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ABSTRACT

Physics-Informed Neural Networks (PINNs) have emerged as a promising deep
learning framework for approximating numerical solutions to partial differential
equations (PDEs). However, conventional PINNs, relying on multilayer per-
ceptrons (MLP), neglect the crucial temporal dependencies inherent in practical
physics systems and thus fail to propagate the initial condition constraints globally
and accurately capture the true solutions under various scenarios. In this paper,
we introduce a novel Transformer-based framework, termed PINNsFormer, de-
signed to address this limitation. PINNsFormer can accurately approximate PDE
solutions by utilizing multi-head attention mechanisms to capture temporal de-
pendencies. PINNsFormer transforms point-wise inputs into pseudo sequences
and replaces point-wise PINNs loss with a sequential loss. Additionally, it in-
corporates a novel activation function, Wavelet, which anticipates Fourier de-
composition through deep neural networks. Empirical results demonstrate that
PINNsFormer achieves superior generalization ability and accuracy across vari-
ous scenarios, including PINNs failure modes and high-dimensional PDEs. More-
over, PINNsFormer offers flexibility in integrating existing learning schemes for
PINNs, further enhancing its performance.

1 INTRODUCTION

Numerically solving partial differential equations (PDEs) has been widely studied in science and
engineering. The conventional approaches, such as finite element method (Bathe, 2007) or pseudo-
spectral method (Fornberg, 1998), suffer from high computational costs in constructing meshes
for high-dimensional PDEs. With the development of scientific machine learning, Physics-informed
neural networks (PINNs) (Lagaris et al., 1998; Raissi et al., 2019) have emerged as a promising novel
approach. Conventional PINNs and most variants employ multilayer perceptrons (MLP) as end-to-
end frameworks for point-wise predictions, achieving remarkable success in various scenarios.

Nevertheless, recent works have shown that PINNs fail in scenarios when solutions exhibit high-
frequency or multiscale features (Raissi, 2018; Fuks & Tchelepi, 2020; Krishnapriyan et al., 2021;
Wang et al., 2022a), though the corresponding analytical solutions are simple. In such cases, PINNs
tend to provide overly smooth or naive approximations, deviating from the true solution.

Existing approaches to mitigate these failures typically involve two general strategies. The first
strategy, known as data interpolation (Raissi et al., 2017; Zhu et al., 2019; Chen et al., 2021), em-
ploys data regularization observed from simulations, or real-world scenarios. These approaches face
challenges in acquiring ground truth data. The second strategy employs different training schemes
(Mao et al., 2020; Krishnapriyan et al., 2021; Wang et al., 2021; 2022a), which potentially impose a
high computational cost in practice. For instance, Seq2Seq by Krishnapriyan et al. (2021) requires
training multiple neural networks sequentially, while other networks suffer from convergence issues
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due to error accumulation. Another method, Neural Tangent Kernel (NTK) (Wang et al., 2022a), in-
volves constructing kernels K ∈ RD×P , where D is the sample size and P is the model parameter,
which suffers from scalability issues as the sample size or model parameter increases.

While most efforts to improve the generalization ability and address failure modes in PINNs have
focused on the aforementioned aspects, conventional PINNs, largely relying on MLP-based architec-
ture, can overlook important temporal dependencies in real-world physical systems. Finite Element
Methods, for instance, implicitly incorporate temporal dependencies by sequentially propagating the
global solution. This propagation relies on the principle that the state at time t + ∆t depends on
the state at time t. In contrast, PINNs, being a point-to-point framework, do not explicitly model
temporal dependencies within PDEs. Neglecting temporal dependencies poses challenges in glob-
ally propagating initial condition constraints in PINNs. Consequently, PINNs often exhibit failure
modes where the approximations remain accurate near the initial condition but subsequently fail into
overly smooth or naive approximations.

To address this issue of neglecting temporal dependencies in PINNs, a natural idea is employing
Transformer-based models, which are known for capturing long-term dependencies in sequential
data through multi-head self-attentions and encoder-decoder attentions (Vaswani et al., 2017). Vari-
ants of transformer-based models have shown substantial success across various domains. However,
adapting the Transformer, which is inherently designed for sequential data, to the point-to-point
framework of PINNs presents non-trivial challenges. These challenges span both the data represen-
tation and the regularization loss within the framework.

Main Contributions. In this work, we introduce PINNsFormer, a novel sequence-to-sequence PDE
solver built on the Transformer architecture. To the best of our knowledge, PINNsFormer is the first
framework in the realm of PINNs that explicitly focuses on and learns temporal dependencies within
PDEs. Our key contributions can be summarized as follows:

• New Framework: We propose a novel yet intuitive Transformer-based framework named
PINNsFormer. This framework equips PINNs with the capability to capture temporal de-
pendencies through the generated pseudo sequences, thereby enhancing the generalization
ability and approximation accuracy in effectively solving PDEs.

• Novel Activation: We introduce a new non-linear activation function Wavelet.
Wavelet is designed to anticipate the Fourier Transform for arbitrary target signals, mak-
ing it a universal approximator for infinite-width neural networks. Wavelet can also be
potentially beneficial to various deep learning tasks across different model architectures.

• Extensive Experiments: We conduct comprehensive evaluations of PINNsFormer for var-
ious scenarios. We demonstrate its advantages in optimization and approximation accuracy
when addressing failure modes or solving high-dimensional PDEs. We show the flexibility
and benefits of PINNsFormer in incorporating different learning schemes of PINNs.

