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In section A, we provide details of optimization algorithms, and condition inference based cross-correlogram. Proofs of the
propositions in the main text can be found in section B. Section C lists all simulation scenarios for the model verification.
Section D presents some use cases and versatility of our new tool. Section E derives the approximated analytical formulae of
the model’s properties in a special situation. Finally, more details about the neuroscience experiments are in section F.

A ALGORITHMS

A.1 UPDATING RULES

min
hi→j ,βj ,βw,σw

−
∑
s∈Nj

log λ̃j(s) +

∫ T

0

λ̃j(s)ds


λ̃j(t) :=

(
βj + βw si(t) +

∫ t

0

hi→j(t− τ)dNi(τ)

)
+

si(t) =
∫ T

0

W (t− s)dNi(s) =
∑

tm∈Ni

W (t− tm)

Let ϕw, ϕh be the bases defined as,

ϕw(t) :=

∫
W (t− s)dNi(s), ϕh(t) :=

∫
hi→j(t− s)dNi(s) (1)

The intensity can be rewritten in a linear form,

λ̃j(t) = βj · 1 + βwϕw(t) + βhϕh(t) = Ψ(t)β (2)

Ψ(t) represents all bases, β is a vector of the coefficients. If the impact function is fitted using non-parametric method, such
as general additive model or splines

hi→j(s) = βh,1B1(s) + ...+ βh,kBk(s)

where B1, ..., Bk are spline bases for the impact function. Define

ϕh,1(t) :=

∫
B1(t− s)dNi(s), ..., ϕh,k(t) :=

∫
Bk(t− s)dNi(s)

The intensity still maintains the linear form:

λ̃j(t) = βj · 1 + βwϕw(t) + βh,1ϕh,1(t) + ...+ βh,kϕh,k(t)
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The target equation of the model can be optimized using gradient descent. For a fixed σw, the target is convex and the
optimization is efficient using Newton’s method. The first-order and second-order derivatives of the target equations are,

∂ℓ̃

∂β
=−

∫ T

0

Ψ(s)

λ̃j(s)
dNj(s) +

∫ T

0

Ψ(s)ds

∂2ℓ̃

∂β∂βT
=

∫ T

0

Ψ(s)Ψ(s)T

λ̃j(s)2
dNj(s).

The update of σw can be done as a separate step using a gradient as follows. If W is a Gaussian kernel function, then

∂ℓ̃

∂σw
= −

∑
tn∈Nj

βw

λ̃(tn)

∂

∂σw
si(tn) + βw

∂

∂σw

∫ T

0

si(u)du

=−
∑

tn∈Nj

βw

λ̃(tn)

∑
tm∈Ni

∂

∂σw
W (tn − tm) + βw

∑
tm∈Ni

∂

∂σw

∫ T

0

W (u− tm)du

=−
∑

tn∈Nj

βw

λ̃(tn)

∑
tm∈Ni

∂

∂σw
W (tn − tm) + βw

∑
tm∈Ni

(
W (T − tm)

∂

∂σw
W (T − tm)−W (−tm)

∂

∂σw
W (−tm)

) (3)

where
∂

∂σw
W (x) =

(
− 1√

2πσ2
w

+
x2

√
2πσ4

w

)
exp

{
− x2

2σ2
w

}
(4)

σw can be optimized using grid-search during warmup. In Appendix D.3, we discuss the sampling-based method, which
shows incorporating the uncertainty of σw or fixing it at the optimal does not make a significant difference.

A.2 INTEGRAL TRICK

One computational advantage of the proposed model in main (2) is that the integral
∫
Ψ(s)ds can be calculated in the closed

form if the bases are designed carefully. In contrast, models with intensity in logarithmic scale log λ(t) = Ψ(t)β do not
enjoy this computation convenience. For example, the derivative of the modified negative log-likelihood function becomes,

∂ℓ̃

∂β
=−

∫ T

0

Ψ(s)dNj(s) +

∫ T

0

Ψ(s)eΨ(s)βds.

Usually, it is not tractable to calculate the integral in the second term, so it is approximated by discretizing the continuous
functions. This is the reason our model does not involve discretization or require specifying the time resolution. Another
benefit of using a continuous-time model is that the number of data points is small, which is proportional to the number of
spikes instead of the number of time bins. For example, if the bin width is 1 ms, then for one 1-second long trial, it needs to
store 1000 data points. If the trial has 20 spikes, the continuous-time model only needs to keep 20 data points. The memory
space is 50 times smaller.

If the regression bases have form Eq (1) with kernel, then∫ T

0

Ψ(t)dt =

∫ T

0

∫ T

0

K(t− s)Ni(ds) = Ni(T )

∫
R

K(s)ds.

If K is a Normal window function or a square window function, the above integral is simple. The boundary effect can be
removed in the integral by only considering a few time points close to 0 or T. Next, we show how to calculate such an
integral if K is B-spline, which is widely used in non-parametric curve fitting. An example can be found in Appendix D.1.

The B-splines are defined using Cox-de Boor recursion equations. ti are knots (with repeated padding). p is the degree of
the spline polynomial. When p = 3, these are the cubic splines.

Bi,0(x) =I[ti,ti+1)(x)

Bi,p(x) =
x− ti

ti+p − ti
Bi,p−1(x) +

ti+p+1 − x

ti+p+1 − ti+1
Bi+1,p−1.



Knot padding is important to create proper splines. If p = 3 and the distinct knot locations are (0, 1, 2), the input knots
should be (0, 0, 0, 0, 1, 2, 2, 2, 2). The knots need extra p repeated knots of the two ends. If there are K distinct knots, then
there are K + 2p input knots. The total number of basis is K + p− 1.

Lemma A.1. For the B-spline curve defined above, the integral of the curve has closed-form as follows,∫ ∞

−∞
Bi,p(s)ds =

ti+p+1 − ti
p+ 1

. (5)

Proof. The support of each basis spans over p+ 1 knot-intervals (including the padded knots on the ends),

supp(Bi,p) =[ti, ti+p+1)

d

dx
Bi,p(x) =

p

ti+p − ti
Bi,p−1(x)−

p

ti+p+1 − ti+1
Bi+1,p−1(x).

The support of the derivative is almost the same as the basis except for a few 0 derivative points.

supp(
d

dx
Bi,p) ⊆[ti, ti+p+1)

We reform the derivative properties to get the integral [Bhatti and Bracken, 2006].

d

dx

∞∑
i=0

ciBi,p+1(x) =

∞∑
i=0

(p+ 1)
ci − ci−1

ti+p+1 − ti
Bi,p(x)

ci are some arbitrary coefficients. Next we set c0, ..., ci−1 = 0, ci, ci+1, ... = 1.

d

dx

∞∑
j=i

cjBj,p+1(x) =
d

dx

i+p∑
j=i

Bj,p+1(x) =
p+ 1

ti+p+1 − ti
Bi,p(x)

The first equation simplifies the sum due to the supports of bases. Then take the integral on both side,∫ x

−∞
Bi,p(s)ds =

∫ x

ti

Bi,p(s)ds =
ti+p+1 − ti

p+ 1

∞∑
j=i

Bj,p+1(s) =
ti+p+1 − ti

p+ 1

i+p∑
j=i

Bj,p+1(x)

The area under the curve of a basis is,∫ ∞

−∞
Bi,p(s)ds =

∫ ti+p+1

ti

Bi,p(s)ds =
ti+p+1 − ti

p+ 1

i+p∑
j=i

Bj,p+1(ti+p+1)

Consider the summation term,

i+p∑
j=i

Bj,p+1(ti+p+1) =Bi,p+1(ti+p+1) +Bi+1,p+1(ti+p+1) + ...+Bi+p,p+1(ti+p+1)

=
( ti+p+1 − ti
ti+p+1 − ti

Bi,p(ti+p+1) +
ti+p+2 − ti+p+1

ti+p+2 − ti+1
Bi+1,p(ti+p+1)

)
+
( ti+p+1 − ti+1

ti+p+2 − ti+1
Bi+1,p(ti+p+1) +

ti+p+3 − ti+p+1

ti+p+3 − ti+2
Bi+2,p(ti+p+1)

)
+ ...

+
( ti+p+1 − ti+p

ti+2p+1 − ti+p
Bi+p,p(ti+p+1) +

ti+2p+2 − ti+p+1

ti+2p+2 − ti+p+1
Bi+p+1,p(ti+p+1)

)
=Bi,p(ti+p+1) +Bi+1,p(ti+p+1) + ...+Bi+p+1,p(ti+p+1)

=Bi,p−1(ti+p+1) +Bi+1,p(ti+p+1) + ...+Bi+p+2,p−1(ti+p+1)

=Bi,0(ti+p+1) +Bi+1,0(ti+p+1) + ...+Bi+2p+1,0(ti+p+1) = 1

So the conclusion holds.



Another popular example with closed-form integral is the exponential coupling function, which also enjoys the integral trick.

hi→j(τ) = e−γi→j(τ)I(τ ≥ 0) (6)

The modified negative log-likelihood is,

ℓ̃ =−
∑

tn∈Nj

log

βj + si(tn) + αi→j

∑
tm∈Ni,tm<tn

e−γi→j(tn−tm)


+ βjT +

∫ T

0

si(s)ds+
αi→j

γi→j

∑
tm∈Ni

(
1− e−γi→j(T−tm)

) (7)

where αi→j is the coefficient of the exponential basis. The derivatives of the target equation over βj , βw, αi→j are similar to
other linear models. The derivative over the timescale parameter γi→j is

∂ℓ̃

∂γi→j
=
∑

tn∈Nj

αi→j

λ̃(tn)

∑
tm∈Ni,tm<tn

(tn − tm)e−γi→j(tn−tm)

− αi→j

γ2
i→j

∑
tm∈Ni

(1− e−γi→j(T−tm)) +
αi→j

γi→j

∑
tm∈Ni

(T − tm)e−γi→j(T−tm)

(8)

A.3 DETAILS OF CONDITIONAL INFERENCE BASED CROSS-CORRELOGRAM (CCG)

Realization

Monte Carlo sample

Time

jitter window

Figure 1: Construction of Monte Carlo samples from the null in conditional-inference based CCG. Blue dots are timestamps.

The calculation of the CCG hypothesis tests requires first discretizing the point processes. The time bin is usually set with a
small size so that each bin contains at most one point. Consider two time-binned processes Xi and Xj with respect to the
counting processes Ni and Nj . The correlation (or cross-correlation) of timing at a certain lag τ ∈ N (Xi leads Xj) with
fluctuating background activity is assessed in the following procedure:

1. Calculate the test statistic CCG at τ ,
CCG(τ) =

∑
n

Xi(n− τ)Xj(n) (9)

2. Divide the timeline into equal-width jitter windows ∆ as shown in the figure above.

3. One Monte Carlo sample from the null distribution is generated by uniformly allocating the time points within each
jitter window, as shown in the figure. All samples are drawn independently (conditioned on the observed data). Such a
process can be applied to either Ni or Nj , or both. Then time-bin the "jittered" samples X̃i, X̃j .

4. Calculate the CCG of the Monte Carlo sample,

CCGMC(τ) =
∑
n

X̃i(n− τ)X̃j(n) (10)

5. Repeat step 3 and 4 multiple times NMC to acquire the null distribution of CCG. The p-value of the test, which is exact,
is

p− value =
Nτ + 1

NMC + 1
(11)

where Nτ is the number of Monte Carlo samples CCG(τ) < CCGMC(τ) (or the other way if CCG(τ) is on the left
tail). Similarly, the acceptance band can be constructed from the null distribution.



