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A PRE-TRAINING SETTINGS
Wepre-train onWaymo and report the results of 3D object detection
on Waymo val and test set. We pre-train on nuScenes and report
the results of 3D object detection, 3D semantic segmentation, and
occupancy prediction on nuScenes val set. Tab. A.1 and Tab. A.2
provide the pre-training settings on Waymo and nuScenes.

Table A.1: Pre-training settings on Waymo.

Parameter Value

Point cloud range [-74.88, -74.88, -2, 74.88, 74.88, 4.0]
Voxel size [0.32, 0.32, 0.1875]

Voxel grid shape [468, 468, 32]
Augmentor ×

Sparse point encoder MinkUNet (Res16UNet34C)
Feature dimension of point encoder 64
Feature dimension of voxel encoder 192

Number of DSVT encoder 8
Number of DSVT decoder 4

Seal feature loss SmoothL1Loss
Optimizer AdamW

Weight decay 0.05
Epochs 30

Table A.2: Pre-training settings on nuScenes.

Parameter Value

Point cloud range [-51.2, -51.2, -5, 51.2, 51.2, 3]
Voxel size [0.2, 0.2, 0.2]

Voxel grid shape [512, 512, 40]
Augmentor ×

Sparse point encoder MinkUNet (Res16UNet34C)
Feature dimension of point encoder 64
Feature dimension of voxel encoder 256

Number of DSVT/SST encoder 8
Number of DSVT decoder 4

Seal feature loss SmoothL1Loss
Optimizer AdamW
Epochs 72

B FINE-TUNING SETTINGS
B.1 3D Object Detection
In Tab. B.1, we present the fine-tuning settings for DSVT onWaymo.
We conduct fine-tuning for only 12 epochs. For detailed settings,
please refer to DSVT [7].

B.2 3D Semantic Segmentation
Tab. B.2 provides the fine-tuning settings for Cylinder3D in 3D
semantic segmentation. We replace Asymm3DSpconv with SST to
extract voxel features. Subsequently, we use Cylinder3DHead to

Table B.1: Fine-tuning settings for 3D object detection on
Waymo.

Parameter Value

Point cloud range [-74.88, -74.88, -2, 74.88, 74.88, 4.0]
Voxel size [0.32, 0.32, 0.1875]

Voxel grid shape [468, 468, 32]
Augmentor gt sampling, flip, rotation, scaling, translation

Disable augmentation epoch 1
Number of frame 1

Feature dimension of voxel encoder 192
Number of DSVT encoder 8

Detection head CenterHead
Optimizer AdamW
Epochs 12

Grad norm clip 10
Max obj per sample 500

Table B.2: Fine-tuning settings for 3D semantic segmentation
on nuScenes.

Parameter Value

Point cloud range [0, -3.14159265359, -4, 50, 3.14159265359, 2]
Voxel grid shape [480, 360, 32]
With voxel center True

Augmentor flip, rotation, scaling, translation
Feature dimension of voxel encoder 128

Number of SST encoder 8
Segmentation head Cylinder3DHead

Optimizer AdamW
Epochs 24

predict the semantic categories of point clouds. For more detailed
settings, please refer to Cylinder3D [10].

B.3 3D Occupancy Prediction

Table B.3: Fine-tuning settings for occupancy prediction on
nuScenes (OpenOccupancy).

Parameter Value

Point cloud range [-51.2, -51.2, -5, 51.2, 51.2, 3]
Voxel size [0.2, 0.2, 0.2]

Voxel grid shape [512, 512, 40]
Augmentor flip, rotation, scaling, translation

Number of frame 10
Feature dimension of voxel encoder 256

Number of DSVT encoder 8
Encoder neck FPN3D
Num of level 4
Optimizer AdamW
Epochs 24

Grad norm clip 35

In Tab. B.3, we provide the fine-tuning settings for occupancy
prediction when using LiDAR only. We utilize DSVT as the encoder
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Table C.1: Correspondence between the eight semantic classes and the categories in the downstream datasets SemanticKITTI,
nuScenes Lidarseg, and WOD Semantic Segmentation.

