
for any fixed sample x′, ∇x′eθ(x

′, σk+1) > ∇x′eθ(x
′, σk). This means that at any given point

in training, the increase in received rewards for making positive progress is much higher for the
(k + 1)th energy function. This can greatly incentivise the agent to move closer to pD.

A.2.2 WHY DO SOME TASKS SUBSTANTIALLY BENEFIT FROM ANNEALING?

Ablation experiments from Section 5.3 show that annealing has a significant positive impact on
more challenging tasks like crane pose. We hypothesise that the expert data distribution pD is more
densely distributed for some tasks while sparsely for others (Figure 6). Assuming that a newly
initialised policy always starts in the same manifold, the agent would start at a more informative
reward function for a sparsely distributed pD than for a densely distributed pD. This means that a
noise level change for a densely distributed pD provides more informative rewards.
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Figure 6: An illustration of a dense and sparse pD. In the case of the sparse distribution, annealing
would have a lower impact as the newly initialised policy would start out receiving much higher
rewards.

B EXPERIMENT DETAILS

B.1 TASKS

The task reward and goal features for each imitation task are described below.

Target Reaching

In this task, the agent’s objective is to navigate towards a randomly placed target. The agent’s state
is augmented to include a goal gt = x∗

t where t is the current timestep, and x∗
t is the target’s position

in the agent’s local coordinate frame. During training, the target is randomly initialised in a 240◦ arc
around the agent within a radius in the range [2.0, 6.0] meters. The agent is rewarded for minimizing
its positional error norm and heading error to the target. Here, xt is the agent’s position, vt is the
agent’s velocity vector, d∗t is a unit vector pointing from the agent’s root to the target, and v∗ is a
scalar desired velocity set to 2.0 for walking and 4.0 for runninng.

rtask = 0.6
(
exp (−0.5 ∥x∗

t − xt∥2)
)
+ 0.3

1− 2

1 + exp (5 ∗ (vt∗d∗
t)

∥vt∥ )

+ 0.1
(
1− (∥vt∥ − v∗)2

)
(4)

Target Reaching & Punching

In this task, the agent’s objective is to both reach a target and then strike it with a left-handed punch.
Here, the goal is a vector of the target’s position in the agent’s local frame and a boolean variable
indicating whether the target has been punched, gt =< x∗

t ,punch state >. We use the same
target initialisation strategy as before with an arc of 45◦ and an arc radius in [1.0, 5.0] meters. The
agent is rewarded using the target location reward when it is farther than a threshold distance from
the target and with a target striking reward when it is within this threshold. The striking reward aims
to minimise the pose error and heading error between the agent’s end effector and the target while
simultaneously aiming to achieve a certain end effector velocity and height. The complete reward
function is shown below where xeff

t is the end effector position, vefft is the end effector velocity
vector, heff

t is the end effector height, and v∗eff = 4.0 and h∗eff = 1.4 are scalar desired punch
speed and height.

rtask =


1.0 target has been hit
rnear ∥xt − x∗

t ∥ < 1.2

rfar otherwise
(5)
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rfar = Equation (4)

rnear = 0.3 + 0.3

(
0.1

(
exp

(
−2.0

∥∥∥x∗
t − xeff

t

∥∥∥2)))+ 0.4

1− 2

1 + exp

(
5 ∗ (veff

t ∗d∗
t)

∥veff
t ∥

)


+ 0.3

(
1−

(∥∥∥vefft

∥∥∥− v∗eff
)2

)
+ 0.2

(
1− (heff

t − h∗eff )2
)

(6)

Unconditioned Rewards

These reward functions were used in our ablation experiments. In this case, we do not use any
additional goal-conditioning.

Walking & Running: The agent is rewarded positively for every time step in the episode, en-
couraging longer episode lengths. Further, the agent is also rewarded for relative positive displace-
ment, with the clipping at 0.5 meters. The final task reward is a weighted combination of both.
rtaskt = 0.5 · 1 + 0.5 · clip(xt−xt−1,0.0,0.5)

0.5 .

Crane Pose & Punching: The agent is rewarded positively for every time step in the episode,
encouraging longer episode lengths. rtaskt = 1.