2 RELATED WORK

Physics-Informed Neural Networks (PINNs). Physics-Informed Neural Networks (PINNs) have
emerged as a promising approach for tackling scientific and engineering problems. Raissi et al.
(2019) introduced the framework that incorporates physical laws into the neural network training to
solve PDEs. This work has led to applications across diverse domains, including fluid dynamics,
solid mechanics, and quantum mechanics (Carleo et al., 2019; Yang et al., 2020). Researchers have
investigated different learning schemes for PINNs (Mao et al., 2020; Wang et al., 2021; 2022a),
which have yielded substantial improvements in convergence, generalization, and interpretability.

Failure Modes of PINNs. Despite the promise exhibited by PINNs, recent works have indicated
certain failure modes inherent to PINNs, particularly when confronted with PDEs featuring high-
frequency or multiscale features (Fuks & Tchelepi, 2020; Raissi, 2018; McClenny & Braga-Neto,
2020; Krishnapriyan et al., 2021; Zhao et al., 2022; Wang et al., 2022a). This challenge has prompted
investigations from various perspectives, including designing various model architectures, learning
schemes, or using data interpolations (Han et al., 2018; Lou et al., 2021; Wang et al., 2021; 2022a;b).
A comprehensive understanding of PINNs’ limitations and the underlying failure modes is funda-
mental for applications in addressing complicated physical problems.
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Figure 1: Architecture of proposed PINNsFormer. PINNsFormer generates a pseudo sequence based
on pointwise input features. It outputs the corresponding sequential approximated solution. The first
approximation of the sequence is the desired solution û(x, t).

Transformer-Based Models. The Transformer model (Vaswani et al., 2017) has achieved signifi-
cant attention due to its ability to capture long-term dependencies, leading to major achievements in
natural language processing tasks (Devlin et al., 2018; Radford et al., 2018). Transformers have also
been extended to other domains, including computer vision, speech recognition, and time-series
analysis (Liu et al., 2021; Dosovitskiy et al., 2020; Gulati et al., 2020; Zhou et al., 2021). Re-
searchers have also developed techniques aimed at enhancing the efficiency of Transformers, such
as sparse attention and model compression (Child et al., 2019; Sanh et al., 2019).

3 METHODOLOGY

Preliminaries: Let Ω be an open set in Rd, bounded by ∂Ω ∈ Rd−1. The PDEs with spatial input
x and temporal input t generally fit the following abstraction:

D[u(x, t)] = f(x, t), ∀x, t ∈ Ω

B[u(x, t)] = g(x, t), ∀x, t ∈ ∂Ω
(1)

where u is the PDE’s solution, D is the differential operator that regularizes the behavior of the sys-
tem, and B describes the boundary or initial conditions in general. Specifically, {x, t} ∈ Ω are resid-
ual points, and {x, t} ∈ ∂Ω are boundary/initial points. Let û be neural network approximations,
PINNs describe the framework where û is empirically regularized by the following constraints:

LPINNs = λr

Nr∑
i=1

∥D[û(x, t)]− f(x, t)∥2 + λb

Nb∑
i=1

∥B[û(x, t)]− g(x, t)∥2 (2)

where Nb, Nr refer to the residual and boundary/initial points separately, λr, λb are the regulariza-
tion parameters that balance the emphasis of the loss terms. The neural network û takes vectorized
{x, t} as input and outputs the approximated solution. The goal is then to use machine learning
methodologies to train the neural network û that minimizes the loss in Equation 2.

Methodology Overview: While PINNs focus on point-to-point predictions, the exploration of tem-
poral dependencies in real-world physics systems has been merely neglected. Conventional PINNs
methods employ a single pair of spatial information x and temporal information t to approximate
the numerical solution u(x, t), without accounting for temporal dependencies across previous or
subsequent time steps. However, this simplification is only applicable to elliptic PDEs, where the
relationships between unknown functions and their derivatives do not explicitly involve time. In
contrast, hyperbolic and parabolic PDEs incorporate time derivatives, implying that the state at one
time step can influence states at preceding or subsequent time steps. Consequently, considering
temporal dependencies is crucial to effectively address these PDEs using PINNs.

In this section, we introduce a novel framework featuring a Transformer-based model of PINNs,
namely PINNsFormer. Unlike point-to-point predictions, PINNsFormer extends PINNs’ capabil-
ities to sequential predictions. PINNsFormer allows accurately approximating solutions at spe-
cific time steps while also learning and regularizing temporal dependencies among incoming states.
The framework consists of four components: Pseudo Sequence Generator, Spatio-Temporal Mixer,
Encoder-Decoder with multi-head attention, and an Output Layer. Additionally, we introduce a
novel activation function, named Wavelet, which employs Real Fourier Transform techniques to
anticipate solutions to PDEs. The framework diagram is exhibited in Figure 1. We provide detailed
explanations of each framework component and learning schemes in the following subsections.
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3.1 PSEUDO SEQUENCE GENERATOR

While Transformers and Transformer-based models are designed to capture long-term dependencies
in sequential data, conventional PINNs utilize non-sequential data as inputs for neural networks.
Consequently, to incorporate PINNs with Transformer-based models, it is essential to transform the
pointwise spatiotemporal inputs into temporal sequences. Thus, for a given spatial input x ∈ Rd−1

and temporal input t ∈ R, the Pseudo Sequence Generator performs the following operations:

[x, t]
Generator
=======⇒ {[x, t], [x, t+∆t], . . . , [x, t+ (k − 1)∆t]} (3)

where [·] is the concatenation operation, such that [x, t] ∈ Rd is vectorized, and the generator outputs
the pseudo sequence in the shape of Rk×d. The Pseudo Sequence Generator extrapolates sequential
time series by extending a single spatiotemporal input to multiple isometric discrete time steps.
k and ∆t are hyperparameters, which intuitively determine how many steps the pseudo sequence
needs to ‘look ahead’ and how ‘far’ each step should be. In practice, both k and ∆t should not be
set to very large scales, as larger k can cause heavy computational and memory overheads, while
larger ∆t may undermine the time dependency relationships of neighboring discrete time steps.