Num. Class name Downstream dataset categories

1 Ground-related
SemanticKITTI: road, sidewalk, parking, other-ground
nuScenes Lidarseg: driveable_surface, sidewalk, other_flat
WOD Semantic Segmentation: curb, road, lane maker, other ground, walkable, sidewalk

2 Structures
SemanticKITTI: building, other-structure
nuScenes Lidarseg: construction, mannade
WOD Semantic Segmentation: building

3 Vehicle
SemanticKITTI: car, truck, other-vehicle
nuScenes Lidarseg: bus, car, trailer, truck
WOD Semantic Segmentation: car, truck, bus, other vehicle

4 Two-wheeled vehicle
SemanticKITTI: bicycle, motorcycle
nuScenes Lidarseg: bicycle, motorcycle
WOD Semantic Segmentation: bicycle, motor cycle

5 Nature
SemanticKITTI: vegetation, trunk, terrain
nuScenes Lidarseg: terrain, vegetation
WOD Semantic Segmentation: vegetation, treetrunk

6 Human
SemanticKITTI: person, bicyclist, motorcyclist
nuScenes Lidarseg: pedestrian
WOD Semantic Segmentation: motor cyclist, bicyclist, pedestrian

7 Object
SemanticKITTI: fence, pole, traffic sign, other-object
nuScenes Lidarseg: barrier, trafficcone
WOD Semantic Segmentation: sign, traffic light, pole, cone

8 Outlier
SemanticKITTI: outlier
nuScenes Lidarseg: noise
WOD Semantic Segmentation: ——

with pre-trained initialization. FPN3D serves as the neck for incor-
porating multi-scale information from the encoder. The features
are ultimately input into OccHead for occupancy prediction.

C METHODOLOGY FOR SEMANTIC
CLASSIFICATION

To determine the number of superclasses for Seal features, we need
to identify semantic categories that can represent autonomous driv-
ing scenes. Tab. C.1 lists the correspondence between 8 semantic cat-
egories and categories on downstream datasets SemanticKITTI [1],
nuScenes Lidarseg [3], andWOD Semantic Segmentation [5]. Based
on this, the number of superclasses is set to 8.

D MORE RESULTS
D.1 Ablation Study of Epochs for Pre-training
We conduct pre-training on the Waymo training set for 10, 30,
and 60 epochs, followed by fine-tuning for 30 epochs on the 3D
object detection. Tab. D.1 reports an ablation study of epochs for
pre-training. It can be observed that as the number of pre-training
epochs increases, the L2 mAP/mAPH gradually rises, eventually
reaching 75.44% and 72.93%. This demonstrates the scalability of
our method. For fair comparison and to reduce computational cost,
we report the results of pre-training for 30 epochs in all results.

Table D.1: Ablation study of epochs for pre-training.

Epochs
L2 (AP/APH)↑

Overall Vehicle Pedestrian Cyclist

0 73.20 / 71.00 70.90 / 70.50 75.20 / 69.80 73.60 / 72.70
10 74.40 / 72.22 72.01 / 71.86 76.53 / 71.06 74.68 / 73.74
30 75.13 / 72.69 72.93 / 72.45 77.18 / 71.66 75.27 / 73.96
60 75.44 / 72.93 73.13 / 72.77 77.44 / 71.85 75.74 / 74.18

D.2 Ablation Study of the Base Mask Ratio
Tab. D.2 provides an ablation study of (𝑟1b , 𝑟

2
b , 𝑟

3
b) in inter-class

discrimination-guided masking. We set the base mask ratio to be
positively correlated with the average inter-class distance. Through
the ablation study, (0.9, 0.45, 0) has been determined as a suitable
base mask ratio without loss of generality.