B.2 TRAINING & EVALUATION DETAILS

B.2.1 ARCHITECTURES

For both NEAR and AMP, the policy is a simple feed-forward neural network that maps the agent’s
state s to a Gaussian distribution over actions, πθG = N (µ(s),Σ) with the mean µ(s) being returned
by the neural network and a fixed diagonal covariance matrix Σ. In our experiments, the neural
network is a fully-connected network with (1024, 512) neurons and ReLU activations. Σ is set to
have values of e−2.9 and stays fixed throughout training. The critic (value function) is also modelled
by a similar network. The value function is updated with TD(λ) (Sutton, 1988) and advantages
are computed using generalised advantage estimation (Schulman et al., 2015). When using the
environment-supplied task reward, we set wtask = wenergy = 0.5.

The NCSN neural network is a fully-connected network with an auto-encoder style architecture.
Here, the encoder has (512, 1024) neurons and maps the input to a 2048-dimensional latent space.
The decoder has (1024, 512, 128) neurons with the output being the unconditional energy of a
sample. We use ELU activations between all layers of the auto-encoder and use Xavier uniform
weight initialisation (Glorot & Bengio, 2010) to improve consistency across different independent
training runs. Further, we standardise samples before passing them to the network. The NCSN noise
scale was defined as a geometric sequence with σ1 = 20, σL = 0.01, and L = 50 following the
advice from Song & Ermon (2020). Following Song & Ermon (2020) we also track the exponentially
moving average (EMA) of the weights of the energy network during training and use the EMA
weight during inference, as it has been shown to further reduce the instability in the sample quality.
All models in this paper were trained on the Nvidia-A100 GPU (Choquette et al., 2021).

B.2.2 REINFORCEMENT LEARNING

We borrow the experimental setup from Peng et al. (2021) where the agent’s state is a 105-
dimensional vector consisting of the relative position of each link with respect to the root body
and the rotation of each link (represented as a 6-dimensional normal-tangent vector of the link’s
linear and angular velocities). All features are in the agent’s local coordinate system. Similarly to
Peng et al. (2021), we do not add additional features to encode information like the feature’s phase
in the motion, or the target pose. Further, the character is not trained to replicate the phase-wise
features of the motion and the learnt rewards are generally only a representation of the closeness of
the agent’s motion to the expert’s data distribution. The agent’s actions specify a positional target
that is then tracked via PD controllers at each joint.
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We use asynchronous parallel training in the IsaacGym simulator (Makoviychuk et al., 2021) for all
experiments and analyses in this paper and spawn 4096 independent, parallel environments during
both training and evaluation. Given an initial policy, training is carried out by first rolling out
the policy in all environments for a rollout horizon (16 in our experiments). During rollouts, an
environment is reset if it happens to reach the done state. A replay buffer is then populated with
all agents’ transitions obtained from the rollouts. Then, with rollouts paused, the policy and value
function are updated with the data from the replay buffer. After the update, the rollouts are restarted
with the updated policy. We use multiple mini epochs to update the policy and value function at
every update step. In each mini epoch, several mini-batches of data samples are drawn from the
replay buffer. The number of mini-batches depends on the relative size of each mini-batch and the
replay buffer.

During policy evaluation, the same rollout procedure is used, however this time, the rollout horizon
is set to 300 and the networks are of course not updated. Performance metrics are recorded every
main training epoch as a mean across the k = 20 most rewarding environments. Finally, we use
reference state initialisation to initialise all environments at a random state in the expert’s motion
dataset and use early termination to reset when the agent falls over. For certain tasks like spin-kick,
we find that it is especially challenging to learn a policy starting from certain initial states (such as
the jumping-off point). Additional exploration is required to learn the optimal actions starting from
these states. In these cases, reference states are drawn from a beta distribution instead of a uniform
distribution (with β = 3.0 and α = 1.0). For temporally composed tasks like target reaching and
punching, we use both reference motions during initialisation. In this case, both reference motions
are used with a probability of 0.5 and the target is initialised in the range [1.0, 1.2] when the agent
is initialised with the punching reference.

