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Devil is in Details: Locality-Aware 3D Abdominal CT Volume
Generation for Self-Supervised Organ Segmentation

Anonymous Authors

ABSTRACT
In the realm of medical image analysis, self-supervised learning
techniques (SSL) have emerged to alleviate labeling demands, while
still facing the challenge of training data scarcity owing to esca-
lating resource requirements and privacy constraints. Numerous
efforts employ generative models to generate high-fidelity, unla-
beled 3D volumes across diverse modalities and anatomical regions.
However, the intricate and indistinguishable anatomical structures
within the abdomen pose a unique challenge to abdominal CT vol-
ume generation compared to other anatomical regions. To address
the overlooked challenge, we introduce the Locality-Aware Dif-
fusion (Lad), a novel method tailored for exquisite 3D abdominal
CT volume generation. We design a locality loss to refine crucial
anatomical regions and devise a condition extractor to integrate ab-
dominal priori into generation, thereby enabling the generation of
large quantities of high-quality abdominal CT volumes essential for
SSL tasks without the need for additional data such as labels or radi-
ology reports. Volumes generated through our method demonstrate
remarkable fidelity in reproducing abdominal structures, achieving
a decrease in FID score from 0.0034 to 0.0002 on AbdomenCT-1K
dataset, closely mirroring authentic data and surpassing current
methods. Extensive experiments demonstrate the effectiveness of
our method in self-supervised organ segmentation tasks, resulting
in an improvement in mean Dice scores on two abdominal datasets
effectively. These results underscore the potential of synthetic data
to advance self-supervised learning in medical image analysis.

CCS CONCEPTS
•Applied computing→ Imaging; •Computingmethodologies
→ 3D imaging.

KEYWORDS
3D image generation, Medical imaging, Conditional image genera-
tion, Image reconstruction

1 INTRODUCTION
Due to the difficulty of acquiring and hand-labeling large amounts
of volumetric medical data, an increasing share of medical mod-
els are trained with self-supervised learning (SSL) techniques [16,
18, 24, 33], which exploits complex structures in large-scale unla-
beled data to enhance efficiency and effectiveness [16]. However,
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Figure 1: Our Motivation. (a) Improvements in Dice score
for the self-supervised segmentation model SSL-ALPNet [22]
trained on the augmented AbdomenCT-1K dataset (which
augmented with abdominal CT images generated by Med-
ical Diffusion [14]) over those trained on the original
AbdomenCT-1K dataset [20]. Despite the synthetic data aug-
mentation, there is a notable decrease in SSL performance
across 20% augmentation rate, indicating the limited utility of
sub-optimal synthetic abdominal CT data. (b) Comparison of
real and synthetic abdominal CT images. The outline of the
pancreas in the real image is much more discriminative than
in the synthetic image generated by Medical Diffusion [14].

high-quality unlabeled data for training encounters the obstacle of
scarcity. Medical volume acquisition requires significant resource
investments [19, 25, 37]. Furthermore, the sensitive nature of med-
ical images exacerbates these complexities, necessitating careful
consideration of privacy preservation measures [28, 34].

To save the costs on data acquisition, unlabelled synthetic data is
used to enhance SSL tasks in a cost-effective and practical way [21,
27]. Unlabelled medical volumes are usually generated by Gener-
ative Adversarial Networks (GANs) [7] or diffusion models [11].
Noteworthy studies [14, 29] present versatile generation methods
succeeding in high-resolution 3D volumes of various modalities
and anatomical regions, showing promising prospects for synthetic
images in downstream medical research. However, challenges such
as unstable training and mode collapse problems in GAN hindered
the generation of large-scale, diverse, realistic volumes [13, 29, 38].
Due to the superior image generation capabilities of diffusion mod-
els, they are widely used in creating synthetic data for medical
applications. These synthetic datasets often integrated into down-
stream tasks by either substituting real data in the training set
or augmenting small training sets. However, while diffusion mod-
els [14] excel in generating realistic volumes for various modalities
and anatomical regions, synthetic abdominal CT volumes fall short
of expectations. Directly integrating synthetic abdominal CT vol-
umes into downstream models will lead to performance degrada-
tion. As shown in Figure 1a, the dice scores of the self-supervised

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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segmentation model SSL-ALPNet [22] trained on the augmented
AbdomenCT-1K dataset, which is augmented with 20% of synthetic
abdominal CT images generated by Medical Diffusion [14], achieve
an improvement of mean dice scores, but are mostly and unex-
pectedly worse on small organs such as pancreas and spleen than
those trained on the original AbdomenCT-1K dataset. Therefore,
it is urgent to investigate how to generate high-quality synthetic
volumes of abdominal CT with realistic anatomical structures by
the diffusion model.