D.3 Ablation Study of Expected Number of
Superclass Partition

Tab. D.3 investigates the expected number (𝑛1, 𝑛2, 𝑛3) in Algorithm
Fastest Class Sampling. This hyperparameter divides the eight su-
perclasses into three sets and sets the base mask ratio accordingly.
Experimental investigations have shown that among the two divi-
sions, (3, 3, 2) yields superior results compared to (4, 2, 2).
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TableD.2: Ablation study of the basemask ratio for superclass
partition K1, K2, K3 in inter-class discrimination-guided
masking.

(𝑟 1b , 𝑟
2
b , 𝑟

3
b )

L2 (AP/APH)↑
Overall Vehicle Pedestrian Cyclist

(1.0, 0.5, 0) 74.34 / 72.02 72.04 / 71.54 76.12 / 71.00 74.87 / 73.52
(0.9, 0.45, 0) 75.13 / 72.69 72.93 / 72.45 77.18 / 71.66 75.27 / 73.96
(0.8, 0.4, 0) 74.78 / 72.45 72.52 / 72.16 76.61 / 71.39 75.22 / 73.81
(0.6, 0.3, 0) 74.58 / 72.22 72.23 / 71.90 76.37 / 71.18 75.13 / 73.57

Table D.3: Ablation study of expected number of superclass
partition 𝑛1, 𝑛2, 𝑛3 in inter-class discrimination-guided mask-
ing.

(𝑛1, 𝑛2, 𝑛3)
L2 (AP/APH)↑

Overall Vehicle Pedestrian Cyclist

(3, 3, 2) 75.13 / 72.69 72.93 / 72.45 77.18 / 71.66 75.27 / 73.96
(4, 2, 2) 74.80 / 72.45 72.46 / 72.01 76.63 / 71.41 75.31 / 73.94

D.4 Ablation Study of Distance Threshold
Tab. D.4 investigates the distance threshold 𝜆 in intra-class dis-
crimination guided masking. This threshold is used to determine
whether the Seal feature of a voxel is too far away from its clus-
ter center 𝝁𝑘𝑖 . It affects the intra-class consistency coefficient 𝑟c
and, consequently, influences the self-supervised learning process.
Through experimentation, 0.6 is selected as the default value.

D.5 Ablation Study of the Number of Encoders
Tab. D.5 configures different numbers of encoders in DSVT. As
the number of encoder layers deepens, the pre-training can ex-
tract more universal features from unlabeled data. Performance
on downstream tasks improves as the number of encoder layers
deepens. However, there is no significant improvement in results
when going from 8 layers to 10. To enhance efficiency, we opt for 8
layers as the default value.

D.6 Ablation Study of the Type of Decoder
The decoder utilizes the features of unmasked voxels to reconstruct
the low-level and high-level features of masked voxels. Tab. D.6
explores three types of decoder: Sparse Convolution [9], SST [2],
and DSVT. Sparse Convolution extracts features from the neigh-
borhood of non-empty voxels. SST and DSVT, on the other hand,
perform reconstruction by computing attention between mask to-
kens and unmasked voxels. DSVT outperforms Sparse Convolution
and SST by achieving improvements of 0.61% and 0.36% in L2 mAP,
respectively. We select DSVT as the default decoder.

D.7 Study of Across Datasets and Joint Datasets
In Tab. D.7, transfer learning across datasets and on joint datasets
can reflect the ability of self-supervised learning to acquire universal
features from autonomous driving scenarios. This encompasses
differences in street views, vehicle appearances, weather conditions,
and architectural styles. When pre-trained on the Waymo and fine-
tuned on nuScenes, despite a decrease of 0.38% in mAP compared

Table D.4: Ablation study of distance threshold 𝜆 in intra-
class discrimination-guided masking.

𝜆
L2 (AP/APH)↑

Overall Vehicle Pedestrian Cyclist

0.8 74.59 / 72.22 72.25 / 72.00 76.54 / 71.05 74.98 / 73.61
0.7 74.77 / 72.46 72.53 / 72.22 76.68 / 71.39 75.11 / 73.77
0.6 75.13 / 72.69 72.93 / 72.45 77.18 / 71.66 75.27 / 73.96
0.5 74.56 / 72.22 72.40 / 71.98 76.48 / 71.15 74.79 / 73.54

Table D.5: Ablation study of the number of encoders.