B.2.3 EVALUATION METRICS

Average Dynamic Time Warping Pose Error: This is the mean dynamic time warping (DTW)
error (Sakoe & Chiba, 1978) between trajectories of the agent’s and the expert’s poses averaged
across all expert motions in the dataset. Given a set of j expert motion trajectories τ̂j of arbi-
trary length Lj where each trajectory is a series containing the Cartesian positions of the reference
character’s joints x̂i, D = {τ̂j}Ntraj

j=1 where τ̂j = {x̂i}Lj

i=1, first, we roll out the trained policy de-
terministically 6 across several thousand random starting-pose initialisations 7. Then, the k = 20
most rewarding trajectories are selected to form a set of policy trajectories Dπ = {τm}km=1 where
τm = {xi}Lm

i=1 and each trajectory has an arbitrary length Lm. The average dynamic time warping
pose error is then computed as the average DTW score of all τm across all expert trajectories τ̂j with
∥x̂i − xi∥2 as the cost function. To ensure that the pose error is only in terms of the character’s local
pose and not its global position in the world, we transform each Cartesian position to be relative to
the character’s root body position at that timestep (x̂i ← x̂i − x̂root

i and xi ← xi − xroot
i ).

Spectral Arc Length: Spectral Arc Length (SAL) (Beck et al., 2018; Balasubramanian et al.,
2011; 2015) is a measure of the smoothness of a motion. The smoothness of the character’s trajectory
is an interesting metric to determine the policy’s ability to perform periodic motions in a controlled
manner. The underlying idea behind SAL is that smoother motions typically change slowly over
time and are comprised of fewer and low-valued frequency domain components. In contrast, jerkier
motions have a more complex frequency domain signature that consists of a lot of high-frequency
components. The length of the frequency domain signature of a motion is hence an appropriate indi-
cation of a motion’s smoothness (with low values indicating smoother motions). SAL is computed
by adding up the lengths of discrete segments (arcs) of the normalised frequency-domain map of a
motion. In our experiments, we use SPARC Beck et al. (2018), a more robust version of the spectral
arc length that is invariant to the temporal scaling of the motion. We track the average SAL of the
k = 20 most rewarding trajectories generated by the policy at different training intervals and use the
root body Cartesian coordinates to compute the SAL. Note that in this case, we do not transform the
positions to the agent’s local coordinate system.

6Deterministic here means that we use the predicted mean as the action instead of sampling from
N (µ(x),Σ).

7This is done to ensure that the computed performance is not biased to any single initial state.

16



Published as a conference paper at ICLR 2025

B.2.4 HYPERPARAMETERS & TRAINING ITERATIONS

Table 4: Hyperparameters used in our experiments. Architectural details are mentioned in Ap-
pendix B.2

Hyperparam Value
Reinforcement Learning
Discount Factor γ 0.99
GAE λ 0.95
TD λ 0.95
Learning Rate 5 e-5
PPO clip threshold 0.2
Training horizon 16
Mini-batch size 2048

NEAR (Energy NCSN)
Batch size 128
σ1 20
σL 0.01
Num noise levels L 50
Exponentially moving avg. rate 0.999
Learning rate 1 e-5
Adam - β 0.9

AMP (Discriminator)
Batch size 512
Gradient penalty 5
Demo observations buffer size 2 e5
Discriminator loss coefficient 5
Discriminator output regularisation 0.05

Table 5: Details of NCSN training iterations (NEAR only) and reinforcement learning environment
interactions (same for NEAR & AMP). †: clips include turning motions. ‡: clips include turning
and punching motions.

Task Num. Motion Clips NCSN Iters. RL Env. Interactions
Walking 74 1.5 e5 60 e6
Running 26 1.5 e5 60 e6
Crane Pose 3 1.0 e5 60 e6
Left Punch 19 1.2 e5 80 e6
Mummy Walk 1 0.8 e5 80 e6
Spin Kick 1 1.2 e5 100 e6

Target Reaching (walking) 22† 1.5 e5 100 e6
Target Reaching (running) 8† 1.2 e5 100 e6
Target Reaching & Punching 33‡ 1.2 e5 100 e6

B.2.5 REPEATABILITY & DETERMINISM

Each algorithm was trained 5 times independently on every task with separate random number gen-
erator seeds for each run. However, using a fixed seed value will only potentially allow for determin-
istic behaviour in the IsaacGym simulator. Due to GPU work scheduling, it is possible that runtime
changes to simulation parameters can alter the order in which operations take place, as environment
updates can happen while the GPU is doing other work. Because of the nature of floating point nu-
meric storage, any alteration of execution ordering can cause small changes in the least significant
bits of output data, leading to divergent execution over the simulation of thousands of environments
and simulation frames. This means that experiments from the IsaacGym simulator (including the
original work on AMP) are not perfectly reproducible on a different system. However, parallel sim-
ulation is a major factor in achieving the results in this paper and minor non-determinism between
independent runs is hence just an unfortunate limitation. More information on this can be found in
the IsaacGymEnvs benchmarks package. Note that this is only a characteristic of the reinforcement
learning side of our algorithm. The pretrained energy functions are also seeded and these training
runs are perfectly reproducible.
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B.3 MAZE DOMAIN DETAILS