3.2 MODEL ARCHITECTURE

In addition to the Pseudo Sequence Generator, PINNsFormer consists of three components of its ar-
chitecture: Sptio-Temporal Mixer, Encoder-Decoder with multi-head attentions, and Output Layer.
The Output Layer is straightforward to interpret as a fully-connected MLP appended to the end. We
provide detailed insights into the first two components below. Notably, PINNsFormer relies only
on linear layers and non-linear activations, avoiding complex operations such as convolutional or
recurrent layers. This design preserves PINNsFormer’s computational efficiency in practice.

Spatio-Temporal Mixer. Most PDEs contain low-dimensional spatial or temporal information.
Directly feeding low-dimensional data to encoders may fail to capture the complex relationships
between each feature dimension. Hence, it is necessary to embed original sequential data in higher-
dimensional spaces such that more information is encoded into each vector.

Instead of embedding raw data in a high-dimensional space where the distance between vectors re-
flects the semantic similarity (Vaswani et al., 2017; Devlin et al., 2018), PINNsFormer constructs
a linear projection that maps spatiotemporal inputs onto a higher-dimensional space using a fully-
connected MLP. The embedded data enriches the capability of information by mixing all raw spa-
tiotemporal features together, so-called the linear projection Spatio-Temporal Mixer.

Figure 2: The architecture of PINNs-
Former’s Encoder-Decoder Layers. The
decoder is not equipped with self-
attentions.

Encoder-Decoder Architecture. PINNsFormer employs
an encoder-decoder architecture similar to Transformer.
The encoder consists of a stack of identical layers, each
of which contains an encoder self-attention layer and a
feedforward layer. The decoder is slightly different from
the vanilla Transformer, where each of the identical layers
contains only an encoder-decoder self-attention layer and
a feedforward layer. At the decoder level, PINNsFormer
uses the same spatiotemporal embeddings as the encoder.
Therefore, the decoder does not need to relearn depen-
dencies for the same input embeddings. The diagram for
the encoder-decoder architecture is shown in Figure 2

Intuitively, the encoder self-attentions allow learning the
dependency relationships of all spatiotemporal informa-
tion. The decoder encoder-decoder attentions allow se-
lectively focusing on specific dependencies within the in-
put sequence during the decoding process, enabling it to
capture more information than conventional PINNs. We use the same embeddings for the encoder
and decoder since PINNs focus on approximating the solution of the current state, in contrast to next
state prediction in language tasks or time series forecastings.
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3.3 WAVELET ACTIVATION

While Transformers typically employ LayerNorm and ReLU non-linear activation func-
tions (Vaswani et al., 2017; Gehring et al., 2017; Devlin et al., 2018), these activation functions
might not always be suitable in solving PINNs. In particular, employing ReLU activation in PINNs
can result in poor performance, whose effectiveness relies heavily on the accurate evaluation of
derivatives while ReLU has a discontinuous derivative (Haghighat et al., 2021; de Wolff et al.,
2021). Recent studies utilize Sin activation for specific scenarios to mimic the periodic proper-
ties of PDEs’ solutions (Li et al., 2020; Jagtap et al., 2020; Song et al., 2022). However, it requires
strong prior knowledge of the solution’s behavior and is limited in its applicability. Tackling this
issue, we proposed a novel and simple activation function, namely Wavelet, defined as follows:

Wavelet(x) = ω1 sin(x) + ω2 cos(x) (4)

Where ω1 and ω2 are registered learnable parameters. The intuition behind Wavelet activation
simply follows Real Fourier Transform: While periodic signals can be decomposed into an integral
of sines of multiple frequencies, all signals, whether periodic or aperiodic, can be decomposed into
an integral of sines and cosines of varying frequencies. It is evident that Wavelet can approximate
arbitrary functions giving sufficient approximation power, which leads to the following proposition:

Proposition 1 Let N be a two-hidden-layer neural network with infinite width, equipped with
Wavelet activation function, then N is a universal approximator for any real-valued target f.

Proof sketch: The proof follows the Real Fourier Transform (Fourier Integral Transform). For any
given input x and its corresponding real-valued target f(x), it has the Fourier Integral:

f(x) =

∫ ∞

−∞
Fc(ω) cos(ωx) dω +

∫ ∞

−∞
Fs(ω) sin(ωx) dω

where Fc and Fs are the coefficients of Sines and Cosines respectively. Second, by Riemann sum
approximation, the integral can be approximated by the infinite sum such that:

f(x) ≈
N∑

n=1

[Fc(ωn) cos(ωnx) + Fs(ωn) sin(ωnx)] ≡ W2(Wavelet(W1x))

where W1 and W2 are the weights of N ’s first and second hidden layer. As W1 and W2 are infinite-
width, we can divide the piecewise summation into infinitely small intervals, making the approxi-
mation arbitrarily close to the true integral. Hence, N is a universal approximator for any given f .
In practice, most PDE solutions contain only a finite number of major frequencies. Using a neural
network with finite parameters would also lead to proper approximations of the true solutions.

