
Published in Transactions on Machine Learning Research (06/2024)

A Summary of Existing Methods

A.1 Summary of the Original Methods

Randomly Over Sampling Examples (ROSE): The idea of ROSE algorithm (Menardi & Torelli
(2014)) for classification can be summarized as follows:

1. Select y∗ = Yj , j = 0, 1 with probability 1/πj , πj = 1/2 for binary classification.

2. Draw uniformly a seed (xi, yi) such that yi = y∗, with probability pi = 1/nj , nj < n being the size
of Yj

3. Generate a sample x∗ from KHj
(·, xi), where KHj

is a probability distribution centered at xi and
with covariance matrix Hj .

The authors consider Gaussian Kernels for K with diagonal smoothing matrices Hj = diag(hj
1, · · · , hj

p).
Thus, the generations of new samples from the class Yj correspond to data from the kernel density estimate
f(x|Yj). Under the assumption that the true conditional density underlying the data follows a Gaussian
distribution, they suggest using the proposition of Bowman & Azzalini (1999):
h

(j)
q = (4/((d + 2)n)1/(d+4)σ̂

(j)
q (q = 1, · · · , p; j = 0, 1), where σ̂

(j)
q is the sample estimate of the standard

deviation of the q-th dimension of the observations belonging to the class Yj .

Gaussian Noise (GN): The idea of GN algorithm for classification (Lee & Sauchi (2000)), can be sum-
marized as follows:

1. Choose m being the number of replicates of the training data from the imbalanced class that is when
y = ymin.

2. For each xi. from the imbalanced class, generate m noisy replicates x∗ of the form (x + ϵ, ymin), ϵ =
(ϵ1, · · · , ϵp) where ϵj , j = 1, · · · , p is a Gaussian noise, i.e. x∗

q = xq + N (0, σ̂q × σnoise), where xq is
the feature value q from the original observation, and σnoise is defined by the user.

Synthetic Minority Oversampling Technique (SMOTE): The idea of the SMOTE algorithm
(Chawla et al. (2002)) can be summarized as follows:

1. Compute the k− nearest neighbors for each minority sample

2. Do a loop on the minority class samples: generate N synthetic samples for each seed xs as follows:

(a) Choose one of the k− nearest neighbors of xs, say xj(s).
(b) Compute λ as a random number between 0 and 1.
(c) Create a new synthetic sample x∗ defined as: x∗ := λxs + (1 − λ)(xj(s) − xs).

A.2 Original Methods within the GOLIATH Form

Table 1 summarizes the original perturbation approaches ROSE and GN and the original interpolation
approaches SMOTE as the form 1. n represents here the number of samples in the minority class.

20

Published in Transactions on Machine Learning Research (06/2024)

Table 1: Summary of the parametrization of the original methods within the GOLIATH form

Generator I ωi Ki(x) Precision

ROSE [1, n] 1/n 1
|Hn|1/2 K(H−1/2

n (x − xi.)))

K(·) the multivariate Gaussian
kernel, Hn the bandwidth matrix
proposed by Bowman & Azzalini
(1999)

GN [1, n] 1/n 1
|Hn|1/2 K(H−1/2

n (x − xi.)))

K(·) the multivariate Gaussian
kernel, Hn a diagonal matrix
with a fraction of the empirical
standard deviations

SMOTE [1, n] 1/n 1
k

∑k
ℓ=1

1[0,xi.(ℓ)−xi.](x∗ − xi.)
|xi.(ℓ) − xi.|

K(·) a Uniform Mixture Model
with k components having the
same weight, depending of the k-
nn of xi.

A.3 Other Existing Methods within the GOLIATH Form

Here we present some extensions of SMOTE that can be written within a simplified GOLIATH form 1.
These methods are applied in Imbalanced classification. n represents the number of samples in the minority

class. We note by KSMOT E
i (x) the SMOTE kernel defined on Table 1 1

k

∑k
ℓ=1

1[0,xi.(ℓ)−xi.](x∗ − xi.)
|xi.(ℓ) − xi.|

. We
note by nI the number f instances which respects the condition of I. Note that it is possible to write within
the GOLIATH form 1 the under-sampling methods as well as over-sampling methods and hybridization.

B Differences with Utility-Based Learning Approach

Here we present some differences with the Utility-Based Learning approach proposed in Branco et al. (2016a)
and associated works, for example Torgo et al. (2013), Branco et al. (2017), Branco et al. (2019), Ribeiro &
Moniz (2020). This is the first and main solution in the Imbalanced Regression. These works are considered
references for Imbalanced Regression Learning.

Table 3: Differences between the UBL approach and the GOLIATH approach

Characteristic UBL approach GOLIATH approach

Rebalancing Using a binarization of y
Using the continuous distribution of
y

Flexibility
Limited to some adaptations of
imbalanced classification meth-
ods

Adaptation of imbalanced classifica-
tion methods (SMOTE family) and
kernel-based methods, for continu-
ous distributions

Parametrization of
the weights

Based on a relevance function
that binarizes the imbalance
problem: automatic or defined
by the user

Naturally based on the inverse of the
kernel density estimate of y or de-
fined by the user

Remark on the definition of the weights: note that the automatic relevance function with the UBL
package does not work for every dataset (error message). We are often asked to define the relevance function
which can be difficult for the user. The GOLIATH is pretty reliable because of the simplicity of the approach.
However, it is important to define relevant safeguards for the definition of the weight, especially for the very

21

Published in Transactions on Machine Learning Research (06/2024)

