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A PRE-TRAINING SETTINGS

We pre-train on Waymo and report the results of 3D object detection
on Waymo val and test set. We pre-train on nuScenes and report
the results of 3D object detection, 3D semantic segmentation, and
occupancy prediction on nuScenes val set. Tab. A.1 and Tab. A.2
provide the pre-training settings on Waymo and nuScenes.

Table A.1: Pre-training settings on Waymo.

Parameter

Value

Point cloud range
Voxel size
Voxel grid shape
Augmentor
Sparse point encoder
Feature dimension of point encoder
Feature dimension of voxel encoder
Number of DSVT encoder
Number of DSVT decoder
Seal feature loss
Optimizer
Weight decay
Epochs

[-74.88, -74.88, -2, 74.88, 74.88, 4.0]
[0.32, 0.32, 0.1875]
[468, 468, 32]

X
MinkUNet (Res16UNet34C)
64
192
8
4
SmoothL1Loss
AdamW
0.05
30

Table B.1: Fine-tuning settings for 3D object detection on
‘Waymo.

Parameter ‘ Value
Point cloud range [-74.88, -74.88, -2, 74.88, 74.88, 4.0]
Voxel size [0.32, 0.32, 0.1875]
Voxel grid shape [468, 468, 32]
Augmentor gt sampling, flip, rotation, scaling, translation
Disable augmentation epoch
Number of frame 1
Feature dimension of voxel encoder 192
Number of DSVT encoder 8
Detection head CenterHead
Optimizer AdamW
Epochs 12
Grad norm clip 10
Max obj per sample 500

Table B.2: Fine-tuning settings for 3D semantic segmentation
on nuScenes.

Parameter ‘ Value

Point cloud range [0, -3.14159265359, -4, 50, 3.14159265359, 2]
Voxel grid shape [480, 360, 32]
With voxel center True

Table A.2: Pre-training settings on nuScenes.

Augmentor
Feature dimension of voxel encoder
Number of SST encoder
Segmentation head
Optimizer
Epochs

flip, rotation, scaling, translation
128
8
Cylinder3DHead
AdamW
24

Parameter | Value
Point cloud range [-51.2,-51.2, -5, 51.2, 51.2, 3]
Voxel size [0.2,0.2,0.2]
Voxel grid shape [512, 512, 40]
Augmentor X
Sparse point encoder MinkUNet (Res16UNet34C)
Feature dimension of point encoder 64
Feature dimension of voxel encoder 256
Number of DSVT/SST encoder 8
Number of DSVT decoder 4
Seal feature loss SmoothL1Loss
Optimizer AdamW
Epochs 72

B FINE-TUNING SETTINGS
B.1 3D Object Detection

In Tab. B.1, we present the fine-tuning settings for DSVT on Waymo.

We conduct fine-tuning for only 12 epochs. For detailed settings,
please refer to DSVT [7].

B.2 3D Semantic Segmentation

Tab. B.2 provides the fine-tuning settings for Cylinder3D in 3D
semantic segmentation. We replace Asymm3DSpconv with SST to
extract voxel features. Subsequently, we use Cylinder3DHead to

predict the semantic categories of point clouds. For more detailed
settings, please refer to Cylinder3D [10].

B.3 3D Occupancy Prediction

Table B.3: Fine-tuning settings for occupancy prediction on

nuScenes (OpenOccupancy).

Parameter

Value

Point cloud range
Voxel size
Voxel grid shape
Augmentor
Number of frame
Feature dimension of voxel encoder
Number of DSVT encoder
Encoder neck
Num of level
Optimizer
Epochs
Grad norm clip

[-51.2, -51.2, -5, 51.2, 51.2, 3]
[0.2,0.2,0.2]
[512, 512, 40]
flip, rotation, scaling, translation
10
256
8
FPN3D
4
AdamW
24
35

In Tab. B.3, we provide the fine-tuning settings for occupancy
prediction when using LiDAR only. We utilize DSVT as the encoder
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Table C.1: Correspondence between the eight semantic classes and the categories in the downstream datasets SemanticKITTI,

nuScenes Lidarseg, and WOD Semantic Segmentation.