Although Wavelet activation function is primarily employed by PINNsFormer to improve PINNs
in our work, it may have potential applications in other deep-learning tasks. Similar to ReLU, σ(·),
and Tanh activations, which all turn infinite-width two-hidden-layer neural networks into universal
approximators (Cybenko, 1989; Hornik, 1991; Glorot et al., 2011), we anticipate that Wavelet can
demonstrate its effectiveness in other applications beyond the scope of this work.

3.4 LEARNING SCHEME

While conventional PINNs focus on point-to-point predictions, adapting PINNs to handle pseudo-
sequential inputs has not been explored. In PINNsFormer, each generated point in the sequence, i.e.,
[xi, ti+j∆t], is mapped to the corresponding approximation, i.e., û(xi, ti+j∆t) for any j ∈ N, j <
k. This approach allows us to compute the nth-order gradients with respect to x or t independently
for any valid n. For instance, for any given input pseudo sequence {[xi, ti], [xi, ti+∆t], . . . , [xi, ti+
(k− 1)∆t]}, and the corresponding approximations {û(xi, ti), û(xi, ti +∆t), . . . , û(xi, ti + (k−
1)∆t)}, we can compute the first-order derivatives w.r.t. x and t separately as follows:

∂{û(xi, ti + j∆t)}k−1
j=0

∂{ti + j∆t}k−1
j=0

= {∂û(xi, ti)

∂ti
,
∂û(xi, ti +∆t)

∂(ti +∆t)
, . . . ,

∂û(xi, ti + (k − 1)∆t)

∂(ti + (k − 1)∆t)
}

∂{û(xi, ti + j∆t)}k−1
j=0

∂xi
= {∂û(xi, ti)

∂xi
,
∂û(xi, ti +∆t)

∂xi
, . . . ,

∂û(xi, ti + (k − 1)∆t)

∂xi
}

(5)
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This scheme for calculating the gradients of sequential approximations with respect to sequential
inputs can be easily extended to higher-order derivatives and is applicable to residual, boundary,
and initial points. However, unlike the general PINNs optimization objective in Equation 2, which
combines initial and boundary condition objectives, PINNsFormer distinguishes between the two
and applies different regularization schemes to initial and boundary conditions through its learning
scheme. For residual and boundary points, all sequential outputs can be regularized using the PINNs
loss. This is because all generated pseudo-timesteps are within the same domain as their original
inputs. For example, if [xi, ti] is sampled from the boundary, then [xi, ti + j∆t] also lies on the
boundary for any j ∈ N+. In contrast, for initial points, only the t = 0 condition is regularized,
corresponding to the first element of the sequential outputs. This is because only the first element of
the pseudo-sequence exactly matches the initial condition at t = 0. All other generated time steps
have t = j∆t for any j ∈ N+, which fall outside the initial conditions.

By these considerations, we adapt the PINNs loss to the sequential version, as described below:

Lres =
1

kNres

Nres∑
i=1

k−1∑
j=0

∥D[û(xi, ti + j∆t)]− f(xi, ti + j∆t)∥2

Lbc =
1

kNbc

Nbc∑
i=1

k−1∑
j=0

∥B[û(xi, ti + j∆t)]− g(xi, ti + j∆t)∥2

Lic =
1

Nic

Nbc∑
i=1

∥I[û(xi, 0)]− h(xi, 0)∥2

LPINNsFormer = λresLres + λicLic + λbcLbc

(6)

where Nres = Nr refers to the residual points as in Equation 2, Nbc, Nic represent the number of
boundary and initial points, respectively, with Nbc +Nic = Nb. λres, λbc, and λic are regularization
weights that balance the importance of the loss terms in PINNsFormer, similar to the PINNs loss.

During training, PINNsFormer forwards all residual, boundary, and initial points to obtain their cor-
responding sequential approximations. It then optimizes the modified PINNs loss LPINNsFormer in
Equation 6 using gradient-based optimization algorithms such as L-BFGS or Adam, updating the
model parameters until convergence. In the testing phase, PINNsFormer forwards any arbitrary pair
[x, t] to observe the sequential approximations, where the first element of the sequential approxima-
tion corresponds exactly to the desired value of û(x, t).

3.5 LOSS LANDSCAPE ANALYSIS

Figure 3: Visualization of the loss landscape for PINNs
(left) and PINNsFormer (right) on a logarithmic scale.
The loss landscape of PINNsFormer is significantly
smoother than conventional PINNs.

While achieving theoretical conver-
gence or establishing generalization
bounds for Transformer-based mod-
els can be challenging, an alterna-
tive approach to assess optimization
trajectory is through visualization of
the loss landscape. This approach
has been employed in the analysis of
both Transformers and PINNs (Krish-
napriyan et al., 2021; Yao et al., 2020;
Park & Kim, 2022). The loss landscape
is constructed by perturbing the trained
model along the directions of the first

two dominant Hessian eigenvectors. This technique is more informative than random parameter
perturbations. Generally, a smoother loss landscape with fewer local minima indicates an easier
convergence to the global minimum. We visualize the loss landscape for both PINNs and PINNs-
Former. The visualizations are presented in Figure 5.

The visualizations clearly reveal that PINNs exhibit a more complicated loss landscape than PINNs-
Former. To be specific, we estimate the Lipschitz constant for both loss landscapes. We find that
LPINNs = 776.16, which is significantly larger than LPINNsFormer = 32.79. Furthermore, the loss
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landscape of PINNs exhibits several sharp cones near its optimal point, indicating the presence of
multiple local minima in close proximity to the convergence point (zero perturbation). The rugged
loss landscape and multiple local minima of conventional PINNs suggest that optimizing the objec-
tive described in Equation 6 for PINNsFormer offers an easier path to reach the global minimum.
This implies that PINNsFormer has advantages in avoiding the failure modes associated with PINNs.
The analysis is further validated by empirical experiments, as shown in the following section.