Table 2: Summary of the parametrization of some extensions SMOTE methods within the GOLIATH
formulation

Generator I ωi Ki(x) Precision

Borderline-
SMOTE (Han
et al. (2005))

xi such as
kmj (xi)

k ≥ 50%
1/nI KSMOT E

i (x)

kmj(xi) represents
the number of major-
ity examples among
the k nearest neigh-
bors of xi, nI :=∑

i
1kmj (xi)/k≥50%

Safelevel-
SMOTE
(Bunkhumporn-
pat et al.
(2009))

xi according to
SLRij and SFi:
cf below

1/nI
adapted kernel:
cf below

SF Rij := SLi
SLij

=
SL(xi)

SL(xj (i)) with SL(x)
the number of minority
instances in k nearest
neighbours for x

Safelevel-
SMOTE

xi such as
SF Rij =
∞ & SLi ̸= 0

1/nI
x (oversam-
pling)

oversampling if xj(i) is
considered as noise

Safelevel-
SMOTE

xi such as
SF Rij =
1 & SLi = SLij

1/nI KSMOT E
i (x) SMOTE if xj(i) is con-

sidered as safe

Safelevel-
SMOTE

xi such as
SF Rij > 1 1/nI

KSMOT E
i (x)

with λ ∼
U([0, 0.5])

SMOTE closer to xi if
xj(i) is considered as not
safe

Safelevel-
SMOTE

xi such as
SF Rij < 1 1/nI

KSMOT E
i (x)

with λ ∼
U([0.5, 1])

SMOTE closer to xj(i)
if xi is considered as not
safe

ADASYN (He
et al. (2008)) [1, n]

r̂i := ri∑
i

ri

and ri = ∆i
k

KSMOT E
i (x)

∆i represents the num-
ber of examples in the k
nearest neighbors of xi

that belong to the ma-
jority class

Kernel-
ADASYN (Tang
& He (2015))

[1, n] r̂i := kde(ri)
and ri = ∆i

k

KSMOT E
i (x)

evolution of the
ADASYN algorithm
by using a Gaussian
kernel density estimate
to normalize ri

SMOTE-
TomekLink
(Batista et al.
(2004))

[1, n]
1 if xi and x∗

do not form a
Tomek link

KSMOT E
i (x)

This a acceptance-
rejection method ac-
cording to the Tomek-
link(Tomek (1976))
applied after the genera-
tion of x∗ with SMOTE

SMOTE-ENN
(Batista et al.
(2004))

[1, n]
1 if yi =
yj(i), j ∈
[1, kENN]

KSMOT E
i (x)

Similar to SMOTE-
TomekLink but by using
the rule of ENN (Wilson
(1972)), kENN repre-
sents the number of the
NN considering for the
ENN rule

Kmeans-
SMOTE
(Douzas et al.
(2018))

xi ∈ filtered
clusters

sampling weight
based on its mi-
nority density
into the filtered
cluster

KSMOT E
i (x)

SMOTE applied on the
filtered clusters defined
as imbalanced cluster

extreme value which presents a very low probability and so a high value of its inverse. We suggest using a
trimming sequence as a hyperparameter, as often proposed in non-parametric statistics inference.

Remark on the computation time: Both the UBL package and the GOLIATH algorithm are fast
enough to generate a new sample: between 3 and 5 seconds for a dataset with about 500 rows. Note that,
with the Non-Classical Smoothed Bootstrap, the estimation of the bandwidth parameter for a non-Gaussian
distribution could take several minutes due to the package used, especially for a Binomial one.

Remarks on the use of GOLIATH:

• As described in the paper, GOLIATH proposes 3 modes of data generation: "synth" to obtain
a complete synthetic dataset, "augment" to obtain the original dataset augmented with synthetic

22

Published in Transactions on Machine Learning Research (06/2024)

observations, and "mix" which is a mixed approach: the original sample for the first occurrence of
the seed drawn and a synthetic observation for the next.

• The automatic weights used are defined as the inverse of the kernel density estimate of the y dis-
tribution with the "mix" mode and "synth" because a new dataset is built which is equivalent to
realizing an oversampling and an undersampling. However, with the mod "augment", the weights
are defined as the squared inverse 1

f̂2
because we realize an oversampling and want to draw more

extreme values.

• The parameters of GOLIATH depend on the generator used: the number of the nearest neighbors
k, the tuning noise for Classical and Non-Classical Smoothed Bootstrap equivalent to hmult for the
ROSE algorithm, and pert for the Gaussian Noise algorithm.

• It is possible to define another distance with the Nearest Neighbors Smoothed Bootsrap. GOLIATH
computes the k-NN using a distance in the R-package philentropy that proposes a large choice of
distance.

• It is possible to use GOLIATH as a simple generator of data (non-supervised framework) with a Y
defined as null. This corresponds to the first step of GOLIATH. It is also possible to use GOLIATH
in a classical (non-imbalanced) supervised framework (with a Y non-null) to perform learning and
prediction.

• The clustering is an option. If activated, it is possible to define a clustering based on the initial train
dataset. It is also possible to define a clustering on Y distribution in order to define the clusters
according to the frequencies of Y values, in the same idea as the UBL approach.

• The m parameter represents the maximum number of components in the Gaussian Mixture Model
used for the clustering. Thus, this algorithm seeks to optimize the clustering with a number of
clusters between 1 and m. Obviously, it is possible to use another clustering algorithm as k-means.

