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1 SYNTHETIC VOLUMES FOR
SELF-SUPERVISED ORGAN SEGMENTATION
ON TOTALSEGMENTATOR DATASET

To assess the efficacy of synthetic volumes for self-supervised
learning (SSL) tasks, we conduct experiments on TotalSegmen-
tator dataset [4]. Specifically, we utilize 614 synthetic data samples
generated from each method, including Medical Diffusion [1] and
Lad, as the training set for the self-supervised segmentation model,
SSL-ALPNet [3]. Similar to our experiments on AbdomenCT-1K
dataset [2], we perform five training runs of the segmentation
model and average the test results to evaluate its performance for
each training set. The segmentation tests are conducted on models
trained on different training sets from TotalSegmentator dataset,
and the dice scores obtained are presented in Figure 1.

1.1 Synthetic Data for Training.

In line with our main paper’s experiments on AbdomenCT-1K
dataset, we utilize synthetic data from TotalSegmentator dataset as
substitutes for real data in training the segmentation model. This
allows us to evaluate the genuine impact of synthetic data on down-
stream feature learning tasks, all without incorporating any real
data in the process. As illustrated in Figure 1a, the segmentation
model trained on synthetic volumes from Lad outperforms the one
trained on synthetic volumes from Medical Diffusion in terms of
mean dice scores for four abdominal organs. This mirrors the phe-
nomenon observed in Figure 6 of our main paper, where higher
dice scores are achieved for small organs such as the pancreas and
spleen. Specifically, our method’s emphasis on granularity signifi-
cantly enhances the delineation of anatomical structures’ details,
resulting in an improvement of 1.6% and 3.6% over Medical Diffu-
sion for the pancreas and spleen, respectively. Despite prioritizing
local features, our method achieves comparable performance to
Medical Diffusion on larger organs such as the liver and kidney.

1.2 Synthetic Data for Augmentation.

In line with our main paper’s experiments on the AbdomenCT-1K
dataset, we integrate synthetic volumes, each approximately 20%
the size of the training set, into the self-supervised segmentation
model as a form of data augmentation. Figure 1b demonstrates that
our method achieves the highest mean dice scores, indicating its
effectiveness in facilitating the learning of visual representations by
the SSL model. Notably, our method exhibits particular strength in
addressing the challenges associated with small organs, effectively
bridging the performance gap observed when compared to Medical
Diffusion.
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Figure 1: Abdominal Organ Segmentation Performance Com-
parison on Different Trainsets of TotalSegmentator Dataset.
(a) Dice Score on Synthetic Data. The segmentation model
trained on synthetic volumes from Lad outperforms that
trained on synthetic volumes from Medical Diffusion in
mean dice scores for four abdominal organs. Higher dice
scores are achieved for small organs, resulting in a 1.6% and
3.6% improvement over Medical Diffusion for the pancreas
and spleen, respectively. Despite prioritizing local features,
our method achieves comparable performance to Medical
Diffusion on larger organs such as the liver and kidney. (b)
Dice Score Improvement on Augmented Trainset. The mean
dice score of four abdominal organs improves when using
synthetic volumes from Lad as an augmentation method,
sepecially on small organs such as pancreas and spleen, ef-
fectively bridging the performance gap observed compared
to Medical Diffusion.
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Figure 2: MS-SSIM Scores of Synthesis Sets of Varying Sizes
Across Different Methods on Abdomenct-1K dataset and To-
talSegmentator dataset. “1x” denotes a synthesis set size iden-
tical to that of the trainset, while “2x” and “4x” indicate set
sizes two and four times larger than the trainset respectively.
Lad showcases diversity comparable to real data across a
broad spectrum of synthesized volumes, evidence by lower
MS-SSIM scores.
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2 GENERATING MASSIVE VOLUMES

Lad exhibits a significant advantage in its ability to generate ex-
tensive quantities of high-fidelity abdominal CT volumes using
common augmentation techniques applied to the original mask set,
while maintaining diversity. The augmented mask set provides a
substantial source of conditions for generating diverse volumes.
As demonstrated by the multi-scale structural similarity metric
(MS-SSIM) scores of synthesis sets of different sizes from various
methods on the AbdomenCT-1K dataset in 2, our method achieves
lower MS-SSIM scores compared to others on both datasets. This
illustrates Lad’s proficiency in generating a wide array of volumet-
ric data with high diversity, regardless of whether the synthesis set
size matches that of the training set or is quadruple its size.
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