4 EXPERIMENTS

4.1 SETUP

Goal. Our empirical evaluations aim to demonstrate three key advantages of PINNsFormer. First,
we show that PINNsFormer improves generalization abilities and mitigates failure modes compared
to PINNs and variant architectures. Second, we illustrate the flexibility of PINNsFormer in in-
corporating various learning schemes, resulting in superior performance. Third, we provide ev-
idence of PINNsFormer’s faster convergence and improved generalization capabilities in solving
high-dimensional PDEs, which can be challenging for PINNs and their variants.

Experiment Setup. Our empirical evaluations rely on four types of PDEs: convection, 1D-reaction,
1D-wave, and Navier–Stokes PDEs, which follow the established setups of preliminary studies for
fair comparisons (Raissi et al., 2019; Krishnapriyan et al., 2021; Wang et al., 2022a). We include
PINNs, QRes (Bu & Karpatne, 2021), and First-Layer Sine (FLS) (Wong et al., 2022) as baselines.
For convection, 1D-reaction, and 1D-wave PDEs, we uniformly sampled Nic = Nbc = 101 initial
and boundary points, as well as a uniform grid of 101 × 101 mesh points for the residual domain,
resulting in total Nres = 10201 points. In the case of training PINNsFormer, we reduce the collo-
cation points, with Nic = Nbc = 51 initial and boundary points and a 51 × 51 mesh for residual
points. The reduction in fewer training samples serves two purposes: it enhances training efficiency
and allows us to demonstrate the generalization capabilities of PINNsFormer with limited training
data. For testing, we employed a 101×101 mesh within the residual domain. For the Navier–Stokes
PDE, we sample 2500 points from the 3D mesh within the residual domain for training purposes.
The evaluation was performed by testing the predicted pressure at the final time step t = 20.0.

Evaluation. For all baselines and PINNsformer, we maintain approximately close numbers of pa-
rameters across all models to highlight the advantages of PINNsFormer from its ability to capture
temporal dependencies rather than relying solely on model overparameterization. We train all mod-
els using the L-BFGS optimizer with Strong Wolfe linear search for 1000 iterations. For simplicity,
we set λres = λic = λbc = 1 for the optimization objective in Equation 6. Detailed hyperparam-
eters are provided in Appendix A. We also include an ablation study on activation functions and a
hyperparameter sensitivity study on the choice of {k,∆t} in Appendix C.

In terms of evaluation metrics, we adopted commonly used metrics in related works (Krishnapriyan
et al., 2021; Raissi et al., 2019; McClenny & Braga-Neto, 2020), including the relative Mean Abso-
lute Error (rMAE or relative ℓ1 error) and the relative Root Mean Square Error (rRMSE or relative
ℓ2 error). The detailed formulations of the metrics are provided in Appendix A.

Reproducibility. All models are implemented in PyTorch (Paszke et al., 2019), and are trained
separately on single NVIDIA Tesla V100 GPU. All code and demos are included and reproducible
at: https://github.com/AdityaLab/pinnsformer.

4.2 MITIGATING FAILURE MODES OF PINNS

Our primary evaluation focuses on demonstrating the superior generalization ability of PINNs-
Former in comparison to PINNs, particularly on PDEs that are known to challenge PINNs’ gen-
eralization capabilities. We focus on solving two distinct types of PDEs: the convection equation
and the 1D-reaction equation. These equations pose significant challenges for conventional MLP-
based PINNs, often resulting in what is referred to as ”PINNs failure modes” (Mojgani et al., 2022;
Daw et al., 2022; Krishnapriyan et al., 2021). In these failure modes, optimization gets stuck in local
minima, leading to overly smooth approximations that deviate from the true solutions.
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The objective of our evaluation is to showcase the enhanced generalization capabilities of PINNs-
Former when compared to standard PINNs and their variations, specifically in addressing PINNs’
failure modes. The evaluation results are summarized in Table 1, with detailed PDE formulations
provided in Appendix B. We showcase the prediction and absolute error plots of PINNs and PINNs-
Former on convection equation in Figure 4, all prediction plots available in Appendix C.

Model Convection 1D-Reaction
Loss rMAE rRMSE Loss rMAE rRMSE

PINNs 0.016 0.778 0.840 0.199 0.982 0.981
QRes 0.015 0.746 0.816 0.199 0.979 0.977
FLS 0.012 0.674 0.771 0.199 0.984 0.985

PINNsFormer 3.7e-5 0.023 0.027 3.0e-6 0.015 0.030

Table 1: Results for solving convection and 1D-reaction equations. PINNsFormer consistently out-
performs all baseline methods in terms of training loss, rMAE, and rRMSE.

The evaluation results demonstrate significant outperformance of PINNsFormer over all baselines
for both scenarios. PINNsFormer achieves the lowest training loss and test errors, distinguish-
ing PINNsFormer as the only approach capable of mitigating the failure modes. In contrast, all
other baseline methods remain stuck at global minima and fail to optimize the objective loss ef-
fectively. These results show the clear advantages of PINNsFormer in terms of generalization
ability and approximation accuracy when compared to conventional PINNs and existing variants.

Figure 4: Prediction (left) and absolute error
(right) of PINNs (up) and PINNsFormer (bottom)
on convection equation. PINNsFormer shows suc-
cess in mitigating the failure mode than PINNs.