B.1 Important Required Packages

The GOLIATH algorithm uses the following R-packages:

• Ake: Associated Kernel Estimations, used for the bandwidth parameter of the Binomial distributions
(https://cran.r-project.org/web/packages/Ake/Ake.pdf)

• ks: Kernel Smoothing, used for the bandwidth parameter of the Gaussian distributions https://
cran.r-project.org/web/packages/ks/ks.pdf

• np: Nonparametric Kernel Smoothing Methods for Mixed Data Types, used for the bandwidth pa-
rameter of the Beta, truncated Gaussian and Gamma distributions https://cran.r-project.org/
web/packages/np/np.pdf

• kernelboot: Smoothed Bootstrap and Random Generation from Kernel Densities, used for the classical
smoothed bootstrap https://cran.r-project.org/web/packages/kernelboot/kernelboot.pdf

• randomForest: Breiman and Cutler’s Random Forests for Classification and Regression, used for
the estimation of y for the new synthetic data https://cran.r-project.org/web/packages/
randomForest/randomForest.pdf

• mclust: Gaussian Mixture Modelling for Model-Based Clustering, Classification, and Density Es-
timation, used for the GMM clustering (https://cran.r-project.org/web/packages/mclust/
mclust.pdf)

• philentropy: Similarity and Distance Quantification Between Probability Functions, used for the
computation of the k− nearest neighbors in the Nearest Neighbors Smoothed Bootsrap (https://
cran.r-project.org/web/packages/philentropy/philentropy.pdf)

23

https://cran.r-project.org/web/packages/Ake/Ake.pdf
https://cran.r-project.org/web/packages/ks/ks.pdf
https://cran.r-project.org/web/packages/ks/ks.pdf
https://cran.r-project.org/web/packages/np/np.pdf
https://cran.r-project.org/web/packages/np/np.pdf
https://cran.r-project.org/web/packages/kernelboot/kernelboot.pdf
https://cran.r-project.org/web/packages/randomForest/randomForest.pdf
https://cran.r-project.org/web/packages/randomForest/randomForest.pdf
https://cran.r-project.org/web/packages/mclust/mclust.pdf
https://cran.r-project.org/web/packages/mclust/mclust.pdf
https://cran.r-project.org/web/packages/philentropy/philentropy.pdf
https://cran.r-project.org/web/packages/philentropy/philentropy.pdf

Published in Transactions on Machine Learning Research (06/2024)

B.2 GOLIATH algorithm

The GOLIATH algorithm is presented in Figure 4.

Input covariate X; target variable Y=null; mod="mix"; type; method-Y=1; clustering=F; seed s=null; components
GMM m=n-row(X); weights w=rep(1,n-row(X)); synthetic data sample size N=n-row(X); parameter p)
Clustering // Optional application of a clustering on the train
clust = Cluster(X,Y,clustering) // clust=1 for all samples if clustering=F
Seed drawing // weighted oversampling
if s = null then s = draw(X,N,w)
X generation // Synthetic data generation for the covariates
if m < n then synth = GMM(X,Y,m,N)

else for each c in clust:
if type = "CSB" then synth = G-CSB(X,N,w, s, p)
else if type = "NCSB" then synth = G-NCSB(X,N,w, s, p)
else if type = "NNSB" then synth = G-NNSB(X,N,w, s, p)
else if type = "eNNSB" then synth = G-eNNSB(X,N,w, s, p)
Y generation // Optional Synthetic Y generation
if Y <> null then synth[,Y] = G-Y(X,Y,synth,s,method-Y, p)

end For
Output
if m<n or mod = "synth" then return synth
else if mod = "augment" then return (X,Y) + synth
else return mix((X,Y),synth,s)

Figure 4: GOLIATH algorithm

With the GOLIATH algorithm:

• The user can apply the generation by cluster with the option "clustering"

• The sampling weights are automatically deduced and applied

• The generation of synthetic data, potentially performed by cluster, depends on the mode chosen by
the user:

– CSB: Classical Smoothed Bootstrap
– NCSB: Non-Classical Smoothed Bootstrap
– NNSB: Nearest Neighbors Smoothed Bootstrap
– eNNSB: Extended Nearest Neighbors Smoothed Bootstrap

• The target variable Y is then generated conditionally on the synthetic data x∗.

• Applies a new method for constructing the final sample: the "mix" mode.

Remark on the computation time: Both the UBL package and the GOLIATH algorithm are fast
enough to generate a new sample: between 3 and 5 seconds for a dataset with about 500 rows. Note that,
with the Non-Classical Smoothed Bootstrap, the estimation of the bandwidth parameter for a non-Gaussian
distribution could take several minutes due to the package used, especially for the binomial one.

We proposed to generate a synthetic target value y∗ associated to a new synthetic covariate x∗ using the wild
bootstrap approach. This technique is well-known in the regression framework, especially in the presence of
heteroskedasticity.