Num. ‘ Class name

‘ Downstream dataset categories

1 Ground-related

2 Structures

3 Vehicle

4 Two-wheeled vehicle

5 Nature

6 Human

7 Object

SemanticKITTI: outlier
8 Outlier

nuScenes Lidarseg: noise
‘WOD Semantic Segmentation: —

SemanticKITTI: road, sidewalk, parking, other-ground
nuScenes Lidarseg: driveable_surface, sidewalk, other_flat
‘WOD Semantic Segmentation: curb, road, lane maker, other ground, walkable, sidewalk

SemanticKITTI: building, other-structure
nuScenes Lidarseg: construction, mannade
‘WOD Semantic Segmentation: building

SemanticKITTI: car, truck, other-vehicle
nuScenes Lidarseg: bus, car, trailer, truck
‘WOD Semantic Segmentation: car, truck, bus, other vehicle

SemanticKITTI: bicycle, motorcycle
nuScenes Lidarseg: bicycle, motorcycle
‘WOD Semantic Segmentation: bicycle, motor cycle

SemanticKITTI: vegetation, trunk, terrain
nuScenes Lidarseg: terrain, vegetation
WOD Semantic Segmentation: vegetation, treetrunk

SemanticKITTI: person, bicyclist, motorcyclist
nuScenes Lidarseg: pedestrian
WOD Semantic Segmentation: motor cyclist, bicyclist, pedestrian

SemanticKITTI: fence, pole, traffic sign, other-object
nuScenes Lidarseg: barrier, trafficcone
WOD Semantic Segmentation: sign, traffic light, pole, cone

with pre-trained initialization. FPN3D serves as the neck for incor-
porating multi-scale information from the encoder. The features
are ultimately input into OccHead for occupancy prediction.

C METHODOLOGY FOR SEMANTIC
CLASSIFICATION

To determine the number of superclasses for Seal features, we need
to identify semantic categories that can represent autonomous driv-
ing scenes. Tab. C.1 lists the correspondence between 8 semantic cat-
egories and categories on downstream datasets SemanticKITTI [1],
nuScenes Lidarseg [3], and WOD Semantic Segmentation [5]. Based
on this, the number of superclasses is set to 8.

D MORE RESULTS
D.1 Ablation Study of Epochs for Pre-training

We conduct pre-training on the Waymo training set for 10, 30,
and 60 epochs, followed by fine-tuning for 30 epochs on the 3D
object detection. Tab. D.1 reports an ablation study of epochs for
pre-training. It can be observed that as the number of pre-training
epochs increases, the L2 mAP/mAPH gradually rises, eventually
reaching 75.44% and 72.93%. This demonstrates the scalability of
our method. For fair comparison and to reduce computational cost,
we report the results of pre-training for 30 epochs in all results.

Table D.1: Ablation study of epochs for pre-training,.

\ L2 (AP/APH)]
Epochs
‘ Overall ‘ Vehicle ‘ Pedestrian ‘ Cyclist
0 73.20 / 71.00 70.90 / 70.50 75.20 / 69.80 73.60 / 72.70
10 74.40 / 72.22 72.01/71.86 76.53 / 71.06 74.68 / 73.74
30 7513/ 72.69 72.93/72.45 77.18 / 71.66 75.27 / 73.96
60 75.44/72.93 73.13/72.77 | 77.44/71.85 75.74 / 74.18

D.2 Ablation Study of the Base Mask Ratio

Tab. D.2 provides an ablation study of (ré, rs, rg) in inter-class
discrimination-guided masking. We set the base mask ratio to be
positively correlated with the average inter-class distance. Through
the ablation study, (0.9, 0.45, 0) has been determined as a suitable
base mask ratio without loss of generality.