The additional concern for PINNsFormer is
its computational and memory overheads rel-
ative to PINNs. While MLP-based PINNs
are known for efficiency, PINNsFormer, with
Transformer-based architecture in handling se-
quential data, naturally incurs higher compu-
tational and memory costs. Nonetheless, our
empirical evaluation indicates that the overhead
is tolerable, benefitting from the reliance on
only linear layers, avoiding complicated oper-
ators such as convolution or recurrent layers.
For instance, when setting the pseudo-sequence
length k = 5, we observe an approximate 2.92x
computational cost and a 2.15x memory usage
(detailed in Appendix A). These overheads are
reasonable in exchange for the substantial per-
formance improvements by PINNsFormer.

4.3 FLEXIBILITY IN INCORPORATING VARIANT LEARNING SCHEMES

Model 1D-Wave
Loss rMAE rRMSE

PINNs 1.93e-2 0.326 0.335
PINNsFormer 1.38e-2 0.270 0.283
PINNs + NTK 6.34e-3 0.140 0.149

PINNsFormer + NTK 4.21e-3 0.054 0.058

Table 2: Results for solving the 1D-wave equation, in-
corporating the NTK method. PINNsFormer combined
with NTK outperforms all other methods on all metrics.

While PINNs and their various archi-
tectural adaptations may encounter chal-
lenges for certain scenarios, prior re-
search has explored sophisticated opti-
mization schemes to mitigate these is-
sues, including learning rate anneal-
ing (Wang et al., 2021), augmented La-
grangian methods (Lu et al., 2021), and
neural tangent kernel approaches (Wang
et al., 2022a). These modified PINNs
have shown significant improvement of
PINNs under certain scenarios. Notably, when these optimization strategies are applied to PINNs-
Former, they can be easily incorporated to achieve further performance improvements. For instance,
the Neural Tangent Kernel (NTK) method to PINNs has shown success in solving the 1D-wave
equation. As such, we demonstrate that when combining NTK with PINNsFormer, we can achieve
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further outperformance in approximation accuracy. Detailed results are presented in Table 2, and
comprehensive PDE formulations are available in Appendix B with prediction plots in Appendix C.

Our evaluation results show both the flexibility and effectiveness of incorporating PINNsFormer
with the NTK method. In particular, we observe a sequence of performance improvements,
from standard PINNs to PINNsFormer and from PINNs+NTK to PINNsFormer+NTK. Essentially,
PINNsFormer explores a variant architecture of PINNs, while many learning schemes are designed
from an optimization perspective and are agnostic to neural network architectures. This inherent
flexibility allows for versatile combinations of PINNsFormer with various learning schemes, offer-
ing practical and customizable solutions for accurate solutions in real-world applications.

4.4 GENERALIZATION ON HIGH-DIMENSIONAL PDES

Figure 5: Training loss vs. Itera-
tions of PINNs and PINNsFormer
on the Navier-Stokes equation.

In the previous sections, we demonstrated the clear benefits of
PINNsFormer in generalizing the solutions for PINNs failure
modes. However, those PDEs often have simple analytical so-
lutions. In practical physics systems, higher-dimensional and
more complex PDEs need to be solved. Therefore, it’s impor-
tant to evaluate the generalization ability of PINNsFormer on
such high-dimensional PDEs, especially when PINNsFormer
is equipped with advanced mechanisms like self-attention.

We evaluate the performance of PINNsFormer compared to
PINNs on Navier-Stokes PDE based on the established setups Raissi et al. (2019). The training loss
is shown in Figure 5, and the results are shown in Table 3. The detailed formulations of the 2D
Navier-Stokes equation can be found in Appendix B, and the predictions are plotted in Appendix C.

Model Navier-Stokes
Loss rMAE rRMSE

PINNs 6.72e-5 13.08 9.08
QRes 2.24e-4 6.41 4.45
FLS 9.54e-6 3.98 2.77

PINNsFormer 6.66e-6 0.384 0.280

Table 3: Results for solving Navier-Stokes equa-
tion, PINNsFormer outperforms all baselines on
all metrics.

The evaluation results demonstrate clear advan-
tages of PINNsFormer over PINNs on high-
dimensional PDEs. Firstly, PINNsFormer out-
performs PINNs and their MLP-variants in
terms of both training loss and validation
errors. Firstly, PINNsFormer exhibits sig-
nificantly faster convergence during training,
which compensates for the higher computa-
tional cost per iteration. Secondly, while PINNs
and their MLP-variants predict the pressure
with good shapes, they exhibit increasing mag-
nitude discrepancies as time increases. In contrast, PINNsFormer consistently aligns both the shape
and magnitude of predicted pressures across various time intervals. This consistency is attributed to
PINNsFormer’s ability to learn temporal dependencies through Transformer-based model architec-
ture and self-attention mechanism.

5 CONCLUSION

In this paper, we introduced PINNsFormer, a novel Transformer-based framework of PINNs, aimed
at capturing temporal dependencies when approximating solutions to PDEs. We introduced the
Pseudo Sequence Generator, a mechanism that translates vectorized inputs into pseudo time se-
quences and incorporated a modified Encoder-Decoder layer along with a novel Wavelet ac-
tivation. Empirical evaluations demonstrate that PINNsFormer consistently outperforms conven-
tional PINNs across various scenarios, including handling PINNs’ failure modes, addressing high-
dimensional PDEs, and integrating with different learning schemes for PINNs. Furthermore, PINNs-
Former retains computational simplicity, making it a practical choice for real-world applications.