24

Published in Transactions on Machine Learning Research (06/2024)

Algorithm 1 GOLIATH algorithm for Y
Input covariates X; target variable Y; synthetic X synth, drawn samples for the synthetic X seed; method for the
generation of y method_Y=1; standard deviation for the Gaussian distribution of the noise in the Wild Bootstrap
sigma=0, proportion of the perturbation for the Gaussian Noise method pert
RF prediction // Prediction with the Random Forest algorithm
model = RF(X,Y) // Training the model
predSynth = predict(model, synth) // Prediction on the synthetic data
predSeed = predict(model, X[seed]) // Prediction on the seed data
eps = Y[seed] - predSeed // Distribution of the prediction error
Y Generation // generation of synthetic Y using the prediction error
For i in synth

if method_Y = 1 then
eps = Y[seed][i] - DistribPredSeed[i] // Distribution of the absolute residuals on the prediction of the

seed
v = Gaussian(0,sigma) // Noise in the wild bootstrap
synth[i,Y]=Y[seed][i] + abs(Random(eps,1)) * v * sign(AveragePredSeed[i]-AveragePredSynth[i])

else if method_Y = 0 then
synth[i,Y]=Y[seed][i]

else if method_Y = 2 then
eps = AveragePredSynth[i] - AveragePredSeed[i] // difference between the average prediction
synth[i,Y]=Y[seed][i] + eps

else if method_Y = 3 then
eps = Y[seed][i] - DistribPredSeed[i] // Distribution of the absolute residuals on the prediction of the

seed
v = Gaussian(0,sigma) // Noise in the wild bootstrap
h = kde(eps) // bandwidth parameter with a gaussian kernel
synth[i,Y]=Y[seed][i] + abs(Gaussian(0,h)) * v * sign(AveragePredSeed[i]-AveragePredSynth[i])

else if method_Y = 4 then
sig = standardDeviation(Y,w_Y) // weighted standard deviation of y
synth[i,Y]=Y[seed][i] + abs(Gaussian(0,sig * pert)) * sign(AveragePredSeed[i]-AveragePredSynth[i])

else if method_Y = 5 then
h = kde(Y,w_Y) // bandwidth parameter with a gaussian kernel for the weighted kernel density estimate

of y
synth[i,Y]=Y[seed][i] + abs(Gaussian(0,h)) * sign(AveragePredSeed[i]-AveragePredSynth[i])

end For
return Synth[,Y]

Details of the methods:

• method 0: the synthetic y∗ is equal to the y seed i.e. the value of y associated to the X used for
generating the new synthetic x∗

• method 1 (by default): the synthetic y∗ is generated by using an adapted wild bootstrap tech-
nique, as described in the paper. Note that with a sigma parameter equal to 0, we obtain the residual
resampling technique: this is the technique used by default.

• method 2: the synthetic y∗ is generated by adding to the y seed the difference between the seed
prediction and the synthetic prediction. The idea is to shift the y seed with the difference of the
predictions representing the impact of the synthetic x∗ in according to the seed x

• method 3: the synthetic y∗ is generated by using a classical smoothed bootstrap on the distribution
of the error prediction. This is a "smoothing" version of the method 1.

• method 4: the synthetic y∗ is generated by using an adapted Gaussian Noise used a weighted
standard deviation of y and the sign of the difference between the predictions of y and y∗

25

Published in Transactions on Machine Learning Research (06/2024)

• method 5: the synthetic y∗ is generated by using a classical smoothed bootstrap and the sign of
the difference between the predictions of y and y∗.

As detailed in the paper, method 1 for the generation of y proposes to use an adapted wild bootstrap. The
differences with a classical wild bootstrap are:

• GOLIATH draw belongs to the distribution of the error prediction for the same y while the Wild
Bootstrap draw belongs to the distribution of the error prediction on the whole training dataset.

• GOLIATH generates a y value for a new x∗ sample while the Wild Bootstrap generates a y value
for an existing x drawn in the training dataset.

• To consider the previous item, GOLIATH suggests using the sign between the average prediction of
y associated with x∗ and associated with x. This represents the impact of generating new synthetic
data x∗ from a seed x.

Figure 5a shows the difference in the RMSE with the different methods. These results are obtained on the
illustrative application with a Classical Smoothed Bootstrap.

(a) Boxplots of RMSE obtained for different generation
methods of y, for the same values of synthetic data x
obtained with a Classical Smoothed Bootstrap

(b) Illustration of a Classical Smoothed Bootstrap vs Non-
Classical Smoothed Bootstrap

Figure 5: Illustrations of GOLIATH

B.3 Illustration of the generators

Figure 5b represents the distributions of the positive variable WholeWeight in the dataset Abalone. As we
can see, the Classical Smoothed Bootstrap can generate synthetic data beyond the X support. Indeed, a
Classical Smoothed Bootstrap is based on a classical kernel which is symmetric distribution. For a given
point (0 for example) there is as much chance to generate a smaller value (negative) as a larger one (positive).
For a positive asymmetric distribution, this can lead to obtaining outliers: as negative values. We observe
that the Non-Classical Smoothed Bootstrap, using a Gamma Kernel, generates proper values of x.

C Complementary Results for Illustrative Application

Remark: A decomposition by model of the stacked RMSE is not possible because the 10 models are not
the same for each run.

C.1 Dataset details

The dataset used in the illustrative application is SML2010 Data Set from the Machine Learning repository
UCI (https://archive.ics.uci.edu/ml/datasets/SML2010). It is composed of 24 numeric attributes and

26

https://archive.ics.uci.edu/ml/datasets/SML2010

Published in Transactions on Machine Learning Research (06/2024)

4137 instances. The target variable is the indoor temperature (we construct a unique target variable as the
mean temperature of dinning-room and the temperature of the room). Figure 6 gives the histograms for
all covariates X and the target variable y. It can be observed that some variables (lighting and wind for
instance) are bounded because of their positivity.