Compared to other anatomical regions, the abdomen presents a
unique challenge due to its intricate and indistinguishable anatomi-
cal structures. This complexity makes the synthesis of high-fidelity
3D abdominal CT volumes particularly challenging. Synthetic ab-
dominal CT images frequently lack the detailed anatomical struc-
tures required for clear delineation, particularly evident in blurred
contours of small organs such as the pancreas. For example, Fig-
ure 1b illustrates an abdominal CT image generated by Medical
Diffusion [14], showcasing distorted and blurred anatomical details
compared to real images. For example, the pancreas is challenging
to distinguish in synthetic abdominal CT images. This phenomenon
is attributed to generative models operating solely from a global
perspective, neglecting the refinement of intricate details. Conse-
quently, synthetic abdominal CT images with unrealistic anatomical
structures may cause the model to learn biased visual representa-
tions in SSL tasks [21, 27], resulting in inferior performance.

To address the above issue, we present a locality-aware 3D ab-
dominal CT volume generation method named Locality-Aware
Diffusion(Lad), focusing on detailed organ-specific information in-
stead of the entire image during generation. Our work comprises
three phases: Latent Space Construction, Diffusion Fitting in La-
tent Space, and Sampling in Latent space. During the Latent Space
Construction phase and Diffusion Fitting in Latent Space phase,
we construct the latent space for CT image using VQ-GAN [5] to
focus on abdominal structure and train a diffusion probabilistic
models [11] to fit into the latent space under the guidance of the
image content and structure. Specifically, to localize the regions of
anatomical structures, we use Priori Extraction module to predict
the mask of abdominal organ, like the pancreas, to localize the
regions of anatomical structures. The predicted mask denotes the
locality we focus on to refine and serves as a valuable anatomical
priori in our whole generation process. To construct a latent space
that fully captures the features of the original data, we designed the
Locality Refinement module. This module focuses the reconstruc-
tion model on a sub-volume cropped according to the predicted
mask, enhancing the fidelity of abdominal structure reconstruction
and refining the quality of the latent space. When fitting Diffusion
into the latent space, to extract locality information effectively, we
introduce the Locality Condition Extractor 𝐸𝑐 , which captures
both content and structural perspectives from the predicted mask.
The mutually complementary combination of content and structure
information guides the diffusion model to learn the distribution
of latent vectors better. For sampling in the latent space, we apply
Locality Condition Augmentationmodule to expand the original
maskset. Subsequently, Condition Extractor 𝐸𝑐 extracts abundant
conditions from the augmented maskset, guiding the generation of
massive volumes.

Our synthetic data achieves the best scores across all metrics
(FID [10], MMD [8], MS-SSIM [30]) for synthesis quality in quan-
titative comparisons and has the closest distribution to real data
in qualitative comparisons on two datasets, AbdomenCT-1K [20]
dataset and TotalSegmentator [31] dataset, demonstrating realism
in both holistic and localized regions of abdominal CT volumes. By
experimenting with treating synthetic data as real data and aug-
mentation methods, respectively, we effectively improve the perfor-
mance of the self-supervised segmentation model SSL-ALPNet [22]
on the AbdomenCT-1K dataset, especially bringing performance
gains in small abdominal organs like pancreas and spleen.

The main contribution of our work is threefold:
(1) We pioneer Locality-Aware Diffusion(Lad), the first method

tailored for exquisite 3D abdominal CT volume generation.
With a dedicated focus on locality details in the generation
process, Lad produces abdominal CT images with more deli-
cate anatomical structures, which is crucial for self-supervised
learning to extract in-distribution representations.

(2) We employ locality refinement, locality condition extrac-
tion, and locality condition augmentation, respectively, to
enhance the reconstruction, fitting, and sampling of CT im-
ages within the latent space, with heightened focus on local
anatomical structures.

(3) Our method can generate large amounts of high-quality ab-
dominal CT volumes, which prove highly effective in SSL
organ segmentation tasks without requiring additional data
such as labels or radiology reports. This underscores the
viability of our synthetic volumes as highly effective alter-
natives for self-supervised learning.

2 RELATEDWORK
2.1 3D Medical Image Generation
The proliferation of generativemodels in natural images has spurred
the development of numerous methods dedicated to medical im-
age generation. Notable contributions by Peng et al. [23], Yoon et
al. [35], and Shibata et al. [28] have showcased the synthesis of
high-fidelity 3D brain MRI using diffusion models. Additionally,
Sun et al. [29] and Khader et al. [14] contributed versatile gener-
ation methods capable of producing high-resolution 3D volumes
across diverse modalities and anatomical regions, such as thoracic
CT, knee MRI, and brain MRI. These advancements hold promise for
the integration of synthetic images into subsequent medical inves-
tigations. Differing from these prior investigations, our focus lies
in the realm of 3D Abdominal CT volume generation. We confront
the challenge posed by intricate, localized anatomical structures,
aiming to address this critical gap in the field.