This section provides additional details of the experiments and procedures used to generate Figure 1.
In this experiment, the agent is initialised randomly in a small window at the top portion of the L-
shaped maze. The agent aims to reach the goal position at the bottom right (the episode ends when
the agent’s position is within some threshold of the goal). Expert demonstrations were collected, so
the expert’s trajectory did not reach the target directly but first passed through an L-shaped maze.
The agent is expected to learn to imitate this by passing through the maze. We train AMP and
NEAR in this domain and visualise the learnt reward functions. In the case of NEAR, we visualise
the energy function (eθ(·, σ) with σ = 20.0) and in the case of AMP we visualise the discriminator.
The energy function is trained by training our modified NCSN on the expert state transitions in the
maze domain. The discriminator is trained while training the AMP policy. Figure 1 shows two
comparisons. We compare rew(s′|s) at a fixed state s in the maze at different training iterations.
The energy-based reward function is stationary throughout training and rew(s′|s) only changes with
s′ for a fixed s. In contrast, the adversarial reward depends on the agent’s policy and keeps changing
to minimise the prediction for the samples in the policy’s distribution pG.

There is no environment-provided reward function in this domain and the visualisations are obtained
only by using the learnt rewards. Apart from visualisation and domain-related differences, the train-
ing regime for both NEAR and AMP in this task is identical to the training regime used in all other
experiments in this paper. Please refer to Appendix B.2 for training details.

C EXTENDED RESULTS

Table 6: A comparison of the mean performance of NEAR and AMP at the end of training (Avg.
pose error: lower is better. Others: closer to expert is better). Stdev. across independent runs is
shown as an error value (±).

Task Algorithm Avg. Pose Error (m) Spectral Arc Length Root Body Velocity (ms ) Root Body Jerk (ms3 )
Walking NEAR 0.51 ± 0.15 -7.52 ± 1.32 1.25 ± 0.18 360.89 ± 184.36

AMP 0.51 ± 0.07 -8.78 ± 1.04 1.87 ± 0.1 736.32 ± 78.25

Expert - -5.4 1.31 130.11

Running NEAR 0.62 ± 0.17 -7.24 ± 1.59 3.52 ± 0.37 1298.42 ± 215.42
AMP 0.65 ± 0.01 -9.71 ± 1.54 3.79 ± 0.14 1560.14 ± 87.18

Expert - -3.79 3.55 513.68

Crane Pose NEAR 0.94 ± 0.15 -6.6 ± 1.97 0.12 ± 0.22 46.77 ± 77.72
AMP 0.82 ± 0.09 -8.1 ± 1.18 0.03 ± 0.01 19.29 ± 5.17

Expert - -12.28 0.03 49.05

Left Punch NEAR 0.37 ± 0.05 -6.87 ± 1.47 0.01 ± 0 11.34 ± 2.86

AMP 0.32 ± 0.01 -9.93 ± 3.28 0.06 ± 0.02 29.6 ± 8.16
Expert - -1.73 0.16 72.49

Mummy Walk NEAR 0.66 ± 0.39 -4.72 ± 1.2 0.33 ± 0.4 189.73 ± 189.41
AMP 0.41 ± 0.01 -13.84 ± 1.12 0.98 ± 0.04 354.49 ± 33.02

Expert - -4.71 0.73 79.63

Spin Kick NEAR 0.78 ± 0.05 -5.59 ± 2.26 0.53 ± 0.19 286.63 ± 60.77

AMP 0.58 ± 0.1 -3.16 ± 0.73 0.5 ± 0.14 278.25 ± 29.52
Expert - -3.39 1.05 273.61
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Table 7: A comparison of wall-clock times of NEAR and AMP. Stdev. across independent runs is
shown as an error value (±). We find that overall NEAR requires slightly more training time than
AMP. Across all tasks, NCSN contributes to less than 30% of the total computational time of NEAR,
with RL accounting for the majority of the computation load and wall-clock time. Interestingly,
AMP always has a larger reinforcement learning computational load. This is expected as AMP
learns both the policy and the reward function simultaneously.