(a) Histograms of the covariates x in the original dataset (b) Histograms of the covariates x in the original dataset

(c) Histograms of the covariates x in the original dataset (d) Histograms of the target variable Y in the original
dataset

Figure 6: Histograms of X and y in the illustrative application dataset

Table 4: Descriptive statistics of the dataset

Variable Min. 1st Qu. Median Mean 3rd Qu. Max.
Weather_forecast_temperature 0 12 15 15.1 18 29

Carbon_dioxide_in_ppm_dinning_room 187.34 200.33 205.22 206.72 210.07 594.39
Carbon_dioxide_in_ppm_room 188.91 201.83 208.97 209.74 212.37 609.24

Relative_humidity_dinning_room 26.17 36.02 42.73 42.31 47.5 60.96
Relative_humidity_room 27.26 38.33 44.71 44.46 50.2 62.59
Lighting_dinning_room 10.74 11.56 14.33 29.11 40.75 111.8

Lighting_room 11.33 13.51 22.21 42.56 55.28 162.96
Rain 0 0 0 0.03 0 1

Sun_dusk 0.61 0.65 612.95 335.72 619.76 625
Wind 0 0.17 0.96 1.3 2.23 6.32

Sun_light_in_west_facade 0 0 831.49 14876.48 14691.85 95278.4
Sun_light_in_east_facade 0 0 1125.38 13680.87 13108.25 92367.5

Sun_light_in_south_facade 0 0 716.8 20028.33 34069.8 95704.4
Sun_irradiance -4.16 -3.25 12.22 234.14 488.37 1094.66

Outdoor_relative_humidity 22.25 42.46 54.38 53.07 62.89 83.81
Day_of_the_week 1 2 4 3.96 6 7

Temp 11.21 18.26 20.31 20.33 22.66 28.73

C.2 Protocol

The protocol for the experiments on the illustrative application can be summarized as follows:

1. Define test_prop the desired proportion of the test dataset: 10% here

27

Published in Transactions on Machine Learning Research (06/2024)

2. Define N_sample the number of the runs i.e. the desired train-test set: 10 here

3. Define the proportion of the imbalanced dataset imb_prop: 10% here.

4. Construct N_sample train-test set: repeat the following instructions:

• draw a test sample with a size size(data) × test_prop,

• draw size(data − test) × imb_prop from the remaining dataset with weights squared in order
to get slightly more rare observations: on the side here. An illustration is given on Figure 7a.

5. Generate the new train datasets with the different methods. The generation is based on a weighting
function. In Figure 7b, we compare

• the histogram of the target variable Y

• the weights obtained with the inverse of the kernel density estimate of the y distributions: giving
a distribution y approximately uniform: "1/f"

• the weights obtained with the squared inverse of the kernel density estimate of the y distribu-
tions: giving a distribution y inverse to that of y in the initial sample: "1/f2"

• the weights obtained with the UBL approach: "UBL"

• the weights obtained with the method proposed in Steininger et al. (2021): "1-a.f", with a = 8

6. Predict the test value according to the new train datasets

(a) Example of a train-test set (b) Comparison of the weighting method

Figure 7: Illustration of the protocol

C.3 Predictive performance metrics

The results for the MAE are similar to the RMSE results. The weighted-RMSE is still better with GOLIATH
algorithm than UBL approach but GOLIATH-SMOTE presents an important value. The weighted-RMSE
is clearly better with the (extended-) Nearest Neighbors Smoothed Bootstrap.

28

Published in Transactions on Machine Learning Research (06/2024)

(a) Weighted RMSE Boxplots (b) MAE boxplots

Figure 8: Boxplots of weighted RMSE and MAE for 10 runs

C.4 Results for 20 models

(a) RMSE Boxplots for 20 models (b) weighted-RMSE Boxplots for 20
models (c) MAE Boxplots for 20 models

Figure 9: Boxplots of predictive performance metrics for 20 runs

The results for the 20 models generally confirm those obtained with 10 runs. However, GOLIATH-SMOTE
seems quite worse than the other GOLIATH techniques. It is important to see that the Nearest Neighbors
Smoothed Bootstrap improves these results.

C.5 Results for 20 runs

(a) RMSE Boxplots for 20 runs (b) weighted-RMSE Boxplots for 20
runs (c) MAE Boxplots for 20 runs

Figure 10: Boxplots of predictive performance metrics for 20 runs

The results for the 20 runs confirm those obtained with 10 runs.

29

Published in Transactions on Machine Learning Research (06/2024)

C.6 IRon specific metrics for Imbalanced Regression

The R-package IRon: Solving Imbalanced Regression Tasks (https://cran.r-project.org/web/packages/
IRon/IRon.pdf), is a useful and relevant package specific to Imbalanced Regression. It is based on Ribeiro
& Moniz (2020) and offers several adapted metrics. Below, we propose an analysis of these predictive
performance metrics in order to compare the approaches.

(a) MAE Boxplots (b) RMSE Bowplots (c) SERA Boxplots

Figure 11: Boxplots of predictive performance metrics with IRon package

The results obtained with the IRon package confirm those obtained from our metrics: The RMSE, MAE,
and SERA present the same look. The Biases are lower for GOLIATH but the variances are higher.

C.7 Impact analysis of parameters

C.7.1 Imbalance Ratio

In this part, we analyze the results obtained according to the imbalance ratio. As a reminder, in the
illustrative application we construct the imbalanced sample with a draw depending of weights as defined in
3. Here, we analyse different values of parameter α: 0 (uniform drawing : low imbalance), 0.5, 1, 1.5 and 2
(high imbalance). To be more precise, a test sample is obtained with these draw weights and then a learning
sample is drawn from the remaining sample. So if the parameter

α

is high then the probability of drawing rare values will be stronger and therefore the rare values will have
more chances of being in the test sample. For

α = 0

the draw is uniform so the values have as much chance of being in the test sample as the learning sample.