∆ is chosen with prior knowledge of the data, which is roughly the timescale of the background activity, so that jittering the
samples within window ∆ maintains the intensity of Ni, Nj , but it can "break" the fine time structures without breaking
the background timing association. As the time points are effectively ‘jittered’ by a small amount, the null samples are,
heuristically, presumed to have the same intensity as the original process. In this way, the method bypasses the problem of
estimating a dynamic background. For better visualization, the mean of the null is usually subtracted from the test statistic
so the CCG curve and the acceptance band are centered around zero, as in the main Figures 3 and 7. In the main Figure 3
and 7, the jitter window is ∆ = 120 ms, the discretization time bin width is 2 ms, and the null distribution is computed from
1000 Monte Carlo samples. A rigorous explanation and variations on the theme are provided in Amarasingham et al. [2012].

B PROOFS

We list the regularity conditions needed for our statements here. These technical conditions first include follows from
Assumptions A,B,C in Ogata [1978], which makes sure the consistency of θ̂ converges to θKL = argminθ Λ(θ) := Eℓ(θ)
for the misspecified model. Then, we make the additional assumption:

Assumption 1. Λ(·) is µ-strongly convex and has L-Lipschitz gradient.

With this assumption, we can guarantee that for θ1 and θ2, we have

µ∥θ1 − θ2∥ ≤ ∥∇Λ(θ1)−∇Λ(θ2)∥ ≤ L∥θ1 − θ2∥

which gives ∥∇Λ(θ1)−∇Λ(θ2)∥ = Θ(∥θ1 − θ2∥).

We state a Lemma. Before we state the Lemma, let as simplify the notation using 2,1 vs i, j and absorb the baseline and
heterogeneity into one function f so that we have

λ1(t) = f1(t) + c

∫ t

0

1[0,σh](t− s)dN2(s)

λ2(t) = f2(t)

(12)

This will simplify the notation in the Lemma below. We always explicitly make clear which version of notation we are using
before stating results.

Lemma B.1. Fixed a and b, assume f2 is continuous everywhere with bounded gradient, then

E
[

1

a+ b
∫ t

0
1[0,σh](t− s)dN2(s)

]
=
1− f2(t)σh

a
+

f2(t)

a+ b
σh + o(σh)

=
1

a
− b

a(a+ b)
f2(t)σh + o(σh) (13)

Proof. Simply note that
∫ t

0
1[0,σh](t − s)dN2(s) is a Poisson distribution with parameter (also mean)

∫ t

t−σh
f2(s)ds =

f2(t)σh + o(σh). The rest follows direct calculation using Poisson p.m.f.

We also state another Lemma which will be useful later, based on taylor expansion of ratio function:

Lemma B.2. Given finitely supported R.V. X and Y with mean µx and µy, if we define rx = ∥X − µx∥∞ and ry =
∥Y − µy∥∞ and r = max(rx, ry). Suppose X

Y is always strictly bounded away from 0 by some fixed positive constant, then

X

Y
=

µx

µy
− µx

µ2
y

(Y − µy) +
1

µy
(X − µx) + o(r)

or higher order approximation:

X

Y
=

µx

µy
− µx

µ2
y

(Y − µy) +
1

µy
(X − µx) +

µx

µ3
y

(Y − µy)
2 − 1

µ2
y

(X − µx)(Y − µy) + o(r2).

Thus,

E
X

Y
=

µx

µy
+

Var(Y )µx

µ3
y

− Cov(X,Y )

µ2
y

+ o(r2).



Proof. Omitted.

Thus, if we use the above high order approximation:

R(X,Y ) :=
µx

µy
+

Var(Y )µx

µ3
y

− Cov(X,Y )

µ2
y

,

we have E[XY ] = R(X,Y ) + o(r2).

B.1 PROOF OF PROPOSITION 1.

We first prove Proposition 1. In this proof we use original intensity notation (4).

Proof of Proposition 1. Using (1) (or see Ogata [1978]), we can show that

Λ(θ) =E
[
−
∫ P

0

λθ(t)dt+

∫ P

0

log λθ(t)dN1(t)

]
=E
[
−
∫ P

0

λ1(t)

(
λθ(t)

λ1(t)
− log λθ(t)

)
dt

]
for

λ1(t) =α1 + f1(t) + c

∫ t

0

1[0,σh](t− s)dN2(s). (14)

where we set
∫ T

0
f1(t)dt = 0 to avoid identifiability issue with α1 and parametrize

λθ(t) = θ1 + θ2

∫ t

0

1[0,σh](t− s)dN2(s),

for MLE. Using Lemma B.1 and
∫ T

0
f1(t)dt = 0, one can show

∂Λ

∂θ2 |θ=(α1,c)

=E
[
−
∫ T

0

∂λθ

∂θ2

(
1− λ∗

1(t)

λθ(t)

)
dt

]
=−

∫ T

0

E
[
f1(t)

∫ t

0
1[0,σh](t− s)dN2(s)

α1 + c
∫ t

0
1[0,σh](t− s)dN2(s)

]
dt

=−
∫ T

0

f1(t)

c
− f1(t)µ

c
E
[

1

α1 + c
∫ t

0
1[0,σh](t− s)dN2(s)

]
dt

=−
∫ T

0

f1(t)f2(t)σh

α1 + c
dt+ o(σh)dt

Now, note θKL corresponds to the point where ∂Λ
∂θ2

= 0. The rest follows from Assumption 1.

B.2 PRELIMINARY WORK FOR PROOFS OF PROPOSITION 2 AND 3.

Hence forth we use the alternative intensity notation (12). We lay some ground work before proving Proposition 2 and 3.
Again we restate the notation (12), but also parametrize the density as θ (the impact function parameter) and η (all else is
nuisance parameter):

λ1(t) =f1(t) + c

∫ t

0

1[0,σh](t− s)dN2(s)



λ2(t) =f2(t)

λθ,η(t) =

M∑
i=1

ηigi(t) + θ

∫ t

0

1[0,σh](t− s)dN2(s) (15)

and re-define

ℓ(θ,η;HT ) = −
∫ T

0

λθ,η(t)dt+

∫ T

0

log λθ,η(t)dN1(t)

and consequently Λ(θ,η) = E[ℓ(θ,η)]. However, we characterize a concept, on population level, similar to profile likelihood

Λp(θ) = sup
η

E
[
−
∫ T

0

λθ,η(t)dt+

∫ T

0

log λθ,η(t)dN1(t)

]
,

So, we can define

η(θ) = argmax
η

E
[
−
∫ T

0

λθ,η(t)dt+

∫ T

0

log λθ,η(t)dN1(t)

]
so that Λ(θ,η(θ)) = Λp(θ). As a result of Assumption 1, Λp is also µ-strongly convex with L-Lipschitz gradient. Now, we
first characterize η(c) which corresponds to the equatiosn ∂Λ(c,η)

∂ηi
= 0 for all i. To analyze this term, we write:

∂Λ(c,η)

∂ηi

=− E
[ ∫ T

0

∂λθ,η

∂ηi
(t)

(
1− λ1(t)

λθ,η(t)

)
dt

]
=− E

[ ∫ T

0

gi(t)

( ∑M
i=1[η(c)]igi(t)− f1(t)∑M

i=1[η(c)]igi(t) + c
∫ T

0
1[0,σh](t− s)dN2(s)

)
dt

]

=− E
[ ∫ T

0

gi(t)
(∑M

i=1[η(c)]igi(t)− f1(t)
)

∑M
i=1[η(c)]igi(t)

−
c
(∑M

i=1[η(c)]igi(t)− f1(t)
)
f2(t)σh∑M

i=1[η(c)]igi(t)
(
c+

∑M
i=1[η(c)]igi(t)

) + o(σh)dt

]

Set ∂Λ(c,η)
∂ηi

= 0 for 1 ≤ i ≤ M , we can solve for η(c), we can show, using Assumption 1, if we had a η̃c that satisfies

0 = E
[ ∫ T

0

gi(t)(1−
f1(t)∑M

i=1[η̃c]igi(t)
)dt

]
for all i or, if all process are stationary:

0 = E
[
gi

(
1− f1∑M

i=1[η̃c]igi

)]
, (16)

for all i, then
∥η̃c − η(c)∥ = O(σh). (17)

Now, we can investigate estimation for θ:

∂Λp(θ)

∂θ |θ=c

=
∂Λ(θ,η)

∂θ |θ=c,η=η(c)

=− E
[ ∫ T

0

∂λθ,η

∂θ
(t)

(
1− λ1(t)

λθ,η(t)

)
dt

]
=− E

[ ∫ T

0

(∫ T

0

1[0,σh](t− s)dN2(s)

)( ∑M
i=1[η(c)]igi(t)− f1(t)∑M

i=1[η(c)]igi(t) + c
∫ T

0
1[0,σh](t− s)dN2(s)

)
dt

]



=− E
[ ∫ T

0

∑M
i=1[η(c)]igi(t)− f1(t)

c
−

(∑M
i=1[η(c)]igi(t)− f1(t)

)(∑M
i=1[η(c)]igi(t)

)
c

(∑M
i=1[η(c)]igi(t) + c

∫ T

0
1[0,σh](t− s)dN2(s)

)dt

]

=− E
[ ∫ T

0

∑M
i=1[η(c)]igi(t)− f1(t)

c
−

(∑M
i=1[η(c)]igi(t)− f1(t)

)(∑M
i=1[η(c)]igi(t)

)
c
∑M

i=1[η(c)]igi(t)

+

c2
(∑M

i=1[η(c)]igi(t)− f1(t)

)(∑M
i=1[η(c)]igi(t)

)
f2(t)σh(

c
∑M

i=1[η(c)]igi(t)

)(
c
∑M

i=1[η(c)]igi(t) + c2
) + o(σh)dt

]

=− E
[ ∫ T

0

(∑M
i=1[η(c)]igi(t)− f1(t)

)
f2(t)∑M

i=1[η(c)]igi(t) + c
σh + o(σh)dt

]
.

As we can see, this gradient is off-zero by

−E
[ ∫ T

0

(∑M
i=1[η̃c]igi(t)− f1(t)

)
f2(t)∑M

i=1[η̃c]igi(t) + c
dt

]
σh + o(σh) (18)

so we expect the same order of error between θ̂ and c. Now we are ready to prove Proposition 2 and 3.

B.3 PROOF OF PROPOSITION 2.

We use the alternative intensity notation (15).

Proof of Proposition 2. When using the naive Hawkes, we only have g(t) = 1 the constant function, then we can solve for
η̃c, which is simply solving for the η̃c

0 = E
[
η̃c − f1

η̃c

]
which is simply the baseline intensity mean η̃c = E[f1].

The gradient is thus off by zero by

E
[
(f1 − Ef1)f2

Ef1 + c

]
σh + o(σh) =

Cov(f1, f2)
Ef1 + c

σh + o(σh)

The rest follows from Assumption 1 as in proof of Proposition 1.

B.4 PROOF OF PROPOSITION 3.