D.3 Ablation Study of Expected Number of
Superclass Partition

Tab. D.3 investigates the expected number (n1, ng, n3) in Algorithm
Fastest Class Sampling. This hyperparameter divides the eight su-
perclasses into three sets and sets the base mask ratio accordingly.
Experimental investigations have shown that among the two divi-
sions, (3, 3, 2) yields superior results compared to (4, 2, 2).
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Table D.2: Ablation study of the base mask ratio for superclass
partition K, K>, K3 in inter-class discrimination-guided
masking.

s ’f, rs) ‘ L2 (AP/APH)T

‘ Overall ‘ Vehicle ‘ Pedestrian ‘ Cyclist
(1.0, 0.5, 0) 74.34 / 72.02 72.04/71.54 76.12 / 71.00 74.87 / 73.52
(0.9,0.45,0) | 75.13/72.69 | 72.93/72.45 | 77.18/71.66 | 75.27/73.96
(0.8, 0.4, 0) 74.78 / 72.45 72.52/72.16 76.61/71.39 75.22/73.81
(0.6, 0.3, 0) 74.58 / 72.22 72.23/71.90 76.37 / 71.18 75.13/ 73.57

Table D.3: Ablation study of expected number of superclass
partition nq, ny, n3 in inter-class discrimination-guided mask-
ing.

| L2 (AP/APH)?T

(n1, nz, n3)
| Overall | Vehicle | Pedestrian | Cyclist
(3,3,2) 75.13/72.69 | 72.93/72.45 | 77.18/71.66 | 75.27/73.96
(4,2,2) 74.80/ 72.45 72.46 / 72.01 76.63 / 71.41 75.31/73.94

D.4 Ablation Study of Distance Threshold

Tab. D.4 investigates the distance threshold A in intra-class dis-
crimination guided masking. This threshold is used to determine
whether the Seal feature of a voxel is too far away from its clus-
ter center p¥i. It affects the intra-class consistency coefficient r,
and, consequently, influences the self-supervised learning process.
Through experimentation, 0.6 is selected as the default value.

D.5 Ablation Study of the Number of Encoders

Tab. D.5 configures different numbers of encoders in DSVT. As
the number of encoder layers deepens, the pre-training can ex-
tract more universal features from unlabeled data. Performance
on downstream tasks improves as the number of encoder layers
deepens. However, there is no significant improvement in results
when going from 8 layers to 10. To enhance efficiency, we opt for 8
layers as the default value.

D.6 Ablation Study of the Type of Decoder

The decoder utilizes the features of unmasked voxels to reconstruct
the low-level and high-level features of masked voxels. Tab. D.6
explores three types of decoder: Sparse Convolution [9], SST [2],
and DSVT. Sparse Convolution extracts features from the neigh-
borhood of non-empty voxels. SST and DSVT, on the other hand,
perform reconstruction by computing attention between mask to-
kens and unmasked voxels. DSVT outperforms Sparse Convolution
and SST by achieving improvements of 0.61% and 0.36% in L2 mAP,
respectively. We select DSVT as the default decoder.

D.7 Study of Across Datasets and Joint Datasets

In Tab. D.7, transfer learning across datasets and on joint datasets
can reflect the ability of self-supervised learning to acquire universal
features from autonomous driving scenarios. This encompasses
differences in street views, vehicle appearances, weather conditions,
and architectural styles. When pre-trained on the Waymo and fine-
tuned on nuScenes, despite a decrease of 0.38% in mAP compared

ACM MM, 2024, Melbourne, Australia

Table D.4: Ablation study of distance threshold A in intra-
class discrimination-guided masking.

h \ L2 (AP/APH)]

| Overall | Vehicle | Pedestrian | Cyclist
0.8 74.59 / 72.22 72.25/72.00 76.54 / 71.05 74.98 / 73.61
0.7 74.77 ] 72.46 72.53/72.22 76.68 / 71.39 75.11/73.77
0.6 75.13/ 72.69 72.93/72.45 77.18 / 71.66 75.27 / 73.96
0.5 74.56 / 72.22 72.40 / 71.98 76.48 / 71.15 74.79 / 73.54

Table D.5: Ablation study of the number of encoders.

| L2 (AP/APH)T
Layer num.

‘ Overall ‘ Vehicle ‘ Pedestrian ‘ Cyclist
6 74.67 / 72.20 72.39/72.07 76.67 / 71.05 74.96 / 73.48
8 75.13 / 72.69 72.93 /72.45 77.18 / 71.66 75.27 / 73.96
10 75.19/72.74 | 73.04/72.54 76.98 / 71.55 75.57 / 74.12

Table D.6: Ablation study of the type of decoder.