Beyond PINNsFormer, Wavelet activation function can hold promises for the broader machine
learning community. We provided a sketch proof demonstrating Wavelet’s ability to approxi-
mate arbitrary target solutions using a two-hidden-layer infinite-width neural network, leveraging
the Fourier decomposition of these solutions. We encourage further exploration, both theoretically
and empirically, of the Wavelet activation function’s potential. Its applicability extends beyond
PINNs and can be leveraged in various architectures and applications.
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A APPENDIX A: MODEL HYPERPARAMETERS

Model Hyperparameters. We provide a detailed set of hyperparameters used to obtain the experi-
ment results, shown in Table 7.

Model Hyperparameters Value Model Parameters

PINNs & FLS
hidden layer 4

527k
hidden size 512

QRes
hidden layer 4

397k
hidden size 256

PINNsFormer

k 5

454k

∆t 1e-3, 1e-4
# of encoder 1
# of decoder 1

embedding size 32
head 2

hidden size 512

Table 4: Hyperparameters for Main Results

Training Overhead. We compare the training overhead of PINNsFormer over PINNs, as PINNs
are known as an efficient framework while Transformer-based models are known for being com-
putationally costly. The comparison relies on solving the Convection PDEs, which are detailed in
Table 5. Here, we vary the hyperparameter of pseudo-sequence length k for validation purposes. In
practice, we set k = 5 for all the empirical experiments in this paper.

Model
Training Time

(sec/epoch)
Computational

Overhead
GPU Memory

(MiB)
Memory
Overhead

PINNs 0.80 / 1311 /

PINsFormer
k=3 2.10 2.62x 2207 1.68x
k=5 2.34 2.92x 2827 2.15x
k=10 3.10 3.87x 4803 3.66x

Table 5: Overhead of PINNsFormer than PINNs in varying pseudo-sequence length. Both compu-
tational and memory overhead are tolerable and grow approximately linearly as k increases

Evaluation Metrics. We present the detailed formula of rMAE and rRMSE as the following:

rMAE =

∑N
n=1 |û(xn, tn)− u(xn, tn)|∑Nres

n=1 |u(xn, tn)|

rRMSE =

√√√√∑N
n=1 |û(xn, tn)− u(xn, tn)|2∑N

n=1 |u(xn, tn)|2

(7)

where N is the number of testing points, û is the neural network approximation, and u is the ground
truth.

B APPENDIX B: PDES SETUPS

We provide detailed PDE setups for convection, reaction-diffusion, and 1D-reaction equations.
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Convection PDE. The one-dimensional convection problem is a hyperbolic PDE that is commonly
used to model transport phenomena. The system has the formulation with periodic boundary condi-
tions as follows:

∂u

∂t
+ β

∂u

∂x
= 0, ∀x ∈ [0, 2π], t ∈ [0, 1]

IC:u(x, 0) = sin(x), BC:u(0, t) = u(2π, t)
(8)

where β is the convection coefficient. As β increases, the frequency of its solution goes higher, and
it becomes harder for PINNs to approximate. Here, we set β = 50.

1D-Reaction PDE. The one-dimensional reaction problem is a hyperbolic PDE that is commonly
used to model chemical reactions. The system has the formulation with periodic boundary condi-
tions as follows:

∂u

∂t
− ρu(1− u) = 0, ∀x ∈ [0, 2π], t ∈ [0, 1]

IC:u(x, 0) = exp(− (x− π)2

2(π/4)2
), BC:u(0, t) = u(2π, t)

(9)

where ρ is the reaction coefficient. Here, we set ρ = 5. The equation has a simple analytical
solution:

uanalytical =
h(x) exp(ρt)

h(x) exp(ρt) + 1− h(x)
(10)

where h(x) is the function of the initial condition.

1D-Wave PDE. The 1D-Wave equation is a hyperbolic PDE that is used to describe the propagation
of waves in one spatial dimension. It is often used in physics and engineering to model various wave
phenomena, such as sound waves, seismic waves, and electromagnetic waves. The system has the
formulation with periodic boundary conditions as follows:

∂2u

∂t2
− β

∂2u

∂x2
= 0 ∀x ∈ [0, 1], t ∈ [0, 1]

IC:u(x, 0) = sin(πx) +
1

2
sin(βπx),

∂u(x, 0)

∂t
= 0

BC:u(0, t) = u(1, t) = 0

(11)

where β is the wave speed. Here, we are specifying β = 3.The equation has a simple analytical
solution:

u(x, t) = sin(πx) cos(2πt) +
1

2
sin(βπx) cos(2βπt) (12)

2D Navier-Stokes PDE. The 2D Navier-Stokes equation is a parabolic PDE that consists of a pair
of partial differential equations that describe the behavior of incompressible fluid flow in two-
dimensional space. They are widely used in fluid dynamics to model the motion of fluids, such
as air and water, in various engineering and scientific applications. The system has the formulation
as follows:

∂u

∂t
+ λ1(u

∂u

∂x
+ v

∂u

∂y
) = −∂p

∂x
+ λ2(

∂2u

∂x2
+

∂2u

∂v2
)

∂v

∂t
+ λ1(u

∂v

∂x
+ v

∂v

∂y
) = −∂p

∂y
+ λ2(

∂2u

∂x2
+

∂2u

∂v2
)

(13)

where u(t, x, y) and v(t, x, y) are the x-component and y-component of the velocity field separately,
and p(t, x, y) is the pressure. Here, we set λ1 = 1 and λ2 = 0.01. The system does not have an
explicit analytical solution, while the simulated solution is given by Raissi et al. (2019).