Task Algorithm Avg. NCSN Wall Time (min.) Avg. RL Wall Time (min.) Total Wall Time (min.) 8

Walking NEAR 10.19 ± 0.22 15.07 ± 0.23 25.26 ± 0.32

AMP - 18.46 ± 0.52 18.46 ± 0.52

Running NEAR 8.11 ± 0.3 15.15 ± 0.29 23.26 ± 0.42

AMP - 17.97 ± 0.42 17.97 ± 0.42

Crane Pose NEAR 6.61 ± 0.16 13.92 ± 0.6 20.53 ± 0.62

AMP - 17.16 ± 0.5 17.16 ± 0.5

Left Punch NEAR 7.83 ± 0.17 20.39 ± 0.42 28.22 ± 0.45

AMP - 22.42 ± 0.61 22.42 ± 0.61

Mummy Walk NEAR 5.07 ± 0.1 18.11 ± 0.32 23.18 ± 0.34

AMP - 21.13 ± 0.33 21.13 ± 0.33

Spin Kick NEAR 7.73 ± 0.2 19.94 ± 0.46 27.67 ± 0.5

AMP - 24.47 ± 0.42 24.47 ± 0.42

Target Reaching (walking) NEAR 10.52 ± 0.2 28.93 ± 0.65 39.45 ± 0.68

AMP - 36.65 ± 0.22 36.65 ± 0.22

Target Reaching (running) NEAR 8.08 ± 0.14 28.71 ± 0.86 36.79 ± 0.87

AMP - 34.95 ± 1.39 34.95 ± 1.39

Target Reaching & Punching NEAR 7.93 ± 0.09 28.68 ± 0.83 36.61 ± 0.83
AMP - 37.54 ± 0.28 37.54 ± 0.28

D EXTENDED ABLATIONS

Table 8: A comparison of ablated configurations of NEAR (Avg. pose error: lower is better. Others:
closer to expert is better). Stdev. across independent runs is shown as an error value (±).

Task Config Avg. Pose Error (m) Spectral Arc Length Root Body Velocity (ms ) Root Body Jerk (ms3 )
Walking anneal & eθ 0.51 ± 0.15 -7.52 ± 1.32 1.25 ± 0.18 360.89 ± 184.36

anneal & r̃ 0.42 ± 0.02 -6.11 ± 2.01 0.88 ± 0.58 249.97 ± 136.56

σ5 & eθ 0.49 ± 0.22 -7.1 ± 1.94 1.58 ± 0.38 653.17 ± 554.85

σ5 & r̃ 0.42 ± 0.02 -8.7 ± 1.2 1.25 ± 0.51 360.86 ± 154.68

Expert - -5.4 1.31 130.11

Running anneal & eθ 0.62 ± 0.17 -7.24 ± 1.59 3.52 ± 0.37 1298.42 ± 215.42

anneal & r̃ 0.59 ± 0.03 -8.02 ± 0.57 4.86 ± 0.16 1875.44 ± 72.8

σ5 & eθ 0.62 ± 0.18 -6.69 ± 1.85 3.48 ± 0.52 1334.1 ± 244.91

σ5 & r̃ 0.57 ± 0.04 -8.61 ± 0.86 4.76 ± 0.1 1826.98 ± 57.54

Expert - -3.79 3.55 513.68

Crane Pose anneal & eθ 0.94 ± 0.15 -6.6 ± 1.97 0.12 ± 0.22 46.77 ± 77.72

anneal & r̃ 1.33 ± 0.21 -7.24 ± 2.51 0.14 ± 0.23 72.24 ± 109.83

σ5 & eθ 1.38 ± 0.8 -6.03 ± 1.79 0.07 ± 0.1 29.5 ± 40.22

σ5 & r̃ 1.23 ± 0.07 -4.34 ± 1.02 0.02 ± 0.01 16.3 ± 4.65

Expert - -12.28 0.03 49.05

E ADVERSARIAL IL CHALLENGES & AMP DISCRIMINATOR EXPERIMENTS

In this section, we elaborate on the challenges of adversarial imitation learning and provide addi-
tional empirical results demonstrating instability and non-smoothness in the AMP discriminator. As
briefly highlighted in Section 2, the root causes for the challenges of adversarial techniques are the

8For NEAR, the total wall time is calculated by assuming that the wall times of NCSN and RL runs are
normally distributed. Total wall time = NCSN avg. + RL avg. ±

√
NCSN std.2 + RL std.2
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simultaneous min-max optimisation in their training procedure and the formulation of the discrim-
inator as a classifier. Throughout training, the policy is updated to bring pG closer to pD, meaning
that the support of pG – the manifold of the samples generated by the policy – keeps changing.
Simultaneously, the discriminator’s decision boundary is also constantly changing to distinguish
between the samples in supp(pD) and supp(pG). This iteratively changing adversarial procedure
leads to high-variance discriminator predictions and causes performance instability.