Decoder ‘ L2 (AP/APH)T
type | Overall | Vehicle | Pedestrian | Cyclist
sparse conv. 74.52 /71.99 72.06 / 71.77 76.45/70.79 75.04 / 73.40
SST 74.77 ] 72.25 72.42/72.03 76.76 / 71.17 75.12 / 73.54
DSVT 75.13/ 72.69 72.93/72.45 77.18/ 71.66 75.27 / 73.96

to pre-training on nuScenes, there is still an improvement of 1.32%
compared to no pre-training. When pre-trained on nuScenes and
fine-tuned on Waymo, there is an improvement of 0.87% compared
to training from scratch. In particular, when pre-trained on the
joint dataset, optimal fine-tuning performance is achieved both
on Waymo and nuScenes. This highlights the value of leveraging
abundant unlabeled point cloud data.

D.8 Comparisons of Different Mask Sampling
Strategies

The comparison of different mask sampling strategies is presented
in Tab. D.8. We compare our approach with random masking [6],
range-aware random masking [4], and FPS-based masking [8]. The
key distinction is that only our proposed I?Mask is based on fea-
ture attributes rather than voxel positions. Compared to random
masking, our method achieves an improvement of 0.39% in L2 mAP.
This indicates that considering the inter-class and intra-class dis-
crimination of Seal voxel features can further unlock the potential
of self-supervised learning.

D.9 Visualization of Feature Heatmap

Feature heatmaps for more scenes are displayed in Fig. D.1. By using
the reconstruction of Seal voxel features as a pretext task, output
features of the encoder become more aligned with Seal features.
This is beneficial for downstream tasks that rely on semantics.
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(a) Ground truth Seal feature (b) Encoder output w/ Seal feature (c) Encoder output w/o Seal feature

Figure D.1: Heatmaps for more scenes. Each row represents a scene.
4

Anon.
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465 Table D.7: Self-supervised learning across datasets and joint for lidar segmentation. In Proceedings of the IEEE/CVF Conference on Computer 523
466 datasets in 3D object detection. Vision and Pattern Recognition. 9939-9948. 24
467 525
408 Downstream ‘ ‘Waymo ‘ nuScenes 526
109 Pre-train L2mAP | L2mAPH | mAP NDS o2
470 528
x 73.20 71.00 66.40 71.10
47 Waymo 75137193 | 72,6911:09 | 67724132 | 72.43+133 529
472 nuScenes 74077087 | 72087108 | 68107170 | 72.60%1-50 530
3 Waymo + nuScenes 75.337213 | 7291191 | 68.43+203 | 72.76+1:00 551
474 532
75 Table D.8: Comparisons of different mask sampling strate- 33
476 gies. 534
477 535
478 Pre-train | Reconstruction target | Masking | L2mAP | L2 mAPH 536
479 None | - | - | 7320 | 7100 537
480 | Coord. + Seal | Random Masking | 7474 | 7256 538
481 PICTURE ‘ Coord. + Seal ‘ Range-aware Random Masking ‘ 74.51 ‘ 72.40 539
482 | Coord. + Seal | FPS-based Masking | 7457 | 7244 540
i ‘ Coord. + Seal ‘ *Mask ‘ 75.13 ‘ 72.69
483 541
484 542
485 E SOCIETAL IMPACTS 543
486 . .. . . . . . 544
Firstly, autonomous driving is trapped in significant domain adap-

487 . . . 545
) tation problems, where the transferability of model between differ- o
488 . . . .. . . . . 6
150 ent data distributions is inadequate, hindering its ability to general- o
100 ize to new scenes. We propose using high-level features as recon- ;48

struction targets, which allows the network to learn more universal »
491 . R 9
1o representations from autonomous driving scenes. These features w0

105 can better generalize to data from new scenes. Secondly, we in- .

troduce novel insights into 3D generative self-supervised learning,

494 o . ) 552

195 thereby motivating the autonomous driving community to develop ooy

49; more robust point cloud encoders with semantic information. 554
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