We use the alternative intensity notation (15). In general case, we first assume all f1(t), f2(t) and gi(t) for i > 1 with
g1 = 1 are stationary and square integrable (so we drop the dependence on t and make this a subspace Hilbert space). For
basis normalization, let us fix g1 = 1 and all other ∥gi∥2 := E[g2i ] = 1. More precisely, let G ⊂ L2(Ω,F ,P) be a centered
Hilbert Space, we assume all {gi}i>1 ⊆ G, as well as f1 − Ef1 ∈ G and f2 − Ef2 ∈ G. Furthermore, we assume the basis
gi are uncorrelated (orthogonal basis): ⟨gi, gj⟩ := E[gigj ].

Proof of Proposition 3. Recall Lemma B.2, we first verify

[η̃c]1 =E[f1]
[η̃c]i =E[(f1 − E[f1])gi] for i ≥ 1



is a solution for the high order approximation:

R(gi(

M∑
i=1

[η̃c]igi − f1),

M∑
i=1

[η̃c]igi) = 0

To verify, first notice that

E[f1|G] =
M∑
i=1

[η̃c]igi

where G is the sigma-algebra generated by g1, g2, ..., gM . This can be easily checked by notice that ⟨
∑M

i=1[η̃c]igi−f1, gi⟩ =
0 (projection) for all i. Thus,

E[gi(
M∑
i=1

[η̃c]igi − f1)] = E[giE[
M∑
i=1

[η̃c]igi − f1|G]] = 0

Then,

Cov(gi(
M∑
i=1

[η̃c]igi − f1),

M∑
i=1

[η̃c]igi) =E[gi(
M∑
i=1

[η̃c]igi − f1)(

M∑
i=1

[η̃c]igi)]

=E[gi(
M∑
i=1

[η̃c]igi)E[
M∑
i=1

[η̃c]igi − f1|G]]

=0

Then, we use Lemma B.2 and (16), (17),(18) to check

E
[
gi

(
1− f1∑M

i=1[η̃c]igi

)]
= R(gi(

M∑
i=1

[η̃c]igi − f1),

M∑
i=1

[η̃c]igi) + o(r2) = o(r2)

−E
[ ∫ T

0

(∑M
i=1[η̃c]igi(t)− f1(t)

)
f2(t)∑M

i=1[η̃c]igi(t) + c
dt

]
σh = R((

M∑
i=1

[η̃c]igi − f1)f2,

M∑
i=1

[η̃c]igi + c) + o(r2) = o(r2)

The rest follows from o(r2)+o(σh) = o(r2+σh), Assumption 1 and the setting have M = 2 and g1 = 1 and g2 = f2−E[f2]√
Var(f2)

.

C SIMULATION STUDY AND EMPIRICAL VERIFICATION

This section presents a detailed simulation study and empirical verification of our model.

C.1 SINUOID BACKGROUND

Experiment settings The sinusoid function provides a simple way to control the correlation between the background
activity of fi and fj . Consider the dynamic background as follows,

fi(t) =A sin(2π(t− ϕrnd)) (19)
fj(t) =A sin(2π(t− ϕrnd − ϕlag)) (20)

where A is the amplitude, the length of a trial is T = 5 second, ϕrnd ∼ Uniform(0, 1) varies from trial to trial so the
background is not repeatedly observed, ϕlag controls the correlation between background signals, which is measured as the
normalized dot product

⟨fi, fj⟩ :=
1

TA2

∫ T

0

fi(s)fj(s)ds (21)

When ϕlag = 0, 0.5, it achieves the largest positive or negative correlation respectively; when ϕlag = 0.25, the correlation
is zero. A = 5 spikes/second, αi = αj = 30 spikes/second. Each simulation includes 200 trials. hi→j(t) = 2I[0,σh](t),
σh = 30 ms. hj→i(t) = 0. The error band in the main Figure 4 is obtained by repeating the simulation 100 times.



Neural Hawkes baseline model The Neural Hawkes is a representative deep learning framework for Hawkes processes
[Mei and Eisner, 2017]. The key components are

c(t) = c̄i+1 + (ci+1 − c̄i+1) exp(−δi+1(t− tsourcei )) (22)
h(t) = oi ⊙ tanh(c(t)) (23)

λtarget =
(
W T

targeth
)
+

(24)

To make a fair comparison with other models, we replace the decay function with

c(t) = c̄i+1 + (ci+1 − c̄i+1)I[0,σh](t− tsourcei ) (25)

The model takes the superimposed time points as the input. At every step, the interval ttarget − tsource is passed to the model
with labels of the source node and the target node. In the standard Hawkes model, the impact of the history points to the
intensity of the target is

∑
tm∈Nsource,tm<t hsource→target(t− tm). In contrast, Neural Hawkes considers

W T
target

[
oi ⊙ tanh

(
c̄i+1 + (ci+1 − c̄i+1)hsource→target(t− tm)

)]
(26)

Although the model only takes one last time point tm at each step, it can still incorporate the history (in a non-linear way)
using intermediate variables oi, ci+1, c̄i+1 carried by recurrent neural network (RNN). The process label of tm is passed to
the RNN through embedding, so the model can distinguish the source process. W target varies from target to target, so the
same source process can have different influences on different target processes.

After replacing the coupling window function from the default exponential function with the square window function, the
amplitude of the coupling effect between a source node and a target node is assessed as W T

target

[
oi ⊙ tanh(ci+1 − c̄i+1)

]
which contributes to the increment of the intensity. Since the output function is ReLU or softmax, which is close to the
identity function on R+, the amplitude does not need to be rescaled. Our implemented baseline model is in the public
repository.

C.2 SECOND-ORDER STATIONARY BACKGROUND

In this section, we further study the behavior of the model in (7) through simulations. The simulation setup in this section is
the foundation of the following sections. In this special setup, we can approximate the bias, variance, risk, and likelihood of
the estimator and they match the numerical results very well. Details and all derivations will be shown in Appendix E. Assume
the fluctuating background activity fi and fj are second-order stationary stochastic processes, meaning E[fi(t)fi(t+ u)]
only depends on u but not t. A special case of the second-order stationary process is the cluster point process or linear Cox
process, which is widely used in point process study Diggle [1985], Bartlett [1964] and [Daley and Vere-Jones, 2003, sec.
6.3]. We add the second-order stationary condition only to make theoretical derivations easier. More variant simulation
scenarios will be shown later.

We first generate random background fi, fj , then generate point processes. Let ϕσI
(τ) = 1√

2πσ2
I

exp(− τ2

2σ2
I
) be a Gaussian

window function with scale σI . tci are the time points of the center process determining the positions of Gaussian windows,
which is generated by a homogeneous Poisson process with intensity ρ.

fi(t) = fj(t) =
∑
i

ϕσI
(t− tci ) (27)

For simplicity, we first consider the impact function in the form

hi→j(t) = αi→j · I[0,σh](t) (28)

where αi→j is the amplitude, and the filter length is σh. σI controls the timescale of the background activity. If σI is
smaller, then fi changes faster. σh controls the timescale of the point-to-point coupling effect. If σh is smaller, then neuron i
influences neuron j in a shorter time range. The impact function estimator has form ĥi→j = α̂i→j · I[0,σh](t) with just one
parameter α̂i→j and the timescale σh is known. We use the thinning method to generate continuous-time point processes
Ogata [1988].
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Figure 2: Numerical and analytical properties of the estimator α̂i→j . We show the properties of α̂i→j as a function of
smoothing kernel scale σw of W . For numerical cases, we evaluate the properties at different σw indicated by the blue dots.
The x-axis is in logarithmic scale. The numerical (blue curves) and theoretical results (dark curves) are very close. The
pointwise confidence interval for RMSE and SE is calculated using bootstrap (bootstrap the replicated estimators, not the
point processes). The pointwise confidence interval for bias is calculated based on standard deviation. The blue band for the
likelihood is 1.96×standard deviation. A The estimated risk root mean square error (RMSE) of the estimator α̂i→j . The two
local minimums are labeled by "min-1" and "min-2". Our method prefers to select "min-2" indicated by the vertical line.
The RMSE can be decomposed into bias (shown in C) and standard error (shown in D). B The maximum log-likelihood
as function of σw. Since the likelihood functions may have different offsets, we align them by the peak (the maximum
value across σw) to zero, then calculate the mean and pointwise standard deviation. The vertical line indicates the peak
(numerical and theoretical peaks overlap), which matches the position of "min-2" in A. The theoretical extreme cases "0"
and "∞" mean the scale σw of smoothing window W goes to limit 0 or ∞. The numerical case "no nuisance" represents the
model without including the nuisance regressor si, which becomes a typical Hawkes process model ignoring the fluctuating
background activity.

Figure 2 shows the numerical and analytical approximation of the properties of the estimator. The analytical formula is
derived based on the second-order stationarity condition of the background activity, through which we would hope to provide
insights into how the timescale of the activity is linked to the behaviors of the estimator. The activity fi in the true model is
set as a cluster process in (27) with σI = 100 ms. The square window filter width is σh = 30 ms and αi→j = 2 spikes/sec.
The firing rate of the center process ρ = 30 spikes/sec. The baselines are αj = αi = 10 spikes/sec. One simulation case has
200 trials and the length of the trial is 5 sec. Each trial is assigned with an independently generated fi. Results in Figure 2
are obtained through 100 repetitions.

If the estimation only considers a constant baseline, as known as the standard Hawkes model, without considering the
fluctuating background signal, the estimated impact function will be positively biased (Figure 2C), as the model struggles
to distinguish the effect of mutual interaction from that of the correlated input between neurons. This explains why the
estimated filter in the main Figure 3 is larger than the true filter.

Our model uses a smoothing kernel to eliminate the background artifacts as in main (9). When the background smoothing
kernel width is too wide σw → ∞ or too narrow σw → 0, the nuisance variable is not able to capture any background
activity, and the performance is as bad as the standard Hawkes with large positive bias (Figure 2 with labels "∞" points and
"0" points). The bias becomes negative between σw = 20 ms and σw = 125 ms. The standard error in Figure 2D does not
change too much as σw changes.

The estimated risk of the estimator has two local minimums, labeled "min-1" and "min-2" in the figure. The MLE points
at "min-2", which is indicated by the vertical line in Figure 2A, B. The slope of the risk curve around "min-2" is smaller
than the slope near "min-1" (the x-axis of the figure is in logarithmic scale), so the model is relatively less sensitive to the
estimation or selection of σw near "min-2". As will be shown shortly, the position of "min-2" is related to the timescale σI in
fi and it is almost invariant of the impact function scale σh or amplitude αi→j . The nuisance variable, the coarsened spike
train si (as in main (9)), can be interpreted as an approximation of the background activity, and σw reflects the timescale of
the background.



C.3 INFLUENCES OF THE TIMESCALES OF COUPLING EFFECT AND BACKGROUND EFFECT
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Figure 3: Relations between the estimator’s properties and background activity timescale, impact function timescale, and
impact function amplitude. We show the RMSE and log-likelihood curves as in Figure 2. The settings are the same as Figure
2. σI is tuned in A, σh is tuned in B, and αi→j is tuned in C. This figure only shows the analytical results. Numerical results
match the analytical formula very well, so data is not shown. The log-likelihood functions may have different offsets, we
align them by the peak to zero (maximum value across σw). The vertical line indicates the MLE. A σI = 80, 100, 120 ms.
σh = 30 ms and αi→j = 2 spikes/sec are fixed. B σh = 20, 30, 40 ms. σI = 100 ms and αi→j = 2 spikes/sec are fixed. C
αi→j = −2, 0, 2 spikes/sec. σI = 100 ms and σh = 30 ms are fixed.