Figure 12: Heatmap of weighted RMSE mean by train samples and for different imbalanced ratios

30

https://cran.r-project.org/web/packages/IRon/IRon.pdf
https://cran.r-project.org/web/packages/IRon/IRon.pdf

Published in Transactions on Machine Learning Research (06/2024)

We observe that regardless of the level of imbalance (w=0: low imbalance to w=2: high imbalance), GO-
LIATH gives better results than the benchmark.

31

Published in Transactions on Machine Learning Research (06/2024)

Figure 13: Boxplots of weighted RMSE by train samples and for different imbalanced ratios

32

Published in Transactions on Machine Learning Research (06/2024)

C.7.2 Sample Size

In this part, we analyze the results obtained according to the sample size. As a reminder, in the illustrative
application we construct the imbalanced sample with a draw from the reminded population.

Figure 14: Heatmap of weighted RMSE mean by train samples and for different sample size

We observe that regardless of the sample size (30%: small sample to 100%: big sample), GOLIATH gives
better results than the benchmark.

33

Published in Transactions on Machine Learning Research (06/2024)

Figure 15: Boxplots of weighted RMSE by train samples and for different sample size

34

Published in Transactions on Machine Learning Research (06/2024)

C.7.3 Noise

In this part, we analyze the results obtained according to the noise : parameter k which is the number
of neighboors for the interpolation approaches and parameter pert which is the noise for perturbation ap-
proaches.

(a) Heatmap of weighted RMSE mean by train samples and for different noise parameter k

(b) Heatmap of weighted RMSE mean by train samples and for different noise parameter k

We observe that regardless of the level of noise, GOLIATH gives better results than the benchmark.

35

Published in Transactions on Machine Learning Research (06/2024)

Figure 17: Boxplots of weighted RMSE by train samples and for different k parameter

36

Published in Transactions on Machine Learning Research (06/2024)

Figure 18: Boxplots of weighted RMSE by train samples and for different pert parameter

37

Published in Transactions on Machine Learning Research (06/2024)

D Complementary Results for Imbalanced Regression Applications

D.1 Protocol

The protocol for the applications is quite similar to the previous one for the illustrative application. It can
be summarized as follow:

1. Data preprocessing: removal of eventual categorical covariates, eventual conversion of some covari-
ates, removal of missing data.

2. Define test_prop the desired proportion of the test dataset: cf below.

3. Define N_sample the number of the runs i.e. the desired train-test set: 10 here.

4. Define an eventual proportion of the imbalanced dataset imb_prop to obtain an extremely imbal-
anced dataset: cf below.

5. Construct N_sample train-test set: repeat the following instructions:
• draw a test sample with a size size(data) × test_prop,
• draw size(data − test) × imb_prop from the remaining dataset with weights squared.

6. Generate the new train datasets with the different methods. The generation is based on a weighting
function.

7. Predict the test value according to the new train datasets.

test_prop: Abalone: 30%, Bank8FM: 50%, Boston: 30%, CpuSm: 5%, NO2: 10%
imb_prop: Abalone: 10%, Bank8FM: 10%, Boston: 100%, CpuSm: 5%, NO2: 100%

D.2 Details for the Abalone dataset

The Abalone dataset is composed of 4177 observations and 8 numerical variables including 0 discrete. More
details on the covariates and the target variable are given below. We can observe especially on the histograms
the distribution and the eventual boundaries of the variables.

(a) Histograms of the covariates x in
the original dataset

(b) Histograms of the covariates x in
the original dataset

(c) Histogram of the target variable
Y in the original dataset

Figure 19: Histograms of X and y for the Abalone dataset

Table 5: Descriptive statistics of the dataset

Variable Min. 1st Qu. Median Mean 3rd Qu. Max.
Rings 1 8 9 9.93 11 29

Length 0.07 0.45 0.54 0.52 0.62 0.81
Diameter 0.06 0.35 0.42 0.41 0.48 0.65

Height 0 0.12 0.14 0.14 0.16 1.13
WholeWeight 0 0.44 0.8 0.83 1.15 2.83

ShuckedWeight 0 0.19 0.34 0.36 0.5 1.49
VisceraWeight 0 0.09 0.17 0.18 0.25 0.76

ShellWeight 0 0.13 0.23 0.24 0.33 1

38

Published in Transactions on Machine Learning Research (06/2024)

D.3 Details for the Bank8FM dataset

The Bank8FM dataset is composed of 4499 observations and 9 numerical variables including 1 discrete.
More details on the covariates and the target variable are given below. We can observe especially on the
histograms the distribution and the eventual boundaries of the variables.

(a) Histograms of the covariates x in
the original dataset

(b) Histograms of the covariates x in
the original dataset

(c) Histogram of the target variable
Y in the original dataset

Figure 20: Histograms of X and y for the Bank8FM dataset

Table 6: Descriptive statistics of the dataset

Variable Min. 1st Qu. Median Mean 3rd Qu. Max.
rej 0 0.03 0.12 0.16 0.25 0.8

a1cx -0.5 -0.26 0 0 0.26 0.5
a1cy -0.5 -0.27 -0.02 -0.01 0.24 0.5
b2x -0.5 -0.25 0.01 0 0.25 0.5
b2y -0.5 -0.25 0 0 0.25 0.5

a2pop 0 0.9 2.13 3.05 4.19 29.71
a3pop 0 0.93 2.14 3.08 4.21 29.68
temp 0.04 0.46 0.63 0.6 0.77 0.98
mxql 5 5 7 6.49 8 8

D.4 Details for the Boston dataset

The Boston dataset is composed of 506 observations and 13 numerical variables including 1 discrete. More
details on the covariates and the target variable are given below. We can observe especially on the histograms
the distribution and the eventual boundaries of the variables.