2.2 Image Generation from Conditions
A number of papers infusing condition information into the gener-
ation process in recent years are closely related to our work. The
recent ControlNet [36] incorporates fine-tuned spatial conditioning
controls to Stable Diffusion [26], a large pre-trained text-to-image
latent diffusion model. Unlike ControlNet relying on first encoding
an input mask to some latent space before feeding it to the diffu-
sion model, we additionally extract topological structure features
from masks to integrate more anatomical structure information.
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Figure 2: Overview of Locality-Aware Diffusion (Lad). Lad consists of three phases: (a) Latent space construction. We introduce a
locality refinement module into the VQ-GAN [5] training. Refinement module uses the Locality Loss L𝑙𝑜𝑐 to facilitate VQ-GAN
to learn more details of anatomical structures in the low-dimensional space. (b) Diffusion fitting in latent space. We introduce a
locality condition extraction module into the diffusion [11] training. The diffusion model incorporates a locality condition
extracted by Condition Extractor 𝐸𝑐 to generate volumes. (c) Sampling in latent space. We introduce a locality condition
augmentation module into the diffusion sampling. In the augmentation module, diverse conditions are extracted from the
augmented maskset and used to generate massive volumes. All three phases use the masks output by a priori extraction module.
Masks are predicted by a well-trained universal segmentation model UniverSeg, with masks considered as priori.

There are studies incorporating additional medical data to aid in
generation tasks. Segmentation-Guided Diffusion [15] adds seg-
mentation guidance to diffusion models by concatenating the mask
channel-wise to the network input and incorporates a randommask
ablation training algorithm to enable synthesis flexibility. Unlike
Segmentation-Guided Diffusion needing additional mask labels,
we leverage predictions of organs from a well-trained universal
segmentation model [1], used alongside unlabeled data and serving
as priori knowledge to indicate regions to refine and generate high-
quality large amounts of samples valuable to SSL tasks. Moreover,
Xu et al. [32] and Hamamci et al. [9] have introduced innovative
methods for text-guided volumetric generation, leveraging 3D chest
CT scans paired with radiology reports. Unlike these methods, our
method does not necessitate integrating text or data from other
modalities, thereby alleviating the need for additional resources.

3 METHOD
3.1 Overview
Lad comprises three phases: Latent Space Construction, Diffusion
Fitting in Latent Space, and Sampling in Latent space.

As a crucial thread running through the entire method, predicted
mask of abdominal organ like the pancreas from a well-trained uni-
versal segmentation model, UniverSeg [1] 𝑓𝑢 , localizes the regions
of anatomical structures and serves as an anatomical priori where
we can dig into abdominal details. We denote the predicted mask of
the 𝑖th abdominal CT volume 𝑥𝑖 , as 𝑦𝑖 , 𝑖 = 0, 1, ..., |𝐷𝑡𝑟 |, 𝐷𝑡𝑟 means
the trainset of abdominal CT volumes.

Central to the efficacy of this method is the utilization of a pre-
dicted abdominal organ mask generated by a well-trained universal
segmentation model, UniverSeg [1] denoted as 𝑓𝑢 . This mask serves
as an anatomical prior, facilitating the localization of anatomical
structures within the abdominal region. Specifically, denoting the
predicted mask for the 𝑖th abdominal CT volume 𝑥𝑖 as 𝑦𝑖 , where
𝑖 = 0, 1, ..., |𝐷𝑡𝑟 | and 𝐷𝑡𝑟 represents the training set of abdominal
CT volumes. The precision of the predicted mask 𝑦𝑖 is insignifi-
cant. In scenarios where the prediction aligns closely with ground
truth, detailed features of the abdominal organ can be effectively
extracted by the mask. Conversely, inaccuracies in the prediction,
indicating misalignment with the ground truth, present challenges
for the segmentation model in identifying the correct anatomical
regions. Therefore, enhancing precision in these areas is crucial for
providing discriminative information.

3.2 Locality Refinement
Considering computational requirements, the diffusion model is
trained and samples in the latent space of vector quantized autoen-
coders (VQ-GAN) [5]. So, producing high-quality reconstructions
is crucial to the quality of images generated by a diffusion model
modeling the latent space. We first define a loss function Lglo of
VQ-GAN following [14]:

Given the computational demands, the diffusion model oper-
ates within the latent space of vector quantized autoencoders (VQ-
GAN) [5]. The quality of the latent space directly impacts the fidelity
of images generated by the diffusion model. To ensure the latent
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space fully captures the features of the original data, we define a
loss function Lglo for VQ-GAN, following [14]:

Lglo = Lrec + Lcodebook + Lcommit + Lperc + Lmatch + Ldisc (1)

where Lrec is a reconstruction loss, Lcodebook is a codebook loss,
Lcommit is a commitment loss, Lperc is a perceptual loss, Lmatch is
a feature matching loss [6] and Ldisc is a discriminator loss.