Layer num.
L2 (AP/APH)↑

Overall Vehicle Pedestrian Cyclist

6 74.67 / 72.20 72.39 / 72.07 76.67 / 71.05 74.96 / 73.48
8 75.13 / 72.69 72.93 / 72.45 77.18 / 71.66 75.27 / 73.96
10 75.19 / 72.74 73.04 / 72.54 76.98 / 71.55 75.57 / 74.12

Table D.6: Ablation study of the type of decoder.

Decoder
type

L2 (AP/APH)↑
Overall Vehicle Pedestrian Cyclist

sparse conv. 74.52 / 71.99 72.06 / 71.77 76.45 / 70.79 75.04 / 73.40
SST 74.77 / 72.25 72.42 / 72.03 76.76 / 71.17 75.12 / 73.54
DSVT 75.13 / 72.69 72.93 / 72.45 77.18 / 71.66 75.27 / 73.96

to pre-training on nuScenes, there is still an improvement of 1.32%
compared to no pre-training. When pre-trained on nuScenes and
fine-tuned on Waymo, there is an improvement of 0.87% compared
to training from scratch. In particular, when pre-trained on the
joint dataset, optimal fine-tuning performance is achieved both
on Waymo and nuScenes. This highlights the value of leveraging
abundant unlabeled point cloud data.

D.8 Comparisons of Different Mask Sampling
Strategies

The comparison of different mask sampling strategies is presented
in Tab. D.8. We compare our approach with random masking [6],
range-aware random masking [4], and FPS-based masking [8]. The
key distinction is that only our proposed I2Mask is based on fea-
ture attributes rather than voxel positions. Compared to random
masking, our method achieves an improvement of 0.39% in L2 mAP.
This indicates that considering the inter-class and intra-class dis-
crimination of Seal voxel features can further unlock the potential
of self-supervised learning.

D.9 Visualization of Feature Heatmap
Feature heatmaps for more scenes are displayed in Fig. D.1. By using
the reconstruction of Seal voxel features as a pretext task, output
features of the encoder become more aligned with Seal features.
This is beneficial for downstream tasks that rely on semantics.
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(a) Ground truth Seal feature (b) Encoder output w/ Seal feature (c) Encoder output w/o Seal feature

Figure D.1: Heatmaps for more scenes. Each row represents a scene.
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Table D.7: Self-supervised learning across datasets and joint
datasets in 3D object detection.

Pre-train
Downstream Waymo nuScenes

L2 mAP L2 mAPH mAP NDS

× 73.20 71.00 66.40 71.10
Waymo 75.13+1.93 72.69+1.69 67.72+1.32 72.43+1.33
nuScenes 74.07+0.87 72.08+1.08 68.10+1.70 72.60+1.50

Waymo + nuScenes 75.33+2.13 72.91+1.91 68.43+2.03 72.76+1.66

Table D.8: Comparisons of different mask sampling strate-
gies.

Pre-train Reconstruction target Masking L2 mAP L2 mAPH

None - - 73.20 71.00

PICTURE

Coord. + Seal Random Masking 74.74 72.56

Coord. + Seal Range-aware Random Masking 74.51 72.40

Coord. + Seal FPS-based Masking 74.57 72.44

Coord. + Seal I2Mask 75.13 72.69

E SOCIETAL IMPACTS
Firstly, autonomous driving is trapped in significant domain adap-
tation problems, where the transferability of model between differ-
ent data distributions is inadequate, hindering its ability to general-
ize to new scenes. We propose using high-level features as recon-
struction targets, which allows the network to learn more universal
representations from autonomous driving scenes. These features
can better generalize to data from new scenes. Secondly, we in-
troduce novel insights into 3D generative self-supervised learning,
thereby motivating the autonomous driving community to develop
more robust point cloud encoders with semantic information.
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