As pointed out in main (15) and derived in Appendix E, the properties of the estimator, such as bias and standard error, are
related to the timescale of the background and the timescale of the coupling effect, but not the amplitude of the coupling
effect. These connections are presented in Figure 3. The figure shows the relations between the estimator’s properties and
the timescale of the background activity (σI of fi, fj in (27)), the timescale of the point-to-point coupling activity (σh of
the impact function in (28)), and the amplitude of the impact function (αi→j in (28)). In Figure 4A, the scale σI of the
background activity fi is related to the estimated smoothing kernel width σw. If σI is larger, the optimal σw also becomes
larger. In Figure 4B, the scale σh of the impact function does not affect MLE too much, but it is related to the left root of
the bias or the left local minimum of the risk. In Figure 4C, the amplitude of the impact function, whether it is positive or
negative, does not change the bias or the RMSE, or the estimated σw. These properties suggest a simpler and heuristic way
of estimating σw. Unlike the jitter-based conditional inference method [Amarasingham et al., 2012], our method does not
rely on the assumption restricting the timescale of the background being larger than the timescale of the coupling effect. In
Appendix C.6, we will show a scenario with σI < σh, which violates the assumption of the condition inference, but our
method still works well.

The optimal smoothing kernel width σw is insensitive to the impact function’s amplitude or timescale, which suggests a
heuristic approximation for σw, meaning the range of the optimal kernel width σw can be determined before estimating the
impact function. The variant of the model below without the impact function can be used for this purpose.

min
βj ,βw,σw

−
∑
s∈Nj

log λ̃j(s) +

∫ T

0

λ̃j(s)ds

 (29)

λ̃j(t) := βj + βw si(t) (30)

si(t) =
∫ T

0

W (t− s)dNi(s) (31)



C.4 CROSS-CONNECTIONS AND SELF-CONNECTIONS

As a test of a more general scenario, this simulation considers full connections cross processes and self-connection within
processes. Simulation data is generated according to,

λj(t) = αj + fj(t) +

∫ t

0

hi→j(t− s)dNi(s) +

∫ t

0

hj→j(t− s)dNj(s)

λi(t) = αi + fi(t) +

∫ t

0

hj→i(t− s)dNj(s) +

∫ t

0

hi→i(t− s)dNi(s)

(32)

The fluctuating background follows the linear Cox process with the same settings as in Appendix C.2. The only difference
is that this scenario includes 4 impact functions hi→j = −2, hj→i = −2, hi→i = 1, hj→j = 1 spikes/sec. The number of
samples in each simulation is 200 5-second trials, and the number of repetitions is 100, the same as Appendix C.2.

C.5 VARYING-TIMESCALE BACKGROUND

This section considers a variant of the scenario in Appendix C.2 with not only fluctuating background but also with
time-varying timescale σI . The background activity fi in (27) is composed of a sequence of Gaussian windows with fixed
scale σI . The locations of the windows are randomly determined through a homogeneous Poisson process with intensity ρ.
σI controls how fast the background changes; if σI is smaller, the activity will change faster. fi is second-order stationary
and some properties can be derived in closed-form formula.

Consider a similar process but the scale of the window σI is no longer fixed,

fi =
∑
i

ϕσI,i
(t− tci ) (33)

where σI,i changes randomly; every time point of the center process tci is assigned with a different scale σI,i ∼
Uniform(80, 140) ms. The process fi changes faster at smaller σI,i, and changes slower at larger σI,i. The rest of the
experiment settings is the same as Appendix C.2. The true impact function is a square window hi→j(t) = αi→j · I[0,σh](t),
where the timescale is σh = 30 ms, the amplitude is αi→j = 2 spikes/sec.
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Figure 4: Simulation results of the impact function estimator with varying background activity timescale. The figure is
presented in the same ways as Figure 2. The simulation details are in the text. The background activity fi in (27) is replaced
with (33) with varying timescale. The results are similar to Figure 2. The dark curves show the equivalent theoretical
approximation using the model in main 7 with fixed timescale σI = 100 ms, which is manually tuned to match the numerical
results.

As shown in Figure 4, the selected kernel width σw will balance the varying timescale, and it can still the select estimator
with small risk and low bias, indicated by the vertical lines in Figure 4 A and B. Similar to Figure 2D, the SE does not



change too much as the smoothing kernel width σw changes. The model can balance the bias, which can be explained by
its properties in Figure 2C. If the timescale of the background σI is fixed and consider the bias of the estimator near the
right root. If σw is larger than the right root, the bias will be positive, if σw is a little smaller than the right root, the bias
will become negative. In this scenario, the timescale of the background σI varies. The optimal σw is relatively large for the
activity with small σI , so the bias is positive for the fast-changing part. The optimal σw is relatively small for the sessions
with large σI , so the bias is negative for the slow-changing part of the activity. With proper selection of σw, the estimator
will balance the overall bias between fast- and slow-changing activities, and it can still achieve zero bias. Together with the
SE, the risk properties remain similar in Figure 4 A.

To verify the reasoning, we compare the numerical results with the equivalent theoretical approximation shown in the dark
curves in Figure 4. The theoretical method is for the model in main 7 with fixed timescale for the background by manually
tune the timescale as σI = 100 ms to match the numerical curves. The behavior of the estimator for the varying-timescale
background activity is almost equivalent to the case with fixed-timescale background activity. The SE of the numerical
results is slightly larger though.

C.6 FAST-CHANGING BACKGROUND

In extreme cases, the background activity fi can have fast-changing activities. In this situation, conditional inference-based
method can be limited by its formalization of the null hypothesis:

samples from the null distribution are generated by jittering the time points by a random amount, small enough to
maintain the fluctuating background intensity, but big enough to break the time association pattern.

which implicitly assumes the timescale of the coupling effect is much smaller than the timescale of the background. This
simulation scenario is similar to the setup in section 4.1, except that σI is set as a small value, which is comparable to
or much smaller than the point-to-point interaction timescale σh. We will show in this section, this is not a necessary
assumption or constraint for our method. Even the background changes faster than the coupling effect, our model can still
have small error.

This simulation scenario is the same as Appendix C.2 except that the timescale in 27 is set to σI = 20 ms (Figure 5
A,B,C,D), and σI = 8 ms (Figure 5 E,F,G,H). The rest settings of the simulation scenarios are the same as the basic scenario
in section C.2, where the true impact function is a square window hi→j(t) = αi→j · I[0,σh](t), the timescale is σh = 30 ms,
the amplitude is αi→j = 2 spikes/sec.
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Figure 5: Fast-changing background with small σI . The experiment is similar to Figure 2 except that in A, B, C, D σI = 20
ms, in E, F, G, H σI = 8 ms.

As discussed in main section 4.1.2, Appendix C.3, Figure 2, and Figure 3, the right root of the bias curve (or the right local
minimum of the risk curve) is associated with background timescale σI when σI > σh: if σI decreases, the right root will
shift toward the left. Figure 5A shows a special case if σI keeps decreasing, two local minimums of the risk will overlap. In
Figure 5C, two roots of the bias will merge to one. The property of SE does not change too much, see Figure 5D and 2D. If
σI keeps decreasing when σI < 20 ms, the local minimum of the risk or the root of the bias corresponding to the MLE will
move on the left side, see Figure 5E and F. We also notice that our analytical approximation of the standard error in Figure
5H begins to have a large error when σI is very small.
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Figure 6: Properties of the estimator with fast-changing background. This figure is analog to Figure 3 but the time scale
σI of the background activity fi is very small. The settings are the same as Figure 2, 3, and 6 except for different tuning
parameters. Only the analytical RMSE and log-likelihood curves are shown, which match the numerical results very well.
Some numerical results have already been shown in Figure 5. The log-likelihood functions may have different offsets, we
align them by the peak to zero (maximum value across σw). The vertical lines indicate the MLE. A Background timescale
σI as the tuning variable. B Coupling effect timescale σh as the tuning variable. C Coupling effect amplitude αi→j as the
tuning variable.

Similar to Figure 3, next, we explore how the timescale of the background activity σI , the timescale of coupling effect
σh, and the amplitude of impact function αi→j are related to the above properties when σI is very small. When σI is
tuned, it will change the optimal σw. If σI is around 20 ms, two local minimum values of the risk curve may merge to one,
which agrees with the numerical result in Figure 5A. If σI < 20 ms, the root of the bias or the local minimum of the risk
corresponding to the MLE will be on the left side. When σh is tuned, it will be the right local minimum of the risk or the
right root of the bias that will be associated with the impact function timescale, that is opposite to the conclusion in Figure
3B. Similar to Appendix C.3, the timescale σh or the amplitude αi→j of the impact function do not affect σw of the MLE.
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Figure 7: A comparison between the estimations of the coupling effect with fast-changing background. The figure compares
the performance of the estimators of the coupling effect. The simulation settings are the same as Figure 2 except that the
timescale of the background σI = 5 ms is very small. The timescale of the impact function as in Eq (28) is σh = 30 ms. In
A, B, and C, the amplitude of the true impact function is αi→j = 2 spikes/sec. In D, E, and F, the amplitude of the true
impact function is αi→j = 0 spikes/sec. A, D The estimator of the point process regression. It can accurately estimate the
true filter, which is supported by the analysis in Figure 5 and 6. B, E Jitter-based CCG. The time bin for the spike train
is 1 ms. The jitter window width is set as 5 ms, close to the timescale of the background activity. The dark grey band is
pointwise 95% acceptance band, and the light grey band is simultaneous 95% acceptance band. The result is acquired from
1000 surrogate jitter samples. The CCG method detects a small excitatory effect before lag = 5 ms no matter whether the
neurons have true coupling effect. C, F Similar to B except that the jitter window width is 10 ms. In both B and C, the
jitter-based CCG method can only detect a small effect before 5 ms lag or 7 ms lag. A large part of the coupling effect
between 0 to 30 ms is buried under the CI band. However, such an effect is due to the fast-changing background, but not the
neuron-to-neuron coupling effect.

A significant advantage of our model over the jitter-based model is that the proposed model does not assume the background
activity changes slower than the coupling effect, and the model can automatically find the optimal timescale. The jitter-based
method can not avoid such an assumption due to its nature of conditional inference. The null hypothesis states that the
coupling effects do not change faster than the jitter window width. Thus the samples under the null distribution are obtained
by randomly jittering the points within the jitter window. If the background changes as fast as the coupling effect, such
bootstrapping method can not maintain the temporal structure of the background activity, so it can not split the background
artifacts and the coupling effects. In other words, if the jitter window is set a little larger than the coupling effects, it can
not tell whether the detected effect belongs to the background or the point-to-point interaction. Some other bootstrapping
methods have the same issue for exactly the same reason Cowling et al. [1996]. Figure 7 compares the point process
regression method and jitter-based CCG method. The simulation scenario is the same as the basic model in Figure 2 except
that the timescale of the background activity is very small σI = 5 ms. The numerical properties of the estimator have been
shown in Figure 5E-H. The true impact function is a square window hi→j(t) = αi→j · I[0,σh](t). The timescale of the
coupling effect is σh = 30 ms. The true amplitude of the impact function is αi→j = 2 spikes/sec in Figure 7A,B,C, and
αi→j = 0 spikes/sec in Figure 7E,E,F. In both cases, the regression method can accurately estimate the true estimator, which
agrees with the numerical and theoretical results in Figure 5. In Figure 7 B and C, the CCG method with jitter window
width = 5 or 10 ms can detect some excitatory effect in a lag range smaller than 5 ms or 10 ms. Nevertheless, it misses
the excitatory effect between lag=10 to 30 ms. It is unreasonable to use a larger jitter window, as it will not match the
background timescale. The CCG results are similar to another example in Figure 7E, F, where there is no coupling effect.
The detected significant data points are totally due to the fast-changing background. So for the results in Figure 7B and C,
we can not conclude that the jitter method has removed the background artifacts and the significant effect is caused by the
coupling effect.