Apparently, all of these loss functions prioritize global recon-
struction quality, ignoring the importance of detail reconstruction
quality, particularly in anatomical structures. The significance of
detail reconstruction varies across regions, where accurate depic-
tion of anatomical structures holds paramount importance. Even if
background reconstruction is excellent, blurred details of anatom-
ical structures significantly hinder subsequent generation tasks.
Thanks to the predicted mask 𝑦𝑖 , we can localize the specific areas
within volume 𝑥𝑖 that require attention. By cropping volume 𝑥𝑖
into a sub-volume 𝑥𝑖

𝑠𝑢𝑏
and performing the same operation on the

reconstructed volume 𝑥𝑖 , we obtain 𝑥𝑖
𝑠𝑢𝑏

. Introducing the Glob-
ality Loss Lglo, defined by Eq (1), we now introduce the Locality
Loss L𝑙𝑜𝑐 . This loss function is tailored to direct the reconstruction
model’s focus towards the sub-volume 𝑥𝑖

𝑠𝑢𝑏
extracted from volume

𝑥𝑖 and the corresponding reconstructed sub-volume 𝑥𝑖
𝑠𝑢𝑏

, leverag-
ing the predicted mask 𝑦𝑖 to enhance the detail reconstruction of
abdominal structures and thereby improve the quality of the latent
space. The Locality Loss is formulated as the 𝐿1 distance between
the sub-volume 𝑥𝑖

𝑠𝑢𝑏
of the input data 𝑥𝑖 and the corresponding

sub-volume 𝑥𝑖
𝑠𝑢𝑏

of the output data 𝑥𝑖 :

Lloc = ∥(𝑥𝑖
𝑠𝑢𝑏

, 𝑥𝑖
𝑠𝑢𝑏

)∥1, (2)

so, the overall objective of our reconstruction model is to minimize
the loss function L:

L = Lglo + 𝜆Lloc, (3)

where 𝜆 is a hyperparameter that plays a crucial role in balancing
between globality and locality, thus enabling fine-grained genera-
tion for comprehensive holistic reconstruction. In our experimental
setup, we empirically set 𝜆 to 1.0.

3.3 Diffusion Model with Locality Condition
3.3.1 Conditional Denoising Diffusion Probabilistic Model. We first
encode volume 𝑥𝑖 into a low-dimensional latent space through
VQ-GAN [5] and subsequently train a denoising diffusion prob-
abilistic model (DDPM) [11] on the latent representation of the
volume, denoted as 𝐸𝑣𝑞 (𝑥𝑖 ). To generate anatomical details more
precisely, we incorporate the priori knowledge from mask 𝑦𝑖 as
condition information to guide the generation, instead of gener-
ating in-distribution volumes randomly. To be specific, we design
Condition Extractor 𝐸𝑐𝑜𝑛 to extract locality details as the condi-
tion signal 𝑐 to train the model to fit 𝑝 (𝐸𝑣𝑞 (𝑥) |𝑐), which means the
distribution of the latent space of abdominal CT volumes given
condition 𝑐 .

3.3.2 Locality Condition Extraction. In order to fully incorporate
anatomical structure details from priori knowledge, we introduce
Condition Extractor 𝐸𝑐 to extract locality information from the
predicted mask 𝑦𝑖 into a condition vector 𝑐𝑖 from both content and
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Figure 3: Locality Condition Extraction. (a) Condition Ex-
tractor 𝐸𝑐 . This module extracts anatomical structure details
from priori knowledge to guide the generation more pre-
cisely, in the joint action of two complementary sub-modules,
i.e., Content Extractor 𝐸𝑐𝑜𝑛 and Structure Extractor 𝐸𝑠𝑡𝑟 . (b)
The specificmechanism of Structure Extractor 𝐸𝑠𝑡𝑟 . Structure
Extractor 𝐸𝑠𝑡𝑟 extracts topological features of the slice 𝑦𝑖𝑗 of
mask 𝑦𝑖 into a one-dimension vector of length 6 according
to the Betti numbers of each label value.

structure perspectives, as Figure 3a. The combination of content
and structure information enables the diffusion model to learn the
distribution of latent vectors better.

To entail condition 𝑐𝑖 with abdominal features, we first use the
encoder of the former trained VQ-GAN 𝐸𝑣𝑞 to encode mask 𝑦𝑖

into the latent space of abdominal CT volume 𝑥𝑖 and then pass
it through two convolution layers in order to save computation
memory. We call this extraction process Content Extractor 𝐸𝑐𝑜𝑛 and
denote the output as content vector 𝑐𝑖𝑐𝑜𝑛 . 𝑐𝑖𝑐𝑜𝑛 contains image-level
information such as the size, shape and location of the abdominal
organ. Since 𝐸𝑣𝑞 is trained on abdominal CT volume trainset 𝐷𝑡𝑟 ,
content vector 𝑐𝑖𝑐𝑜𝑛 represents encodingmask𝑦𝑖 into an image-level
latent space, without making the most of the structure information
of mask label. Besides, content vector 𝑐𝑖𝑐𝑜𝑛 represents the global
features of the entire mask. Apparently, the significance of the
background cannot match up to the foreground’s.