At any point in training, the discriminator is trained to discriminate pD from pG – and not pD
from all that is not pD – meaning that it is quite accurate on samples in supp(pD) and supp(pG)
but is often arbitrarily defined in other regions of the sample space (Arjovsky & Bottou, 2017).
The changing nature of supp(pG) means that after a policy update, some of the samples passed on
to the discriminator could potentially have come from a region outside these two supports. Since
the discriminator is arbitrarily defined here, it is likely to return misleading predictions, leading to
misleading policy updates. This variance is potentially further heightened by the stochastic nature of
reinforcement learning techniques like Proximal Policy Optimisation (PPO) (Schulman et al., 2017),
meaning that the agent’s exploration is typically met with poor rewards 9. We empirically verify this
high-variance hypothesis through experiments on AMP (Appendix E.1.1).

Further, reward smoothness is indeed an important criterion for faster convergence and sensible pol-
icy improvements in RL methods like PPO. An ideal data-driven reward function is both smooth
in the sample space as well as consistent throughout training (stationarity). Unfortunately, be-
cause the discriminator DθD is non-smooth in the whole space X and is arbitrarily defined in
(supp(pD) ∪ supp(pG))

c – parts of the sample space that are unexplored and not in the demon-
stration dataset M –, the rewards in this region are also non-smooth. Moreover, the iteratively
changing nature of the discriminator’s decision boundary means that the reward function is also
non-stationary. These issues compound such that the agent often receives constant or arbitrarily
changing rewards and hence the policy receives uninformative updates. Appendix E.1.2 discusses
experiments that highlight this non-smoothness and non-stationarity in AMP.

Finally, adversarial learning techniques are also prone to poor performance due to perfect discrimi-
nation. Arjovsky & Bottou (2017) introduce the perfect discriminator theorems that state that if pD
and pG have disjoint supports or have supports that lie in low-dimensional manifolds (lower than
the dimension of the sample space X), then there exists an optimal discriminator D∗ : X → [0, 1]
that has accuracy 1 and ∇xD

∗(x) = 0∀x ∈ supp(pD) ∪ supp(pG) (Theorems 2.1 and 2.2 in (Ar-
jovsky & Bottou, 2017)). They also prove that under these conditions pG is non-continuous in X
and it is increasingly unlikely that supp(pD) and supp(pG) perfectly align (Lemmas 2 and 3 in
(Arjovsky & Bottou, 2017)). In the case of AIL, the generator is indeed a neural network mapping
low-dimensional samples (features s ∈ S) to the discriminator’s high dimensional input space. Fur-
ther, pG and pD are potentially disjoint and it is at least unlikely that their supports perfectly align.
This means that at the initial stages of training, the discriminator very quickly learns to perfectly dis-
tinguish between the samples in the expert datasetM and those in pG, assigning a prediction of 0 to
any sample in the agent’s trajectory. When used as a reward function, logDθD (W (πθG(s))) = log 0,
instantly leads to arbitrary policy updates. Even when using a modified reward formulation, say D()
instead of logD(), the agent would receive a nearly constant reward, say c. Under such a constant
reward function, the gradient of the performance measure quickly goes down to zero – since the
expectation of the gradient of the log probability of a parameterised distribution (Fisher score) is
zero at the parameter (Wasserman, 2013). We verify these claims by replicating the experiments
from Arjovsky & Bottou (2017) on adversarial motion priors (AMP) (Appendix E.1.3).

To conclude this section we highlight that NEAR does not rely on such simultaneous optimisation
and instead has a fixed, stationary reward function. Hence, NEAR is not prone to such instability
and non-smoothness.

9We agree that the KL diverge constraint in PPO might somewhat reduce the negative impacts of this,
however, penalising policy change with worse rewards is still non-ideal.
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Figure 7: Discriminator variance experiments. The policy was first trained for 2e6, 5e6, and 10e6
data samples. Then, with the policy updates paused, discriminator training was continued. We plot
the rewards received across several independent policy rollouts and observe a high variance. Given
that the policy is unchanging, a high variance in the reward indicates poor reinforcement learning.