C.7 ASYMPTOTIC NORMALITY OF THE ESTIMATOR

In this section, we perform simulations to verify the asymptotic normality property of the estimator empirically. The dataset
is the same as Figure 2. The true impact function is a square window hi→j(t) = αi→j · I[0,σh](t), where the amplitude is
αi→j = 2 spikes/sec, and the timescale is σh = 30 ms. The estimator for the coupling effect α̂i→j is 7. We compare the
empirical distribution of the estimators with the theoretical distribution. As shown by Figure 8, the estimator has normal
distribution at the optimal selection of σw = 120 ms. If σw is too small or too large, the empirical distributions will have
visible deviations.
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Figure 8: Normality of the estimator’s distribution. The dataset is the same as Figure 2 including 100 repetitions. The figure
shows the Q-Q plots of the empirical distribution of the estimator against the theoretical normal distribution, shown in
the dark curves. The straight dashed grey lines are 95% uniform CI. In the first row, the empirical distribution matches
the theoretical distribution very well at the optimal model (σw = 120 ms). We also evaluate the model at other different
smoothing kernel widths. If σw is too small or too large σw = 60, 300 ms), the empirical distribution will have a visible
deviation from the theoretical distribution.

C.8 SELECTION OF IMPACT FUNCTION LENGTH.

The simulation scenario in the main text in Figure 2 and many scenarios in the supplementary sections simplify the impact
function estimation using a square window and assume the timescale of the coupling effect σh in Eq (28) is known. In
this section, we show the consequences of unmatched impact function timescale. Because in practice, the timescale of the
coupling effect is usually unknown.

We used the same dataset in Figure 2, where the true impact function is a square window. The amplitude αi→j = 2 spikes/sec
and the window width is σh = 30 ms. We applied two versions of the regression model to the dataset. Both versions used
a square window as the impact function estimator, but one with shorter timescale σh,1 = 20 ms, the other with longer
timescale σh,2 = 40 ms. We present the results in Figure 9 in the same way as Figure 2.
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Figure 9: Consequences of unmatched impact function timescale. The dataset is the same as Figure 2, where the true impact
function is a square window. The amplitude is αi→j = 2 spikes/sec and the window width is σh = 30 ms. We tested the
regression model with unmatched impact function width. The model in A, B, C, D estimates the impact function using a
shorter timescale σh,1 = 20 ms. The model in E, F, G, H estimates the impact function using a longer timescale σh,1 = 40
ms. As a reference, the dark curves show the theoretical approximation using the basic regression model by setting the
impact function timescale as 20 ms in A-D, and 40 ms in E-H. The rest settings are the same as the simulation.

If the impact function is estimated using a shorter timescale (σh,1 = 20 ms) as shown in Figure 9A,B,C,D, the selected
model still has the minimum risk indicated by the vertical line. The dark curves in Figure 9A,B,C,D, show the theoretical
approximation of the properties using the basic regression model in (7) by setting the impact function timescale as 20 ms
instead, which can be seen as the expected properties of the model. The absolute values of the bias are larger than expected
if σw is between 10 ms and 120 ms or larger than 200 ms. But the roots of the bias still match the expected position. The SE
is not affected by the unmatched timescale. So the optimal selection of σw does not change. As a contrast, if the impact
function timescale of the estimator (σh,2 = 40 ms) is longer than the truth (30 ms), the consequence is more severe. As
shown in Figure 9 G, the actual bias is uniformly lower than the expected bias. The SE is not affected. So the consequence is
that the selected smoothing kernel width σw (Figure 9 F vertical line) does not match the actual risk minimum (Figure 9 E
vertical line).

By combining the results of the two cases, we recommend users select shorter impact function timescale if they are not
confident about the impact function timescale, or using non-parametric fitting as in Supplementary D.1.



C.9 MULTIVARIATE REGRESSION AND PARTIAL RELATION

Background

Figure 10: Diagram of multivariate point process network driven by background activity.

Multivariate regression is a natural extension of the basic regression model introduced in the main text. The diagram is
shown in Figure 10.

λy(t|Ht) = αy +

∫ t

0

hx→y(t− τ)Nx(dτ)+fy(t) +
∑
z∈Z

∫ t

0

hz→y(t− τ)Nz(dτ)︸ ︷︷ ︸
f̃y(t)

(34)

where besides the interaction between node x and y, they are both connected to other nodes denoted by Z. The whole
network is also driven by unobserved background activity. This scenario is motivated by the challenge in practice: only
part of the network can be observed with a limited number of nodes; Besides interaction across nodes, the network is also
driven by other factors, usually not directly observed, see Figure 10). The input of node y includes the coupling effect hx→y

from x, or hz→y from other nodes z ∈ Z, and background influence fy. The sum input of hz→y and fy can be seen as
f̃y. Similarly, the total input for x is denoted by f̃x. Our goal is to estimate hx→y as the target relation conditioning on
both background and Z, by properly handling the correlation between f̃x and f̃y. The multivariate regression problem is
reduced to the pairwise bivariate regression problem as the main text. This case is also inspired by [Chen et al., 2017], where
authors proposed that the coupling effect in multivariate point process regression problems can be approximated by pairwise
cross-correlation very well. But their method assumes constant baselines and only positive impact function functions. Next,
we demonstrate using simulations to show our model is promising to overcome these limitations.

The simulation scenarios follow the diagrams in Figure 10. The process in Z and x, y are all driven by fluctuating background
fx = fy = fz set as the linear Cox process as 27 in section C.2, where the intensity of the center process is ρ = 20
spikes/sec, and the window function is Gaussian with scale σI = 100 ms. The constant baseline of all processes is 10
spikes/sec. The network includes 6 nodes, coupled with square window function αi→jI[0,σh](t), σh = 30 ms as known. The
amplitude αi→j are positive, negative, or zero. Each simulation has 200 trials with a 5-second duration. The performance in
the main Table 2 is obtained from 100 repetitions.

D SOME USE CASES OF THE MODEL

D.1 NON-PARAMETRIC FITTING FOR THE IMPACT FUNCTION

For simplicity, the models presented in the main text and many sections in the appendix use a square window for the impact
function. This section considers non-parametric fitting for the impact function through splines. The linear form of the
intensity function in main (7) can be easily extended for this purpose, also see Appendix A. The impact function now is
estimated as a linear combination of spline bases as follows,

hi→j(s) = βh,1B1(s) + ...+ βh,kBk(s)



where B1, ..., Bk are spline bases. Define the covariates in the regression,

ϕh,1(t) :=

∫
B1(t− s)Ni(ds), ..., ϕh,k(t) :=

∫
Bk(t− s)Ni(ds)

The intensity function becomes,

λ̃j(t) = βj + βwsi(t) + βh,1ϕh,1(t) + ...+ βh,kϕh,k(t)

si(t) is same as the coarsened spike train in main (9). The coefficients of the impact function βh,1, ..., βh,k can still be
estimated using the model in 7. The optimization algorithm is in Appendix A. We applied the non-parametric fitting to
the dataset in Figure 2. The true impact function is a square window hi→j(t) = αi→j · I[0,σh](t) where the amplitude of
the impact function is αi→j = 2 spikes/sec, the timescale of the square window is σh = 30 ms. The impact function is
estimated in a lag window between 0 and 50 ms using B-splines with 9 equal-distance knots. We evaluate the risk using
root-mean-integral-square error (RMISE). The RMISE between the true impact function h(t) and the estimator ĥ(t) is
defined as follows. Lh = 50 ms is the length of the impact function.

RMISE(h, ĥ) :=

√
1

Lh

∫ Lh

0

(
ĥ(t)− h(t)

)2
dt

We evaluate the bias and the standard error of the filter at lag 5, 15, 25 ms. The result is shown in Figure 11 below.
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Figure 11: Non-parametric fitting for the impact function. The dataset and the non-parametric estimator are described in the
test. The results are presented in the same way as Figure 2. A RMISE of the estimated impact function as a function of
smoothing kernel width σw of W in main (9). The vertical line indicates the minimum risk. B The maximum log-likelihood
as function of σw. Since the likelihood functions may have different offsets, we align them by the peak (the maximum value
across σw) to zero, then calculate the mean and pointwise standard deviation. The vertical line indicates the peak of the
mean log-likelihood. C The bias of the estimator is evaluated at lag = 5, 15, 25 ms. D The standard error of the estimator is
evaluated at h(lag), lag = 5, 15, 25 ms.

The risk curve and the log-likelihood curve are similar to the result in Figure 2. The optimal model with minimum risk can
be selected by maximizing the likelihood, which is the same as the basic regression scenario in Figure 2. The difference is
that, in the non-parametric fitting, the left local minimum risk has a higher value than the right local minimum. While in the
basic fitting case, two local minimum values of the risk curve are close in Figure 2). This can be explained by decomposing
the risk into bias and SE shown in Figure 11C and D. If the smoothing kernel width σw is around 130 ms, the bias values at
different lags of the impact function are nearly the same. But if σw is around 20 ms, the bias values at different lags have
large divergence: the beginning part of the estimator at lag=5 ms has a negative bias, the middle part at lag=15 ms has
around zero bias, and the end part of the estimator at lag=25 ms has a positive bias. The SE of the estimator at different
lags does not change a lot as σw varies. So overall, the RMISE has a much larger value near lag=20 ms than at lag=130 ms.
These properties are further demonstrated in Figure 12.
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Figure 12: Non-parametric fitting for the impact function. The figure compares the true impact function (dark) and the
estimator (blue). The light blue band is pointwise 95% CI. The impact functions were fitted in the same way as described in
Figure 11. This figure picks out some fitted estimators with different smoothing kernel widths σw = 20, 130, 200 ms. If the
smoothing kernel width is too small (σw = 20 ms), the bias values of the estimator at different lags have large differences.
This matches the bias curves shown in Figure 11C. At the beginning part of the estimated impact function around lag=5 ms,
the bias is negative, and at the end part around lag=25 ms, the bias is positive. If the smoothing kernel width is selected
optimally (σw = 130 ms), the fitted impact function matches the true filter very well. If the smoothing kernel width is too
wide (σw = 200 ms), the whole estimated impact function has uniform positive bias at different lags. This agrees with
Figure 11C that multiple bias curves with different lags beyond σw = 130 ms are very close.