Considering the above reasons, we additionally extract the or-
gan’s structure information to fully utilize the organ itself. Struc-
ture Extractor 𝐸𝑠𝑡𝑟 is devised to extract topological features of the
mask 𝑦𝑖 by using cubical complex to represent the 𝑗th slice 𝑦𝑖

𝑗
of

𝑦𝑖 ∈ R𝐷×𝐻×𝑊 , 𝑗 = 0, 1, ..., 𝐷 − 1 and then computing Betti numbers
of each cubical complex. The Betti numbers, 𝛽𝑘 counts the number
of features of dimension 𝑘 , where 𝛽0 is the number of connected
components, 𝛽1 the number of loops or holes, 𝛽2 the number of
hollow voids, etc [4]. Considering the common organ’s topological
structure, only the first three Betti numbers is considered in our
method, as Figure 3b. Thus, there are three labels in slice 𝑦𝑖

𝑗
, the

value of each label is 0 representing the background, 1 representing
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the organ, and 2 representing tumors. We create different cubical
complexes for each label. So the final sturcture information of 𝑦𝑖

𝑗
is

represented as {𝛽𝑘,𝑙 }, which is a one-dimension vector has 6 ele-
ments, 𝑙 meaning label value ∈ {0, 1, 2}. As for the whole volume 𝑦𝑖 ,
we concatenate the topological features of all its slices and denoted
as 𝑐𝑖𝑠𝑡𝑟 .

The two extracted condition vectors, named content condition
𝑐𝑖𝑐𝑜𝑛 and structure condition 𝑐𝑖𝑠𝑡𝑟 individually, are mutually comple-
mentarity and concatenated to represent the abdominal features,
which act as condition vectors to guide the generation.

3.4 Sampling With Locality Condition
Augmentation

3.4.1 Locality Condition Augmentation. To generate large amounts
of volumes, we apply common data augmentation techniques, in-
cluding flipping, random affine, and random elastic deformation,
to expand the original maskset predicted by UniverSeg [1]. We use
the augmented maskset as the abundant condition source to be
extracted by Condition Extractor 𝐸𝑐 for generation guidance.

3.4.2 Sampling with Condition Guidance. We follow classifier-free
guidance [12] to guide the diffusion model so that the denoise model
adjusts predictions 𝜖𝜃 constructed via

𝜖𝜃 (𝑧𝑡 , 𝑐) = (1 +𝑤)𝜖𝜃 (𝑧𝑡 , 𝑐) −𝑤𝜖𝜃 (𝑧𝑡 ), (4)

where 𝑧𝑡 ∼ 𝑞(𝑧𝑡 |𝑥𝑖 ) means the input of the denoise model, which
can be computed by adding Gaussian noise to 𝐸vq (𝑥𝑖 ) at timestep
𝑡 ∈ {0, 1, ...,𝑇 − 1}. 𝑤 is the guidance strength of condition 𝑐 .
𝜖𝜃 (𝑧𝑡 , 𝑐) is the regular conditional model prediction, and 𝜖𝜃 (𝑧𝑡 )
is a prediction from an unconditional model jointly trained with
the conditional model by randomly setting 𝑐 to the unconditional
class identifier ∅ with probability 𝑝𝑢𝑛𝑐𝑜𝑛𝑑 . To balance the quality
and diversity, we set 𝑝𝑢𝑛𝑐𝑜𝑛𝑑 = 0.25 in training and set𝑤 = 1.0 in
subsequent sampling. See more details about the experiments on
parameter𝑤 in Section 4.4.2.

4 EXPERIMENTS
4.1 Datasets and Experimental Settings
4.1.1 Datasets. To examine the robustness and generalizability of
our method, We use two public 3D datasets with different distribu-
tions for 3D abdominal CT image generation in the experiments:

AbdomenCT-1K. AbdomenCT-1KDataset [20] collects 1,112 high-
resolution 3D abdominal CT images from 12 medical centers, 1000
of which have manual annotations of four abdominal organs, in-
cluding the liver, kidney, spleen, and pancreas. Considering the
following tests of the utilization of synthetic data in downstream
tasks, 800 CT images without masks are randomly selected for the
training phase and sampling phase in the generation process, while
the other 200 CT images are reserved for the application tests with
their corresponding ground truth mask.

TotalSegmentator. TotalSegmentator [31] provides 1,228 CT vol-
umes covering 117 classes annotated by voxel, encompassing infor-
mation on over 20 abdominal organs. The size of these slices ranges
from 47 to 499, and some of these volumes cover limited areas of
the entire abdomen. To ensure the integrity of abdomen synthesis,

we charge off these incomplete volumes. Moreover, considering the
downstream tests, volumes, where the liver, kidney, spleen, and
pancreas don’t exist, are discarded, too. In the end, 767 volumes are
used in our experiments. 80% (614 volumes) of these are used as
the training set and 20% (153 volumes) are used as the testing set.

4.1.2 Pre-processing. In order to enhance data utility, we apply
resampling techniques to both datasets, adjusting voxel spacing to
[1.6, 1.6, 2.3] and [1.1, 1.1, 1.5], respectively. Following resampling,
we standardize the height and width dimensions to 256. To make
the most of the pancreas masks, we employ a strategic cropping
method. Utilizing a sliding window mechanism with a window
size of 32, we traverse the entire volume along the Z-axis, aligning
with ground truth annotations. Consequently, the processed data
dimensions are uniformized to 256 × 256 × 32. Furthermore, to
ensure uniformity in image intensity, we truncate voxel values to
the range of [−1000, 400] and subsequently normalize them to the
interval [0, 1].