39

Published in Transactions on Machine Learning Research (06/2024)

(a) Histograms of the covariates x
in the original dataset

(b) Histograms of the covariates x in
the original dataset

(c) Histograms of the covariates x in
the original dataset

(d) Histogram of the target variable
Y in the original dataset

Figure 21: Histograms of X and y for the Boston dataset

Table 7: Descriptive statistics of the dataset

Variable Min. 1st Qu. Median Mean 3rd Qu. Max.
HousValue 5 17.02 21.2 22.53 25 50

CRIM 0.01 0.08 0.26 3.61 3.68 88.98
ZN 0 0 0 11.36 12.5 100

INDUS 0.46 5.19 9.69 11.14 18.1 27.74
NOX 0.38 0.45 0.54 0.55 0.62 0.87
RM 3.56 5.89 6.21 6.28 6.62 8.78

AGE 2.9 45.02 77.5 68.57 94.07 100
DIS 1.13 2.1 3.21 3.79 5.19 12.13

RAD 1 4 5 9.55 24 24
TAX 187 279 330 408.24 666 711

PTRATIO 12.6 17.4 19.05 18.46 20.2 22
B 0.32 375.38 391.44 356.67 396.22 396.9

LSTAT 1.73 6.95 11.36 12.65 16.96 37.97

D.5 Details for the CpuSm dataset

The CpuSm dataset is composed of 8192 observations and 13 numerical variables including 0 discrete. More
details on the covariates and the target variable are given below. We can observe especially on the histograms
the distribution and the eventual boundaries of the variables.

40

Published in Transactions on Machine Learning Research (06/2024)

(a) Histograms of the covariates x in
the original dataset

(b) Histograms of the covariates x in
the original dataset

(c) Histograms of the covariates x in
the original dataset

(d) Histogram of the target variable
Y in the original dataset

Figure 22: Histograms of X and y for the CpuSm dataset

Table 8: Descriptive statistics of the dataset

Variable Min. 1st Qu. Median Mean 3rd Qu. Max.
usr 0 81 89 83.97 94 99

lread 0 2 7 19.56 20 1845
lwrite 0 0 1 13.11 10 575
scall 109 1012 2051.5 2306.32 3317.25 12493
sread 6 86 166 210.48 279 5318
swrite 7 63 117 150.06 185 5456

fork 0 0.4 0.8 1.88 2.2 20.12
exec 0 0.2 1.2 2.79 2.8 59.56
rchar 278 33864.25 124779.5 197013.67 267669.25 2526649
wchar 1498 22935.5 46620 95898.29 106148 1801623
runqsz 1 1.2 2 19.63 3 2823

freemem 55 231 579 1763.46 2002.25 12027
freeswap 2 1042623.5 1289289.5 1328125.96 1730379.5 2243187

D.6 Details for the NO2 dataset

The NO2 dataset is composed of 500 observations and 8 numerical variables including 0 discrete. More details
on the covariates and the target variable are given below. We can observe especially on the histograms the
distribution and the eventual boundaries of the variables.

(a) Histograms of the covariates x in
the original dataset

(b) Histograms of the covariates x in
the original dataset

(c) Histogram of the target variable
Y in the original dataset

Figure 23: Histograms of X and y for the NO2 dataset

41

Published in Transactions on Machine Learning Research (06/2024)

Table 9: Descriptive statistics of the dataset

Variable Min. 1st Qu. Median Mean 3rd Qu. Max.
Y 1.22 3.21 3.85 3.7 4.22 6.4

X1 4.13 6.18 7.43 6.97 7.79 8.35
X2 -18.6 -3.9 1.1 0.85 4.9 21.1
X3 0.3 1.67 2.8 3.06 4.2 9.9
X4 -5.4 -0.2 0 0.15 0.6 4.3
X5 2 72 97 143.37 220 359
X6 1 6 12.5 12.38 18 24
X7 32 118.75 212 310.47 513 608

D.7 Predictive performances metrics

The following Figures show the predictive performance metrics for the 5 datasets. We can see that the
previous results on the illustrative application are confirmed: GOLIATH outperforms the results.

Abalone dataset The following Figures show the predictive performance metrics for the Abalone dataset.

(a) RMSE Boxplots (b) weighted-RMSE bowplots (c) MAE Boxplots

Figure 24: Boxplots of predictive performance metrics for Abalone Dataset

Bank8FM dataset The following Figures show the predictive performance metrics for the Bank8FM
dataset.

(a) RMSE Boxplots (b) weighted-RMSE bowplots (c) MAE Boxplots

Figure 25: Boxplots of predictive performance metrics for Bank8FM Dataset

Boston dataset The following Figures show the predictive performance metrics for the Boston dataset.

42

Published in Transactions on Machine Learning Research (06/2024)

(a) RMSE Boxplots (b) weighted-RMSE bowplots (c) MAE Boxplots

Figure 26: Boxplots of predictive performance metrics for Boston Dataset

CpuSm dataset The following Figures show the predictive performance metrics for the CpuSm dataset.