D.2 HYPOTHESIS TESTING EXAMPLE

The regression model can be adopted for hypothesis testing problems. The simulation scenario in this section is similar to
the case in Figure 2. The background activity is a cluster point process in (27), and the impact function is a square window
hi→j(t) = αi→j · I[0,σh](t) in (28). Each simulation dataset only has 10 trials. We reduce the sample size to make the tasks
more difficult, and the performances of different estimators will be more distinguishable. The length of the trial is 5 seconds,
the time scale of the background activity is σI = 100 ms. The intensity of the center process is ρ = 30 spikes/sec. The
baselines of two neurons are αi = αj = 10 spikes/sec. The impact function is estimated using a square window with known
timescale σh = 30 ms. The amplitude of the impact function is αi→j = 0 spikes/sec in the null cases without coupling
effects. We include three true positive scenarios with impact function amplitudes αi→j = 2,−2, 1 spikes/sec respectively.
The dataset generating and the model fitting procedure was repeated for 100 times.

Consider the null hypothesis
H0 : α̂i→j = 0

α̂i→j is the estimator for αi→j . The inference method is a direct application of the properties of the estimator. The smooth
kernel is σw = 125 ms, which is chosen by maximizing the likelihood. α̂i→j has asymptotic normal distribution (see details
in Appendix C.7 and Appendix E), so the p-value can be easily calculated accordingly. The alternative method is jitter-based
CCG, where the time bin width is 2 ms, the jitter window width is 100 ms. The CCG with shorter or longer jitter window
width, for example 60 ms or 140 ms, gives similar results, so the figures are not shown. The p-value of the method is
obtained by considering the multiple testing across all time lags between 0 and 30 ms, which is the same as the true impact
function length. The calculation detail is in Amarasingham et al. [2012] supplementary document.
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Figure 13: Hypothesis testing examples. 3 models are compared: our point process regression model (first column), jitter-
based cross-correlation (CCG) method (second column), and the typical Hawkes model (third column). The simulation
details are in the text. The first row shows the Q-Q plot between p-value distribution under the null (numerical quantile
along the y-axis) and the uniform distribution (theoretical quantile along the x-axis). The dashed line is the 95% CI. The
second row shows the results of ROC analysis with the false positive rate (FPR) along the x-axis, and the true positive rate
(TPR) along the y-axis. The score of an outcome is the p-value of the hypothesis test.

Figure 13 first row verifies if the p-value distribution under the null is uniform. Both our method and conditional inference
yield proper p-value distributions. As typical Hawkes model suffers large error due to background artifacts, the p-value
under the null is ill. Figure 13 second row presents the ROC analysis. The score of a test outcome is the p-value. The our
method has better performance when the amplitude of the coupling effect is αi→j = 2,−2 spikes/sec. Neither methods has
satisfactory performance if the coupling effect is as weak as αi→j = 1 spikes/sec. Usually, the jitter-based method focuses
on pointwise statistic at a specific time lag, which can ignore the connection between adjacent time lags. We think the power
of the CCG method can be improved by considering the time lag dependency and designing the multiple hypothesis test
more carefully, but it is not the main interest of this paper. Typical Hawkes model has positive bias in this setting. When the
coupling effect is inhibitory αi→j = −2, some of the outcome will be detected as excitatory instead of inhibitory, so the
ROC curve is under the diagonal. When the coupling effect is excitatory αi→j = 1, 2, the model will be over confident, so
large p-values in the outcome are missing, for example, when αi→j = 2 the smallest FPR observed is around 0.4.

D.3 SIMPLE BAYESIAN MODEL

The regression model in main (7) is probabilistic, so it can be easily adapted for Bayesian inference. In this section, we
present some simple Bayesian models where the scale σw of the smoothing kernel W in (9) can be treated as a random
variable. We want to investigate how incorporating the uncertainty of the smoothing kernel width affects the estimation of
the impact function, and how the variance of the background timescale affects the uncertainty of the smoothing kernel width.
The posterior of the impact function coefficients obtained using the sampling-based method can also verify the Normality
property in the regression method when the sample size dominates the prior.

We consider two Bayesian models below and the basic point process regression model. The likelihood of the model is the
same as the main (7). The impact function is estimated using a square window, same as (28). We choose non-informative
flat priors for all the variables. As the sample size is large, the posterior does not heavily rely on the prior. Model 2 is similar
to the regression model, where the kernel width σw is selected using the same way as the regression model and held as fixed.
Model 2 and the regression model are expected to have similar results. In Model 1, σw is a random variable. We performed
the estimation on two datasets: The first dataset is the same as the example in Figure 2 (details are in the main text); The



second one is the same as the scenario in Appendix C.5, where the timescale of the background activity σI randomly changes
in a continuous range between 80 ms and 140 ms. The true impact function is a square window hi→j(t) = αi→j · I[0,σh](t)
where the amplitude of the impact function is αi→j = 2 spikes/sec. The timescale of the square window is σh = 30 ms. We
used the Hastings-Metropolis method for the model inference, which was a Monte Carlo Markov Chain (MCMC) sampler.
The posterior was acquired by drawing 1000 samples. The model was initialized using the basic point process regression
method main (7). The basic regression model approximates the estimator’s distribution using Normal distribution; the mean
is the MLE α̂i→j , and the standard error is from the Fishier information.

Model 1:

βj , βw, αi→j , σw ∝ 1

p(βj , βw, αi→j , σw|sj , si) ∝p(sj |si, βj , βw, αi→j , σw)

where p(sj |si, βj , βw, αi→j , σw) is the likelihood function of the point process similar to main (7). σw is a variable of the
model.

Model 2: σw is fixed and the parameter selection follows the regression method.

βj , βw, αi→j ∝ 1

p(βj , βw, αi→j |sj , si) ∝p(sj |si, βj , βw, αi→j , σw)
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Figure 14: Applications of Bayesian model 1 and model 2 to two datasets. The figure shows the posterior of the estimated
impact function amplitude α̂i→j of Bayesian models 1 and 2 (grey histograms in A,B,D,E) and the posterior of the smoothing
kernel scale σ̂w of model 1 (grey histograms in C, F). The solid dark curves are the Normal distributions of α̂i→j obtained
using the point process regression in main (7). A, B, C Applications of Bayesian models 1, 2, and the basic regression model
to the dataset in Figure (2). The timescale of the background activity fi, fj is fixed at σI = 100 ms. Details of the dataset
description is in the main text. In C, the mode of the kernel scale is 130 ms, and the 95% CI is [119, 148] ms. The optimal
kernel scale σw selected by the regression model is 125 ms. D, E, F Applications of Bayesian models 1, 2, and the basic
regression model to the dataset in section C.5, where the timescale of the shared activity σI varies from 80 ms to 140 ms. In
F, the mode of the kernel scale is 126 ms, and the 95% CI is [111, 148] ms. The optimal kernel scale σw selected by the
regression model is 120 ms.

Figure 14 presents the estimated impact function coefficient of Bayesian models 1, 2, and the basic regression model using
two simulation datasets. One dataset has fixed shared activity timescale σI = 100 ms, shown in plot A,B,C; the other dataset
has a time-varying timescale in a continuous range between 80 ms and 140 ms, shown in plots D,E,F. In A and D, the
posterior distributions of α̂i→j (grey histogram) and the estimated distribution of the regression model (solid curves) are
very close. This can be a side proof of the result in Appendix C.7, that α̂i→j has asymptotic Normal distribution. In both
datasets (first row and second row), by comparing the results between model 1 and model 2, incorporating the uncertainty



of the smoothing kernel scale σw does not change the posterior of α̂i→j too much. As shown in Figure 3, the selected
smoothing kernel scale σw is related to the timescale of the shared activity σI . If σI increases, the corresponding selected σw

will increase by around the same amount. By comparing Figure 14C and F, the CI width does not change a lot (from 29 ms
in C to 37 ms in F) when the timescale of the background switched from a fixed value σI = 100 ms to a randomly varying
value in [80, 140] ms. So the uncertainty of the σw does not directly reflect the variance of the shared activity timescale.

E DERIVATIONS RELATED TO MAIN EQUATION 15

In this section, we provide derivations of the estimator properties, including bias, standard error, risk. All of these are based
on the second-order stationary background similar to (27) in main 4.1.

Definition E.1. Let ξ be a second-order stationary random measure on X . It satisfies two properties Daley and Vere-Jones
[2003]:

1. The first-moment measure is Mξ,1(A) := Eξ(A), where A is a set in the Borel σ-field of X , satisfies,

Mξ,1(dx) = λ̄dx (35)

where λ̄ is a constant, which is called the mean density.

2. The second-moment measure is Mξ,2(A × B) := Eξ(A)ξ(B). A,B are sets in the Borel σ-field of X . The second-
moment can be expressed as the product of a Lebesgue component dx and a reduced measure, say M̆ξ,2. m̆ξ,2 is the
density of the reduced measure M̆ξ,2(du) = m̆ξ,2(u)du. The following equation holds,∫

X

∫
X
f(s, t)Mξ,2(ds× dt) =

∫
X

∫
X
f(x, x+ u)dx · m̆ξ,2(u)du (36)

The reduced second-moment measure M̆ξ,2 is symmetric, positive, positive-definite and translation-bounded. Details can be
found in [Daley and Vere-Jones, 2003, proposition 8.1.I, 8.1.II]. The mean corrected process is ξ̃(A) := ξ(A) − λ̄ℓ(A).
Similarly, the reduced covariance measure and its density can be defined as,

C̆ξ(du) := M̆ξ̃,2(du) = M̆ξ,2(du)− λ̄2du (37)

c̆ξ(u) = m̆ξ,2(u)− λ̄2 (38)

Lemma E.2. Assuming fi = fj is second-order stationary. The intensities of two coupling processes are λj(t) =

αj + fj(t) +
∫ t

0
hi→j(t− τ)Ni(dτ) and λi(t) = αi + fi(t). The impact function has format hi→j(τ) = αi→jh(τ) where

only the amplitude needs to be fitted, the bias of the estimator α̂i→j using model (7) is approximated as,

bias(α̂i→j) ≈
⟨W,W ⟩c̆N ⟨h,1⟩c̆Λ − ⟨h,W ⟩c̆N ⟨W,1⟩c̆Λ

⟨W,W ⟩c̆N ⟨h, h−⟩c̆N − ⟨W,1⟩2c̆Λ
(39)

where c̆N is the reduced second-order moment measure intensity of spike count measure Ni(·); c̆Λ is the reduced second-
order moment measure intensity of the intensity measure Λi(·) as described in E.1. ∗ denotes the convolution, 1 is a constant
function, h−(τ) = h(−τ). The operator between two functions g1, g2 is defined as

⟨g1, g2⟩c̆ :=
∫

[g1 ∗ g2](s)c̆(ds)ds (40)

Additionally, if the background activity fi follows the cluster process in (27) with parameters σI , ρ, and the impact function



has form in (28) with parameters σh, then we have bias(α̂i→j) ≈ Numerator/Denominator as follows,

Numerator =

(
ρ

2
√
π
√

σ2
w + σ2

I

+
λ̄i

2
√
πσw

)
·
(
ρ

2
erf

(
σh

2σI

))

−

(
ρ

2
erf

(
σh

2
√
σ2
w/2 + σ2

I

)
+

λ̄i

2
erf

(
σh√
2σw

))
·

(
ρ

2
√
π
√
σ2
w/2 + σ2

I

)

Denominator =

(
ρ

2
√
π
√

σ2
w + σ2

I

+
λ̄i

2
√
πσw

)
·(

ρ

[
σherf

(
σh

2σI

)
− 2σI√

π

(
1− e

− σ2
h

4σ2
I

)]
+ λ̄iσh

)

−

(
ρ

2
erf

(
σh

2
√
σ2
w/2 + σ2

I

)
+

λ̄i

2
erf

(
σh√
2σw

))2

(41)

λ̄i = E[Ni(dt)/dt] = αi + ρ. erf(x) = 2√
π

∫ x

0
e−t2dt.