4.1.3 Implementation Details. We train the VQ-GAN for 100,000
steps. We set the compression rate as (4, 4, 4). We let the learning
rate be 3 × 10−4. The batch size is set as 2. Then, we train the
diffusion model for 150,000 steps with 300 timesteps, the learning
rate of 1 × 10−4, and the batch size of 20. All experiments are
performed on two NVIDIA A100 GPUs.

4.2 Quality evaluation of synthetic data
We thoroughly evaluated the quality of synthetic data using 800
synthetic volumes from AbdomenCT-1K dataset and 610 synthetic
volumes from TotalSegmentator dataset, matching the size of the
training set.

4.2.1 Quantitative Comparison.

Synthetic Data with Most Realistic Volumes. We quantitatively
evaluate the realism of synthetic volumes using Fréchet Inception
Distance (FID) [10] and Maximum Mean Discrepancy (MMD) [8].
Lower FID/MMD values indicate closer distributions of synthetic
volumes to real ones, implying more realistic synthetic volumes. To
evaluate the ability to synthesize intricate details, we additionally
cropped sub-volumes from the synthesis set based on the maxi-
mum bounding box of the abdominal organ in the original maskset,
calculating localized FID and localized MMD for these sub-volumes.
Due to HA-GAN being trained only with volumes of size 1283 or
2563, we resized the depth of volumes in the trainset from 32 to
256 and resized them back after sampling. For computing FID and
MMD, we utilized a 3D ResNet model pre-trained on 3D medical
images [3] to extract features, following [29]. As shown in Table 1,
HA-GAN [29] exhibits limitations in capturing the distribution of
abdominal CT volumes despite its proficiency in generating high-
resolution 3D thorax CT and brain MRI scans. On the other hand,
Medical Diffusion [14] achieves superior performance with lower
FID and MMD scores across both datasets, showcasing the robust
generative capabilities inherent in diffusion models. Notably, Lad
outperforms the aforementioned methods across two abdominal
datasets, excelling both holistically and in localized evaluations.
Particularly impressive are its FID and MMD scores, which plum-
met to 0.0002 and 0.0003, respectively. These results underscore
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Table 1: Quantitative Comparison of Synthetic Volumes on AbdomenCT-1K and TotalSegmentator Datasets. The best scores in
each column are highlighted in bold. FID and MMDmetrics assess the realism of synthetic volumes generated by different
methods, while MS-SSIM evaluates diversity. Additionally, localized FID/MMD scores are calculated for sub-volumes cropped
from the synthesis set based on the maximum bounding box of the abdominal organ in the original mask set. Our method,
Lad, achieves the highest scores in these metrics from both holistic and localized perspectives, demonstrating the significant
contribution of our attention to detail to the overall enhancement of volume quality.

Method

AbdomenCT-1K [20] TotalSegmentator [31]

FID↓ MMD↓
MS-SSIM↓

FID↓ MMD↓
MS-SSIM↓Holistic Localized Holistic Localized Holistic Localized Holistic Localized

Real — — — — 0.5719 — — — — 0.4447

HA-GAN [29] 0.4958 0.0302 1.4138 0.3685 0.9992 0.2889 0.1696 1.1055 0.7922 0.9987
Medical Diffusion [14] 0.0034 0.0005 0.0149 0.0075 0.6085 0.0012 0.0005 0.0031 0.0003 0.4584
Lad (Ours) 0.0002 0.0002 0.0003 0.0011 0.5940 0.0007 0.0005 0.0015 0.0011 0.4574

the efficacy of our method in generating high-fidelity 3D abdomi-
nal CT volumes. The meticulous attention to anatomical nuances
significantly contributes to the enhancement of overall volume
quality.

Synthetic Data withMost Diverse Volumes. We assess the diversity
of each method using the multi-scale structural similarity metric
(MS-SSIM) [30]. MS-SSIM is computed by averaging the results of
400 synthetic sample pairs within each method, serving as a repre-
sentation of the MS-SSIM within the internal synthesis set. Higher
MS-SSIM scores imply that the synthetic volumes generated by a
method are more alike, whereas lower scores signify increased di-
versity. As illustrated in Table 1, HA-GAN encounter mode collapse,
achieving super high MS-SSIM score in dealing with abdominal
CT volumes. On the contrary, Medical Diffusion ensures diversity
while maintaining generation quality. Lad attains the lowest MS-
SSIM score across both datasets, indicating its capability to produce
a broader range of samples that faithfully represent the original
data distribution. In addition to enhancing the quality of synthetic
samples, Lad simultaneously achieves an increase in diversity.

4.2.2 Qualitative Comparison.

Qualitative Comparison of Anatomical Structures. To qualitatively
assess the diversity and authenticity of synthetic volumes, Figure 5
presents synthetic samples from eachmethod alongwith zoomed-in
regions on both the AbdomenCT-1K and TotalSegmentator datasets.
HA-GAN appears incapable of generating even rough outlines of
the abdomen. While Medical Diffusion succeeds in generating com-
plete abdominal structures, the synthesized anatomical details are
ambiguous. In contrast, Lad demonstrates superior performance by
generating clearer anatomical structures, resulting in more realistic
abdominal details.