C APPENDIX C: ADDITIONAL RESULTS

Ablation Study on Activation Functions. To investigate the effectiveness of the Wavelet ac-
tivation function in PINNsFormer, we compare the performance differences using Wavelet than
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ReLU, Sigmoid, and Sin activation functions over convection and 1D-reaction problems. In par-
ticular, we study the effects of using the same activation function in both the feed-forward layer
and encoder/decoder layer (marked as ReLU, etc.) and changing the activation function of the en-
coder/decoder layer to LayerNorm (as vanilla Transformer does, marked as ReLU+LN, etc.). The
evaluation results are shown in Table 6.

Activation Convection 1D-Reaction
Loss rMAE rRMSE Loss rMAE rRMSE

ReLU 0.5256 1.001 1.001 0.2083 0.994 0.996
Sigmoid 0.1618 1.112 1.223 0.1998 0.991 0.993

Sin 0.3159 1.074 1.141 4.9e-6 0.017 0.032
ReLU+LN 0.7818 1.001 1.002 0.2028 0.992 0.993

Sigmoid+LN 0.0549 0.941 0.967 0.2063 0.992 0.990
Sin+LN 0.3219 1.083 1.156 4.7e-6 0.016 0.033
Wavelet 3.7e-5 0.023 0.027 3.0e-6 0.015 0.030

Wavelet+LN NaN NaN NaN 3.9e-6 0.018 0.037

Table 6: Results for solving convection and 1D-reaction equations using Transformer architecture
with different activation functions. PINNsFormer (with Wavelet activation) consistently outperforms
all other activation functions in terms of training loss, rMAE, and rRMSE

The ablation study results show two major conclusions: First, using wavelet activation shows con-
stantly better performance than ReLU, Sigmoid, and Sin activations. In particular, Sin activation
may show effectiveness in only certain cases, while Wavelet can generalize all cases well. Sec-
ond, Introducing LayerNorm activation to the encoder/decoder does not significantly contribute to
performance improvement. In contrast, LayerNorm activation may cause convergence issues when
coupling with the Wavelet activation function for certain situations.

Hyperparameter Sensitivity Study. To investigate the possible difficulties in picking hyperparam-
eters k and ∆, we compared the performance differences with a mesh choice of these two hyperpa-
rameters over the 1d-reaction problem. The evaluation results (relative-ℓ2 error, with failure modes
bolded) are shown in Table 7.

∆t k=3 k=5 k=7 k=10
1e-1 0.044 0.514 0.743 0.731
1e-2 0.029 0.035 0.045 0.049
1e-3 0.037 0.037 0.024 0.035
1e-4 0.997 0.030 0.029 0.046
1e-5 0.977 0.026 0.977 0.021

Table 7: Results for solving 1D-reaction equation with various combinations of ∆t and k. PINNs-
Former shows the flexibility of a wide choice of hyperparameters on certain problems.

The study on hyperparameter sensitivity of ∆t and k exhibits three intuitions: First, given a mesh
choice of k and ∆t, PINNsFormer is not sensitive to a wide range of the two hyperparameters.
For instance, PINNsFormer successfully mitigates the failure modes for any combinations of k ∈
[1e − 2, 1e − 3, 1e − 4] and ∆t ∈ [3, 5, 7]. Second, the choice of ∆t should not be either too large
(i.e., 1e-1) or too small (i.e., 1e-5). Intuitively, either a too-large or a too-small ∆t degrades the
temporal dependencies between discrete time steps. Third, increasing the pseudo-sequence length
can help mitigate PINNs failure modes (i.e., k = 3 → 5 when ∆t = 1e− 4). However, once PINNs
successfully mitigate the failure mode, the benefit of further increasing k is marginal.

Result Visualizations. We here present the plots of ground truth solutions, neural network pre-
dictions, and absolute errors for all evaluations included in the experimental section. The plots on
convection, 1D-reaction, 1D-wave, and 2D Navier-Stokes equations are shown in Figure separately.
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(a) ground truth solution
for convection equation

(b) PINNs prediction (c) FLS prediction (d) QRes prediction (e) PINNsFormer predic-
tion

(f) PINNs error (g) FLS error (h) QRes error (i) PINNsFormer error

Figure 6: Ground truth solution, predictions, and absolute errors (up to bottom) of PINNs, FLS,
QRes, PINNsFormer (left to right) over convection equation.

(a) ground truth solution
for 1D-reaction equation

(b) PINNs prediction (c) FLS prediction (d) QRes prediction (e) PINNsFormer predic-
tion

(f) PINNs error (g) FLS error (h) QRes error (i) PINNsFormer error

Figure 7: Ground truth solution, predictions, and absolute errors (up to bottom) of PINNs, FLS,
QRes, PINNsFormer (left to right) over 1D-reaction equation.
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(a) ground truth solution
for 1D-wave equation

(b) PINNs prediction (c) PINNsFormer predic-
tion

(d) PINNs+NTK predic-
tion

(e) PINNsFormer+NTK
prediction

(f) PINNs error (g) PINNsFormer error (h) PINNs+NTK error (i) PINNsFormer+NTK er-
ror

Figure 8: Ground truth solution, predictions, and absolute errors (up to bottom) of PINNs, PINNs-
Former, PINNs+NTK, PINNsFormer+NTK (left to right) over 1D-reaction equation.

(a) true solution for 2D
Navier-Stoke equation

(b) PINNs prediction (c) QRes prediction (d) FLS prediction (e) PINNsFormer predic-
tion

(f) PINNs error (g) QRes error (h) FLS error (i) PINNsFormer error

Figure 9: Ground truth solution, predictions, and absolute errors (up to bottom) of PINNs and
PINNsFormer (left to right) over 2D Navier-Stokes equation.
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