Proof. The bases of the regression model (8) include a constant, the nuisance variable si = W ∗ si, and the impact function
term hi→j ∗ si. The target is,

ℓ̃ := −
∫ T

0

log λ̃j(s)dNj +

∫ T

0

λ̃j(s)ds︸ ︷︷ ︸
ℓ̃j

−
∫ T

0

log λ̃i(s)dNi +

∫ T

0

λ̃i(s)ds︸ ︷︷ ︸
ℓ̃i

(42)

where λ̃j is rewritten as,
λ̃j(s) = βj + βwφw(s) + αi→jφh(s)

φw, φh are mean-subtracted bases,

φw(s) :=

∫
W (s− t)(Ni(dt)−Ni(T )/Tdt)

φh(s) :=

∫
hi→j(s− t)(Ni(dt)−Ni(T )/Tdt)

where Ni(T )/T → E[Ni(dt)/dt] as T → ∞. When estimating the filter hi→j , minimizing the total negative log-likelihood
ℓ̃ is equivalent to minimizing the negative log-likelihood ℓ̃j , which can be approximated using the Laplace method with
coefficients H and b,

ℓ̃j(β)− ℓ̃j(βMLE) =
1

2
(β − βMLE)

T ∂2ℓ̃j
∂βMLE∂βT

MLE

(β − βMLE) +

(
∂ℓ̃j

∂βMLE

)T

(β − βMLE) + o(∥β − βMLE∥2)

=βTHβ + bTβ + const
(43)

H is the Hessian matrix can be obtained from second-order derivative, analytical form of b needs further approximation.

∂ℓ̃j
∂β

≈ Hβ + b, H =
∂2ℓ̃j

∂β∂βT
(44)

The MLE thus can be expressed as βMLE ≈ −H−1b.

Define the following shorthands,

Sww := ⟨φw, φw⟩, Shh := ⟨φh, φh⟩, Shw = Swh := ⟨φw, φh⟩Swλ := ⟨φw, λi⟩, Shλ := ⟨φh, λi⟩, (45)

⟨·, ·⟩ denotes the inner product between two functions on interval [0, T ]. Lemma E.10 will show the analytical forms of
these inner products in the special case with fi being the linear Cox process as in (27).



H =
∂2ℓ̃j

∂β∂βT
=

∫ T

0

Ψ(s)Ψ(s)T

λ̃j(s)2
Nj(ds) ≈ ENj

[∫ T

0

Ψ(s)Ψ(s)T

λ̃j(s)2
Nj(ds)

∣∣∣∣∣Ni

]

=

∫ T

0

Ψ(s)Ψ(s)T

λ̃j(s)2
λj(s)ds ≈

1

λ̄j

∫ T

0

Ψ(s)Ψ(s)Tds

Ψ(s) = (1, φw, φh)
T is the vector of two bases. 1/T ⟨φh,1⟩ → 0 as T → ∞. The parameter b in (43) can be solved using

two special (suboptimal) solutions with β̂
B

at the conditions

α̂B
i→j = 0,

∂ℓ̃j
∂βw

= 0,
∂ℓ̃j
∂βB

j

= 0

and β̂
C

at conditions

β̂C
w = 0,

∂ℓ̃j
∂αC

i→j

= 0,
∂ℓ̃j
∂βC

j

= 0

Solution β̂B
w corresponds to the model λ̃j = βj + βwφw without the impact function term at the condition α̂B

i→j = 0.

0 =
∂ℓ̃j
∂βw

= −
∫ T

0

φw(s)

λ̃j(s)
dNj(s) +

∫ T

0

φw(s)ds

=−
∫ T

0

φw(s)
1

λ̄j + β̂B
wφw(s)

dNj(s) = − 1

λ̄j

∫ T

0

φw(s)
1

1 +
β̂B
w

λ̄j
φw(s)

dNj(s)

=− 1

λ̄j

∫ T

0

φw(s)

(
1− β̂B

w

λ̄j
φw(s)

)
dNj(s) + o

(
β̂B
w

λ̄2
j

∫ T

0

φw(s)φw(s)dNj(s)

)

≈E

[
− 1

λ̄j

∫ T

0

φw(s)

(
1− β̂B

w

λ̄j
φw(s)

)
dNj(s)

∣∣∣∣∣Ni

]

=− 1

λ̄j

∫ T

0

φw(s)

(
1− β̂B

w

λ̄j
φw(s)

)
λj(s)ds

Then we can derive the β̂B
w ,

β̂B
w ≈λ̄j

⟨φw, λj⟩
⟨φ2

w, λj⟩
≈ λ̄j

⟨φw, λj⟩
⟨φ2

w, λ̄j⟩
=

⟨φw, λj⟩
⟨φw, φw⟩

Similarly, we have

α̂C
i→j ≈ λ̄j

⟨φh, λj⟩
⟨φ2

h, λj⟩
≈ ⟨φh, λj⟩

⟨φh, φh⟩
The MLE then is,

β̂ ≈ −H−1b (46)

H ≈ 1

λ̄j

 Sww Swh 0
Shw Shh 0

0 0 β̂2
jT

 , b ≈ − 1

λ̄j

 ⟨φw, λj⟩
⟨φh, λj⟩
T λ̄3

j


where λ̄j = Eλj = λ̄i + αi→jσh. So we have the estimator α̂i→j ,

α̂i→j ≈
Sww · ⟨φh, λj⟩ − Shw · ⟨φw, λj⟩

SwwShh − S2
wh

=
Sww · ⟨φh, αj + fi + αi→jφh⟩ − Shw · ⟨φw, αj + fi + αi→jφh⟩

SwwShh − S2
wh



=
Sww · ⟨φh, fi⟩ − Shw · ⟨φw, fi⟩

SwwShh − S2
wh

+ αi→j ·
Sww · ⟨φh, φh⟩ − Shw · ⟨φw, φh⟩

SwwShh − S2
wh

=
Sww · ⟨φh, αi + fi⟩ − Shw · ⟨φw, αi + fi⟩

SwwShh − S2
wh

+ αi→j

≈αi→j +
Sww⟨φh, λi⟩ − Shw⟨φw, λi⟩

SwwShh − S2
hw

So the bias of the estimator is approximately,

bias(α̂i→j) ≈
SwwShλ − ShwSwλ

SwwShh − S2
hw

(47)

Lemma E.10 shows the derivation of the inner products Sww, Shh, Shw, Swλ, Shλ, which lead to the equations for the linear
Cox background in (41).

Corollary E.3. If the regression model (8) does not include the nuisance variable, which becomes a typical Hawkes process,
then the bias of the estimator is the following with similar derivation.

bias(α̂i→j) ≈
Shλ

Shh
≈

ρ
2erf

(
σh

2σI

)
ρ

[
σherf

(
σh

2σI

)
− 2σI√

π

(
1− e

−
σ2
h

4σ2
I

)]
+ λ̄iσh

(48)

Corollary E.4. When the smoothing kernel becomes infinitely narrow, the bias in (41) satisfies

lim
σw→0

bias(α̂i→j) →
ρ
2erf

(
σh

2σI

)
ρ

[
σherf

(
σh

2σI

)
− 2σI√

π

(
1− e

−
σ2
h

4σ2
I

)]
+ λ̄iσh

(49)

Corollary E.5. When the smoothing kernel becomes infinitely wide, the bias in (41) satisfies

lim
σw→∞

bias(α̂i→j) →
ρ
2erf

(
σh

2σI

)
ρ

[
σherf

(
σh

2σI

)
− 2σI√

π

(
1− e

−
σ2
h

4σ2
I

)]
+ λ̄iσh

(50)

The approximation is similar to Lemma E.2. Note that the three corollaries have the same results.

Lemma E.6. Same as the settings in Lemma E.2, the variance of the estimator is approximated as,

Var(α̂i→j) ≈
λ̄j

T

⟨W,W ⟩c̆N
⟨W,W ⟩c̆N ⟨h, h−⟩c̆N − ⟨W,1⟩2c̆Λ

(51)

If fi follows the cluster process in (27), then Var(α̂i→j) ≈ Numerator/Denominator

Numerator =
λ̄j

T

(
ρ

2
√
π
√

σ2
w + σ2

I

+
λ̄i

2
√
πσw

)

Denominator =

(
ρ

2
√
π
√
σ2
w + σ2

I

+
λ̄i

2
√
πσw

)
·(

ρ

[
σherf

(
σh

2σI

)
− 2σI√

π

(
1− e

− σ2
h

4σ2
I

)]
+ λ̄iσh

)

−

(
ρ

2
erf

(
σh

2
√
σ2
w/2 + σ2

I

)
+

λ̄i

2
erf

(
σh√
2σw

))2

(52)



The proof is similar to Lemma E.2 using the Fisher information.

Corollary E.7. If the regression model (8) does not include the nuisance variable, which becomes a typical Hawkes process,
then the variance of the estimator is

Var(α̂i→j) ≈
λ̄j

Shh
≈ λ̄j

T

(
ρ

[
σherf

(
σh

2σI

)
− 2σI√

π

(
1− e

− σ2
h

4σ2
I

)]
+ λ̄iσh

)−1

The proof is similar to Lemma E.2. The three corollaries above have the same results.

Corollary E.8. If σw → 0 of the variance in (52) will converge

lim
σw→0

Var(α̂i→j) →
λ̄j

T

(
ρ

[
σherf

(
σh

2σI

)
− 2σI√

π

(
1− e

− σ2
h

4σ2
I

)]
+ λ̄iσh

)−1

(53)

Corollary E.9. If σw → ∞ of the variance in (52) will converge

lim
σw→∞

Var(α̂i→j) →
λ̄j

T

(
ρ

[
σherf

(
σh

2σI

)
− 2σI√

π

(
1− e

− σ2
h

4σ2
I

)]
+ λ̄iσh

)−1

(54)

Lemma E.10. If the linear Cox model in (27) and (28), the inner products defined in (45) can be derived in analytical
forms as follows.