(a) RMSE Boxplots (b) weighted-RMSE bowplots (c) MAE Boxplots

Figure 27: Boxplots of predictive performance metrics for CpuSm Dataset

NO2 dataset The following Figures show the predictive performance metrics for the NO2 dataset.

(a) RMSE Boxplots (b) weighted-RMSE bowplots (c) MAE Boxplots

Figure 28: Boxplots of predictive performance metrics for NO2 Dataset

43

Published in Transactions on Machine Learning Research (06/2024)

D.8 Impact analysis of parameters

D.8.1 Abalone dataset

In this part, we analyze the results obtained according to the noise : parameter k which is the number
of neighboors for the interpolation approaches and parameter pert which is the noise for perturbation ap-
proaches.

(a) Heatmap of weighted RMSE mean by train samples and for different noise parameter k

(b) Heatmap of weighted RMSE mean by train samples and for different noise parameter k

We observe that regardless of the level of noise, GOLIATH gives better results than the benchmark.

44

Published in Transactions on Machine Learning Research (06/2024)

Figure 30: Boxplots of weighted RMSE by train samples and for different k parameter

45

Published in Transactions on Machine Learning Research (06/2024)

Figure 31: Boxplots of weighted RMSE by train samples and for different pert parameter

46

Published in Transactions on Machine Learning Research (06/2024)

D.8.2 Bank8fm dataset

In this part, we analyze the results obtained according to the noise : parameter k which is the number
of neighboors for the interpolation approaches and parameter pert which is the noise for perturbation ap-
proaches.

(a) Heatmap of weighted RMSE mean by train samples and for different noise parameter k

(b) Heatmap of weighted RMSE mean by train samples and for different noise parameter k

We observe that regardless of the level of noise, GOLIATH gives better results than the benchmark.

47

Published in Transactions on Machine Learning Research (06/2024)

Figure 33: Boxplots of weighted RMSE by train samples and for different k parameter

48

Published in Transactions on Machine Learning Research (06/2024)

Figure 34: Boxplots of weighted RMSE by train samples and for different pert parameter

49

Published in Transactions on Machine Learning Research (06/2024)

D.8.3 Boston dataset

In this part, we analyze the results obtained according to the noise : parameter k which is the number
of neighboors for the interpolation approaches and parameter pert which is the noise for perturbation ap-
proaches.

(a) Heatmap of weighted RMSE mean by train samples and for different noise parameter k

(b) Heatmap of weighted RMSE mean by train samples and for different noise parameter k

We observe that regardless of the level of noise, GOLIATH gives better results than the benchmark.

50

Published in Transactions on Machine Learning Research (06/2024)

Figure 36: Boxplots of weighted RMSE by train samples and for different k parameter

51

Published in Transactions on Machine Learning Research (06/2024)

Figure 37: Boxplots of weighted RMSE by train samples and for different pert parameter

52

Published in Transactions on Machine Learning Research (06/2024)

D.8.4 CpuSm dataset

In this part, we analyze the results obtained according to the noise : parameter k which is the number
of neighboors for the interpolation approaches and parameter pert which is the noise for perturbation ap-
proaches.

(a) Heatmap of weighted RMSE mean by train samples and for different noise parameter k

(b) Heatmap of weighted RMSE mean by train samples and for different noise parameter k

We observe that regardless of the level of noise, GOLIATH gives better results than the benchmark.

53

Published in Transactions on Machine Learning Research (06/2024)

Figure 39: Boxplots of weighted RMSE by train samples and for different k parameter

54

Published in Transactions on Machine Learning Research (06/2024)

Figure 40: Boxplots of weighted RMSE by train samples and for different pert parameter

55

Published in Transactions on Machine Learning Research (06/2024)

D.8.5 NO2 dataset

In this part, we analyze the results obtained according to the noise : parameter k which is the number
of neighboors for the interpolation approaches and parameter pert which is the noise for perturbation ap-
proaches.

(a) Heatmap of weighted RMSE mean by train samples and for different noise parameter k

(b) Heatmap of weighted RMSE mean by train samples and for different noise parameter k

We observe that regardless of the level of noise, GOLIATH gives better results than the benchmark.

56

Published in Transactions on Machine Learning Research (06/2024)

Figure 42: Boxplots of weighted RMSE by train samples and for different k parameter

57

Published in Transactions on Machine Learning Research (06/2024)

Figure 43: Boxplots of weighted RMSE by train samples and for different pert parameter

58

	Summary of Existing Methods
	Summary of the Original Methods
	Original Methods within the GOLIATH Form
	Other Existing Methods within the GOLIATH Form

	Differences with Utility-Based Learning Approach
	Important Required Packages
	GOLIATH algorithm
	Illustration of the generators

	Complementary Results for Illustrative Application
	Dataset details
	Protocol
	Predictive performance metrics
	Results for 20 models
	Results for 20 runs
	IRon specific metrics for Imbalanced Regression
	Impact analysis of parameters
	Imbalance Ratio
	Sample Size
	Noise

	Complementary Results for Imbalanced Regression Applications
	Protocol
	Details for the Abalone dataset
	Details for the Bank8FM dataset
	Details for the Boston dataset
	Details for the CpuSm dataset
	Details for the NO2 dataset
	Predictive performances metrics
	Impact analysis of parameters
	Abalone dataset
	Bank8fm dataset
	Boston dataset
	CpuSm dataset
	NO2 dataset