E.1 AMP DISCRIMINATOR EXPERIMENTS

E.1.1 HIGH DISCRIMINATOR VARIANCE

We conduct additional experiments to very the high variance in the adversarial motion priors (Peng
et al., 2021) discriminator predictions. We train AMP on a humanoid walking task using the loss
function from Equation (1) for the discriminator and Proximal Policy Optimisation (PPO) (Schul-
man et al., 2017) to train the policy. The discriminator is slightly modified by removing the sigmoid
activation at the output layer and instead computing the loss on sigmoid(D()) 10 (same setup as
the main experiments in this paper). Training is continued normally until some cut-off point. The
cut-off point is varied across runs to obtain varying levels of intersection between supp(pD) and
supp(pG). Then, with the policy updates paused, we continue training the discriminator to maintain
the learnt decision boundary and visualise the variance in the trained discriminator’s predictions on
the motions generated by an unchanging policy. We hypothesise that as training continues and the
supports of the two distributions get closer, the discriminator is less likely to see samples from a
region outside supp(pD) ∪ supp(pG), meaning that its variance reduces as training progresses. We
observe that the discriminator’s predictions indeed have quite a high variance and the range of the
predictions varies vastly across training levels (Figure 7). Further, the variance indeed reduces over
the training level, indicating a gradually increasing intersection between supp(pD) and supp(pG).
The adversarial optimisation is likely to get stabilised as the policy gets closer to optimality, however,
training for the most part is still rather unstable because of the high variance in the discriminator’s
predictions.

E.1.2 DISCRIMINATOR NON-SMOOTHNESS

We also conduct experiments to understand the smoothness of the learnt reward function and its
changes over training iterations (Figure 8). To do this, we again train AMP on a humanoid walking
task. This time we do not modify the algorithm and simply evaluate the discriminator at gradually
increasing distances from the true data manifold at various points in training. We find that the
discriminator’s predictions on average, decline as we move farther away from the true data manifold.
However, again, the predictions are quite noisy and have a fairly large standard deviation.

E.1.3 PERFECT DISCRIMINATION

Finally, we replicate the experiments from Arjovsky & Bottou (2017) on adversarial IL (Figure 9).
We use the same experimental setup as Appendix E.1.1 but now compute the accuracy with the
output of the final Sigmoid layer. Here, instead of continuing the discriminator’s training, we retrain
the discriminator to distinguish between samples in the expert dataset pD and samples in pG (same

10This is done to allow the network to predict any arbitrary value and to allow more flexibility in the reward
function transformation. The same is done in the original AMP procedure Peng et al. (2021) and we make no
additional modifications to their code.
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Figure 8: Discriminator non-smoothness experiments. Plots show the mean and std. discriminator
prediction over a large batch of perturbed expert data samples at varying levels of perturbation
(where a distance of 0 on the x-axis corresponds to unperturbed expert data in pD). Notice the high
value of the std. compared to the mean at any given distance from pD.
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Figure 9: Perfect discriminator experiments on the walking task (multi-clip dataset with 74 motions
clips). The policy was first trained for 0.5e6, 2e6, and 5e6 data samples. Then, with the policy
updates paused, the discriminator was retrained. We find that the discriminator very quickly learns
to perfectly distinguish between pD and pG (notice the logarithmic scale).

procedure as Arjovsky & Bottou (2017)). Our experiments reproduce the results from Arjovsky
& Bottou (2017) on adversarial IL (Figure 9). The discriminator loss from Equation (1) rapidly
declines indicating a near-perfect discriminator prediction and highlighting the fact that even after
sufficient training, pG and pD are non-continuous. The accuracy of the discriminator reaches a
value of 1.0 in at most 75 iterations and ∇xD(x) rapidly declines to be 0, further corroborating the
theoretical results. Finally, we also find that the discriminator’s predictions on the motions generated
by the policy rapidly drop down to zero, meaning that the policy receives unhelpful updates.

Despite these core issues of AIL, it is still unclear why these techniques (and traditional GANs) still
function comparably to score-based alternatives. One reason could be that the changing discrimina-
tor inputs mitigate the challenges of perfect discrimination. However, this is still an open question
that needs future work and deeper analysis.
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