Proof. Apply E.1, E.11, and E.12,

1

T
Sww ≈

∫
R
[W ∗W ](s)c̆N (ds)ds

=

∫
R

1

2σw
√
π
exp

{
− s2

4σ2
w

}(
ρ

2σI
√
π
exp

{
− s2

4σ2
I

}
+ λ̄iδ(s)

)
ds

=
ρ

2
√
π
√
σ2
w + σ2

I

+
λ̄i

2
√
πσw

1

T
Shh ≈

∫
R
[h ∗ h−](s)c̆N (ds)ds

=

∫
R

[
rect

(
u

σh
− 1

2

)
∗ rect

(
− u

σh
− 1

2

)]
(s)

(
ρ

2σI
√
π
exp

{
− s2

4σ2
I

}
+ λ̄iδ(s)

)
ds

=ρ

[
σherf

(
σh

2σI

)
− 2σI√

π

(
1− exp

{
σ2
h

4σ2
I

})]
+ λ̄iσh

1

T
Shw ≈

∫
R
[h ∗W ](s)c̆N (ds)ds

=

∫
R

[
rect

(
u

σh
− 1

2

)
∗ ϕσW

(u)

]
(s)

(
ρ

2σI
√
π
exp

{
− s2

4σ2
I

}
+ λ̄iδ(s)

)
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=
ρ

2
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(
σh√

2σ2
w + 4σ2

I

)
+

λ̄i

2
erf

(
σh√
2σw

)
1

T
Swλ ≈

∫
R
W (s)c̆Λ(s)s

=

∫
R

1

σw

√
2π

exp

{
− s2

2σ2
w

}(
ρ

2σI
√
π
exp

{
− s2

4σ2
I
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=
ρ√

2σ2
w + 4σ2

I ·
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T
Shλ ≈

∫
R
h(s)c̆Λ(s)s



=

∫
R
I[0,σh](s)

(
ρ

2σI
√
π
exp

{
− s2

4σ2
I

})
ds

=
ρ

2
erf

(
σh

2σI

)

Lemma E.11. Assume the point process Ni(·) is second-order stationary (definition E.1) with reduced second-order moment
measure intensity c̆N , intensity function λi, and mean intensity λ̄i. Define two mean subtracted processes,

φ1(s) :=

∫
W1(s− t)(Ni(dt)− λ̄idt)

φ2(s) :=

∫
W2(s− t)(Ni(dt)− λ̄idt)

Then the inner product on interval [0, T ] between the processes is

⟨φ1, φ2⟩ ≈ T

∫
R
[W1 ∗W−

2 ](r)c̆N (r)dr (55)

W−
2 (x) := W2(−x).

⟨φw, λi⟩ ≈
∫
R
W (r)c̆Λ(r)dsdt (56)

c̆Λ and c̆N are reduced second-order moment measure intensity corresponding to Λi(·) and Ni(·), see Lemma E.12.
Λi(A) :=

∫
A
λi(t)dt is the intensity measure.

Proof.

⟨φ1, φ2⟩ =
∫ T

0

∫ T

0

∫ T

0

W1(t− u)︸ ︷︷ ︸
s:=t−u

W2(t− v)︸ ︷︷ ︸
W−

2 (x):=W2(−x)

(
Ni(du)− λ̄idu

) (
Ni(dv)− λ̄idv

)
dt

=

∫ T

0

∫ T

0

∫ T−u

−u

W1(s)W
−
2 ((v − u)− s)︸ ︷︷ ︸
u:=u,r:v−u

ds
(
Ni(du)− λ̄idu

) (
Ni(dv)− λ̄idv

)
=

∫ T

0

∫ T−u

−u

∫ T−u

−u

W1(s)W
−
2 (r − s)ds · c̆N (r)dr · du

≈
∫ T

0

∫ T−u

−u

[W1 ∗W−
2 ](r)c̆N (r)dr · du ≈ T

∫
R
[W1 ∗W−

2 ](r)c̆N (r)dr

The approximation error comes from the boundary effect. If the kernels W1,W2 decays fast, the error can be ignored.

⟨φw, λi⟩ =
∫ T

0

∫ T

0

W (t− u)
(
Ni(du))− λ̄idu

)
λi(t)dt

=

∫ T

0

∫ T

0

W (t− u)
(
Ni(du))− λ̄idu

) (
λi(t)dt− λ̄idt

)
≈T

∫
R
W (r)c̆Λ(r)dsdt

Remark Many works that study the second-order stationary point process is in the frequency-domain Bartlett [1963],
Brémaud et al. [2005], Brillinger [1972, 1974], Hawkes [1971], Lewis [1970], Mugglestone and Renshaw [1996] and [Daley
and Vere-Jones, 2003, ch. 8]. All of our analysis is in time-domain. If we apply the Parseval’s theorem to (55), it equivalently
shifts almost all results into frequency-domain.∫

R
[W1 ∗W−

2 ](r)c̆N (r)dr =

∫
R
Ŵ1(f) · Ŵ−

2 (f) · ΓN (df)



where Ŵ1, Ŵ
−
2 are the spectrum of kernels, and ΓN is called Bartlett spectrum for point process or Bochner spectrum for

wide-sense process (see [Daley and Vere-Jones, 2003, ch. 8] and [Brémaud et al., 2005]). This can shift the time-domain
analysis into the frequency-domain. This work does not include any frequency properties of the estimator, but it is promising
to interpret some steps using the Bartlett spectrum measure in the future work.

Lemma E.12. Consider the cluster process in (27). Let ϕ(·)σI
be a window function with scale σI , tci be the points of the

center process which is generated by homogeneous Poisson process with intensity ρ. αi is the baseline. The intensity function
has form,

λi(t) = αi +
∑
i

ϕσI
(t− tci ) (57)

Ni(·) is the corresponding count measure. Assume ϕσI
is a Normal window with mean zero and standard deviation σI . The

reduced covariance measure intensity of Λi(t) is,

c̆Λ(u) = ρ · [ϕσI
∗ ϕσI

](u) =
ρ√
4πσ2

I

exp

{
− u2

4σ2
I

}
(58)

Similarly, the reduced covariance measure intensity the point process Ni(t) is,

c̆N (u) = ρ · [ϕσI
∗ ϕσI

](u) + λ̄iδ(u) =
ρ√
4πσ2

I

exp

{
− u2

4σ2
I

}
+ λ̄iδ(u) (59)

Proof. The first-moment property of the intensity is the following.

λ̄i = E[λ(t)] = E
[∫ ∞

0

ϕσI
(t− s)N(ds)

]
=

∫
ϕσI

(t− s) (αi + ρ)ds = αi + ρ

The reduced covariance for the second-moment stationary process is defined as,

c̆Λ(u) = E[λi(x)λi(x+ u)]− E[λi(x)]E[λi(x+ u)] = E[λi(x)λi(x+ u)]− λ̄2
i

The second-moment measure of homogeneous Poisson process is [Hawkes, 1971],

M̆ c
N,2(dv) = λ̄iδ(v)dv + λ̄2

idv

The second equation holds due to the Campbell lemma [Kutoyants, 1998, Lemma 1.1]. N c(·) is the count measure of the
center process. Λi(·) :=

∫
A
λi(t)dt is the intensity measure with respect to the intensity λi.

m̆Λ,2(u) = E
[
Λi(dx)Λi(x+ du)

dxdu

]
= E[λi(x)λi(x+ u)]

=E[(αi + fi(x))(αi + fi(x+ u))] = E[fi(x)fi(x+ u)] + 2ραi + α2
i

=E
[(∫

ϕσI
(x− s) dN c(s)

)(∫
ϕσI

(x+ u− r) dN c(r)

)]
+ 2ραi + α2

i

=E
[∫∫

ϕσI
(x− s)ϕσI

(x+ u− r) dN c(s)dN c(r)

]
+ 2ραi + α2

i

=

∫
ds

∫
ϕσI

(x− s)ϕσI
(x+ u− (s+ v)) M̆ c

N,2(dv) + 2ραi + α2
i

=λ̄2
i + ρ

∫
ϕσI

(s)ϕσI
(u− s) ds = λ̄2

i + ρ[ϕσI
∗ ϕσI

](u)

The reduced covariance measure intensity of the count measure can be derived as follows.

MN,2(dt× (t+ du)) = dt · M̆N (du)

=E [Ni(dt)Ni(t+ du)] = EΛ [EN [N(dt)N(t+ du)|Λi]]

=λ̄iδ(u)du+ Eλ [Λi(dt)Λi(t+ du)] = λ̄iδ(u)dudt+ m̆Λ(u)dudt



So we have,

m̆N (u) = λ̄iδ(u) + m̆Λ(u)

c̆N (u) = λ̄iδ(u) + c̆Λ(u)

Similarly, the reduced second-order covariance intensity is,

E [N(dt)Λ(t+ du)] = EΛ [EN [N(dt)Λ(t+ du)|λ]]
=EΛ [Λ(dt)Λ(t+ du)] = m̆Λ(u)dudt

F APPLICATION TO NEUROSCIENCE DATASET

F.1 MATERIALS

We applied our method to the Allen Brain Observatory Visual Coding Neuropixels Siegle et al. [2021]. It used multiple
high-density extracellular electrophysiology probes to simultaneously record spiking activity from many areas in the mouse
brain, especially the visual cortex. The animals were passively presented with visual stimuli while the head was fixed. The
details of the experimental setup can be found in Siegle et al. [2021]. Our work used drifting gratings as the trials are
long, and visual stimuli strongly elicit neural responses. The drifting gratings have 8 different orientations (0◦, 45◦, 90◦,
135◦,180◦, 225◦, 270◦, 315◦, clockwise from 0◦ = right-to-left). The temporal frequency is 8Hz. The spatial frequency
is 0.04 cycles/deg and the contrast is 80% for all trials. The dataset assigns unique identities for all properties, such as
conditions, trials, neurons, etc. In this paper, we refer to those identities directly. We analyzed mouse session 798911424.
The stimulus condition identities are: 246, 254, 256, 263, 267, 276, 281, 284. Each condition has 15 repeated trials,
120 trials in total. A trial lasts for 3 sec with a 2-second stimulus and a 1-second blank screen. 5 brain areas were recorded
by separate Neuropixels probes simultaneously. The number of recorded neurons in each visual cortical area is roughly 100.
We selected the top 50% most active neurons (thresholded by the mean firing rate) including 47 V1 neuron, 39 LM neurons,
23 RL neurons, 44 AL neurons, 39 AM neurons.

F.2 GOODNESS-OF-FIT

The goodness-of-fit test was assessed with the Kolmogorov-Smirnov (KS) test based on the time-rescaling theorem Bowsher
[2007], Brown et al. [2002], Haslinger et al. [2010]. The theorem states that the transformed inter-spike intervals follow the
unit exponential distribution. The KS test is used to compare the empirical distribution and the target distribution. A good fit
should have a straight curve along the diagonal in the Q-Q plot. Figure 15 shows the results between all pairs of brain areas.
The model does a good job with all curves staying along the diagonal without large deviations.
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Figure 15: Goodness-of-fit tests between all pairs of brain areas. Each plot shows the results of an impact function of a pair
of neurons. The connection direction is labeled at the corner. The grey dashed lines are 99% CI. A good fit should have a
straight curve along the diagonal.

Next, we show examples by comparing the fitted impact function and conditional inference-based CCG as another way of
verification. The CCG together with non-parametric fitting can be used to explore the timescale of the coupling effect. Figure
16 shows an example of excitatory, inhibitory, or neural coupling effects. Similar to Figure 3 and 7, the jitter-based CCG
method may not be sensitive enough to detect the weak signals although it shows some clue of the coupling effect. When
the coupling effects are fitted using square windows in Figure 16 second row, it will show a more significant excitatory or
inhibitory coupling effect. We also estimate those effects using non-parametric fitting as shown in Figure 16 last row. Our
method allows us to aggregate all the information in a lag window to estimate the impact function with one parameter using
a square window, or a few parameters using B-splines. The results will be more effective and significant than the method
using the pointwise statistic. We admit modeling using square windows loses some details of the coupling effect, but it is
effective in capturing the general properties of the coupling effect with a limited dataset and large noise.
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Figure 16: Comparison between impact functions and jitter-based CCG. The calculation of the jitter-based CCG in the first
row is the same as Figure 3. The second row shows the fitted impact functions using square windows. The third row shows
the fitted impact functions using the non-parametric method.
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