Qualitative Comparison of Synthetic Data Distribution. We em-
bed both synthetic and real volumes into a latent space to assess
the degree of overlap in their data distributions. Following the
method outlined in [3, 29], we utilize a pre-trained 3D medical
ResNet model [17] to extract features from 800 real and synthetic
data samples. Subsequently, Multidimensional Scaling (MDS) [2]
is employed to map the extracted features into a 2-dimensional
space for both the AbdomenCT-1K and TotalSegmentator datasets.
For each method, we fit an ellipse to the embedding with the least
squares. From Figure 4, it is evident that the data distribution of

Real
HA-GAN
Medical Diffusion
Lad (Ours)

(a) On AbdomenCT-1K

Real
HA-GAN
Medical Diffusion
Lad (Ours)

(b) On TotalSegmentator
Figure 4: Comparison of Synthetic Volumes Embedding From
Different Methods on Two Abdominal Datasets. Features
extracted from Synthetic volumes are embedded into a 2-
dimensional space using MDS, with ellipses fitted to method-
specific scatter plots for improved clarity. Both (a) and (b)
show that the embedding of Lad exhibits the highest overlap
with real volumes.

synthetic volumes generated by Lad exhibits the highest degree of
overlap with real data. This observation suggests that Lad gener-
ates volumes with a more realistic appearance compared to other
methods.

4.3 Synthetic Volumes for Self-Supervised
Organ Segmentation

To assess the effectiveness of synthetic data in self-supervised learn-
ing (SSL) tasks, we sample 800 synthetic data from both Medical
Diffusion [14] and Lad, which are then utilized as the training set for
training the self-supervised segmentation model SSL-ALPNet [22].
For each training set, we conduct five training runs of the segmenta-
tion model and evaluate its performance, taking the average of the
test results. The dice scores obtained in the segmentation tests of
models trained on different training sets are presented in Figure 6.

4.3.1 Synthetic Data for Training. We employ synthetic data as
substitutes for authentic data in training the segmentation model
to evaluate the genuine impact of synthetic data on downstream
feature learning tasks, without incorporating any real data in the
process. As depicted in Figure 6a, the segmentation model trained
on synthetic volumes from Lad outperforms the one trained on
synthetic volumes from Medical Diffusion in mean dice scores of
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HA-GAN
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Figure 5: Visualization of Synthetic Volumes Generated by Different Methods on Abdomenct-1K Dataset and Totalsegmentator
Dataset. The first three columns display synthetic samples on AbdomenCT-1K dataset, while the last three columns display
samples on TotalSegmentator dataset. Synthetic samples of each method are presented in two rows: the first row depicts the
entire image, while the second row focuses on a local area of the image. Additionally, for each 3D volume, slices corresponding to
the 8th, 16th, and 24th positions are displayed. This figure highlights the ability of Lad to produce clearer anatomical structures
compared to other methods.

four abdominal organs. As evidenced by higher dice scores for
small organs such as the pancreas and spleen, exceeding Medical
Diffusion by 0.9% and 2.7% respectively, our method’s emphasis on
granularity significantly enhances the delineation of anatomical
structures’ details. Despite prioritizing local features, our approach
achieves comparable performance to Medical Diffusion on larger
organs such as the liver and kidney.

4.3.2 Synthetic Data for Augmentation. We incorporate synthetic
volumes, which are approximately 20% the size of the training set,
as a form of data augmentation within the self-supervised segmen-
tation model. Figure 6b illustrates that our approach yields the
highest mean dice scores, thereby facilitating effective learning
of visual representations by the SSL model. Notably, our method
demonstrates particular strength in addressing the challenges asso-
ciated with small organs, effectively bridging the performance gap
observed when compared to Medical Diffusion.
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Figure 6: Abdominal Organ Segmentation Performance Com-
parison on Different Train sets.
4.4 Ablation and Parameter Studies
4.4.1 Ablation Studies. To comprehensively assess the efficacy of
each component in producing high-fidelity abdominal CT volumes,
our evaluation centers on three key elements of our approach: Lo-
cality Loss L𝑙𝑜𝑐 , Content Extractor 𝐸𝑐𝑜𝑛 , and Structure Extractor
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Table 2: Ablation Study for Synthetic Volumes Conditioned on Original Mask and Augmented Mask. We validate the function
of three parts of our method: Locality Loss L𝑙𝑜𝑐 , Content Extractor 𝐸𝑐𝑜𝑛 , and Structure Extractor 𝐸𝑠𝑡𝑟 . We conduct ablation
studies on synthetic volumes conditioned on augmented mask sets to discern the individual impact of each component on
synthesis quality. Besides, we extend our analysis to include ablation studies on synthetic volumes conditioned on augmented
mask sets without original masks, to gauge the scalability and adaptability of our method in facing "unseen" masks.

Original Masks Version L𝑙𝑜𝑐 𝐸𝑐𝑜𝑛 𝐸𝑠𝑡𝑟

FID↓ MMD↓
MS-SSIM↓Holistic Localized Holistic Localized

— V0 0.0034 0.0005 0.0149 0.0075 0.6085

✓

V1 ✓ 0.0020 0.0004 0.0080 0.0051 0.5984
V2 ✓ 0.0002 0.0003 0.0009 0.0020 0.5989
V3 ✓ ✓ 0.0003 0.0004 0.0027 0.0028 0.5983
Full ✓ ✓ ✓ 0.0002 0.0002 0.0003 0.0011 0.5940

×

V1 ✓ 0.0027 0.0009 0.0093 0.0078 0.5973
V2 ✓ 0.0008 0.0011 0.0067 0.0086 0.6058
V3 ✓ ✓ 0.0006 0.0009 0.0061 0.0070 0.6053
Full ✓ ✓ ✓ 0.0005 0.0004 0.0036 0.0019 0.6051

Table 3: Parameter Study of Guidance Strength in Sampling.

𝑤

FID↓ MMD↓
MS-SSIM↓Holistic Localized Holistic Localized

0.5 0.0010 0.0005 0.0035 0.0037 0.6134
1.0 0.0005 0.0005 0.0005 0.0023 0.6002
1.5 0.0006 0.0005 0.0020 0.0031 0.6016
2.0 0.0006 0.0004 0.0010 0.0020 0.6010

𝐸𝑠𝑡𝑟 . Initially, we conduct ablation studies on synthetic volumes
conditioned on augmented mask sets to discern the individual im-
pact of each component on synthesis quality. Furthermore, to gauge
the scalability and adaptability of our method in generating diverse
volumes, we extend our analysis to include ablation studies on
synthetic volumes conditioned on augmented mask sets without
original masks. This scenario simulates encounters with a wide
array of "unseen" masks. Table 2 presents a quantitative assessment
of synthesized samples across various iterations of our method.

Locality Attention Enhances Holistic Quality. A comparison be-
tween versions V3 and the Full version, as presented in Table 2,
underscores the significant enhancement in synthesized sample
quality upon the introduction of Locality Loss L𝑙𝑜𝑐 . The samples
generated by the Full version consistently achieve the highest scores
in terms of both realism and diversity, regardless of the presence
of original masks. These findings underscore the pivotal role of
our attention mechanism towards locality during the generation
process. This attention mechanism enriches synthesized samples
with intricate anatomical structure details, ultimately elevating the
overall quality of abdominal CT volumes.

Sufficient Condition Extraction Guides Efficient Sample Generation.
A comparative analysis among versions V0, V1, and V2 in Table 2
with original masks reveals the importance of incorporating con-
dition guidance in producing volumes that closely resemble real
counterparts, as evidenced by the drop in all metrics. Furthermore,
comparing versions V1, V2, and V3, it becomes evident that synthe-
sizing samples with superior scores across all metrics is achievable
only when both the Content Extractor 𝐸𝑐𝑜𝑛 and Structure Extractor
𝐸𝑠𝑡𝑟 are introduced concurrently. This observation underscores

the effectiveness of mutually complementary content conditions
(𝑐𝑖𝑐𝑜𝑛) and structure conditions (𝑐𝑖𝑠𝑡𝑟 ). However, upon analyzing the
results of ablation studies conducted without original masks, it is
intriguing to note that V1, featuring the Content Extractor (𝐸𝑐𝑜𝑛)
alone, outperforms V3 in terms of MS-SSIM. This observation is
reasonable, as the condition in V3 exerts a more potent control over
locality details, potentially leading to decreased diversity, which is
a trade-off phenomenon. Moreover, the slightly higher MS-SSIM
observed in V2 compared to other versions can be attributed to the
similarity in topological structures across different volumes, which
imposes a less stringent constraint on volume generation.

4.4.2 Parameter Study. The guidance strength 𝑤 in Eq (4) dur-
ing sampling represents a trade-off between quality and diversity.
We sample with 256 augmented masks for different values of 𝑤 ,
specifically 0.5, 1.0, 1.5, and 2.0, and subsequently conduct a quan-
titative evaluation on synthetic data. Table 3 demonstrates that
synthetic volumes achieve outstanding performance in metrics of
both realism and diversity only when𝑤 = 1.0.

5 CONCLUSION
We introduce Locality-Aware Diffusion (Lad), a pioneering method
designed specifically for the precise generation of 3D abdominal CT
volumes. With a focus on capturing intricate anatomical structure
details, we leverage prior knowledge from a well-trained segmen-
tation model, UniverSeg. Through the incorporation of locality
refinement, locality condition extraction, and locality condition
augmentation modules, we significantly enhance the overall qual-
ity of the generated volumes by directing attention to finer details.
Experimental results demonstrate that the synthetic abdominal CT
volumes produced by our method exhibit realism and diversity
across various metrics. These findings underscore the efficacy of
synthetic data in facilitating self-supervised tasks. Our approach
not only advances the state-of-the-art in abdominal CT volume
generation but also opens up new avenues for leveraging synthetic
data in medical imaging research.
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