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ABSTRACT

In this study, we investigate the problem of dynamic multi-product selection and
pricing by introducing a novel framework based on a censored multinomial logit
(C-MNL) choice model. In this model, sellers present a set of products with
prices, and buyers filter out products priced above their valuation, purchasing at
most one product from the remaining options based on their preferences. The
goal is to maximize seller revenue by dynamically adjusting product offerings and
prices, while learning both product valuations and buyer preferences through pur-
chase feedback. To achieve this, we propose a Lower Confidence Bound (LCB)
pricing strategy. By combining this pricing strategy with either an Upper Confi-
dence Bound (UCB) or Thompson Sampling (TS) product selection approach, our
algorithms achieve regret bounds of Õ(d

3
2

√
T/κ) and Õ(d2

√
T/κ), respectively.

Finally, we demonstrate the performance of our methods through simulations.

1 INTRODUCTION

The rapid growth of online markets has underscored the critical importance of developing strategies
for dynamic pricing to maximize revenue. In these markets, sellers have the flexibility to adjust the
prices of products sequentially in response to buyer behavior. However, optimizing prices is not a
trivial task. To effectively set prices, sellers must learn the underlying demand parameters, as buyers
make purchasing decisions based on their preferences and willingness to pay, as modeled by demand
functions (Bertsimas & Perakis, 2006; Cheung et al., 2017; den Boer & Zwart, 2015; Javanmard &
Nazerzadeh, 2019; Cohen et al., 2020; Javanmard & Nazerzadeh, 2019; Luo et al., 2022; Fan et al.,
2024; Shah et al., 2019; Xu & Wang, 2021; Choi et al., 2023). While the prior work has focused on
dynamically adjusting prices for single products, real-world applications such as e-commerce, hotel
reservations, and air travel often involve multiple products, further complicating the pricing strategy
(Den Boer, 2014; Ferreira et al., 2018; Javanmard et al., 2020; Goyal & Perivier, 2021).

In practice, sellers must do more than just set prices—they also need to determine which products to
offer. Buyers purcahse a product based on their preferences for available items, and this purchasing
process is influenced by the price. Higher prices reduce the likelihood of a purchase, as buyers filter
out products priced above their perceived value. This dynamic interplay between pricing and buyer
preferences is a fundamental aspect of real-world online markets, making it essential to model both
product selection and pricing together.

In this work, we tackle the problem of dynamic multi-product pricing and selection by developing a
novel framework that captures the censored behavior of buyers—where buyers consider only those
products priced below their valuation and purchase one product from the remaining options. To
model this behavior, we extend the widely used multinomial logit (MNL) choice model (Agrawal
et al., 2017a;b; Oh & Iyengar, 2021; 2019) to a censored MNL (C-MNL) model. This model al-
lows us to capture buyer behavior more accurately in scenarios where product prices impact buyer
choices. In our framework, sellers dynamically learn both the product valuations and buyer prefer-
ences, all while facing the challenge of not receiving feedback on which products buyers filtered out
due to high prices, reflecting real-world conditions.

To address the inherent uncertainty in buyer behavior, we propose a novel Lower Confidence Bound
(LCB) pricing strategy, which sets lower initial prices to encourage exploration and avoid price
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censorship. In combination with Upper Confidence Bound (UCB) or Thompson Sampling (TS)
strategies for product assortment selection, we provide algorithms that not only maximize revenue
but also efficiently balance exploration and exploitation in the face of censored feedback. Through
theoretical analysis, we derive regret bounds for our algorithms, and we validate their performance
using synthetic datasets.

Summary of Our Contributions.

• We propose a novel framework for dynamic multi-product selection and pricing that in-
corporates a censored version of the multinomial logit (C-MNL) model. In this model,
buyers filter out overpriced products and choose from the remaining options based on their
preferences.

• We introduce a Lower Confidence Bound (LCB)-based pricing strategy to promote explo-
ration by setting lower prices, avoiding buyer censorship, and facilitating the learning of
buyer preferences and product valuations.

• We develop two algorithms that combine LCB pricing with Upper Confidence Bound
(UCB) and Thompson Sampling (TS) for assortment selection, achieving regret bounds
of Õ(d

3
2

√
T/κ) and Õ(d2

√
T/κ), respectively.

• We provide extensive theoretical analysis, including regret bounds, and validate the effec-
tiveness of our algorithms using synthetic datasets, demonstrating their superiority over
existing approaches.

2 RELATED WORK

Dynamic Pricing and Learning Dynamic pricing with learning demand functions or market val-
ues has been widely studied (Bertsimas & Perakis, 2006; Cheung et al., 2017; den Boer & Zwart,
2015; Javanmard & Nazerzadeh, 2019; Cohen et al., 2020; Luo et al., 2022; Xu & Wang, 2021; Fan
et al., 2024; Shah et al., 2019; Choi et al., 2023; Den Boer, 2014; Ferreira et al., 2018; Javanmard
et al., 2020; Goyal & Perivier, 2021). However, previous work typically assumes that products are
introduced arbitrarily or stochastically, meaning the products themselves are given rather than be-
ing part of the decision-making process. In contrast, our study incorporates a preference model for
dynamic selection and pricing, where the agent must determine the assortment of products to offer
with prices.

We note that Javanmard et al. (2020); Goyal & Perivier (2021); Erginbas et al. (2023) considered
MNL structure for dynamic pricing, which was widely considered in the assortment bandits lit-
erature (Agrawal et al., 2017a;b; Oh & Iyengar, 2021; 2019). Based on the MNL structure, the
previous pricing strategies have focused solely on optimizing revenue function. Notably, Javanmard
et al. (2020); Perivier & Goyal (2022) examined scenarios where the assortment is predetermined
rather than chosen by the agent under the dynamic pricing problems, and Erginbas et al. (2023) di-
rectly extended Goyal & Perivier (2021) by considering assortment selection under the same MNL
structure. Moreover, Javanmard et al. (2020) consider i.i.d feature vectors fixed over time.

In our study, we utilize the MNL model with arbitrary features at each time to capture buyer pref-
erences. Inspired by real-world scenarios, we further incorporate activation functions to address the
non-continuous nature of buyer behavior, specifically their acceptable price thresholds. The pres-
ence of activation functions in our MNL model prevents a direct conversion to the standard MNL
structure, distinguishing our work from that of Javanmard et al. (2020); Goyal & Perivier (2021);
Erginbas et al. (2023). Furthermore, we address a multi-product setting where the agent not only
prices but also selects products at each time. As a result, we must develop a novel strategy for both
pricing and assortment selection to address this challenge.

Notably, while activation functions for buyer demand have been considered in Javanmard & Naz-
erzadeh (2019); Cohen et al. (2020); Luo et al. (2022); Xu & Wang (2021); Fan et al. (2024); Shah
et al. (2019); Choi et al. (2023), these studies focused on single-product offered by the environment
with single binary feedback at each time indicating whether the product was purchased or not. In
contrast, we examine a multi-product setting where the agent must both select and price multiple
products while receiving preference feedback, a scenario commonly observed in real-world online
markets.
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Figure 1: The illustration describes the process involved in making a purchase.

3 PROBLEM STATEMENT

There are N arms (products) in the market. As illustrated in Figure 1, at each time t ∈ [T ], (a) an
agent (seller) selects a set of arms St ⊆ [N ], referred to as ‘assortment,’ to a user (buyer) with a size
constraint |St| ≤ K(≤ N). At the same time, the agent prices each arm i ∈ St as pi,t ∈ R≥0 and
suggests the assortment with the corresponding prices to the user. (b) Then, based on the valuation
vi,t and price pi,t for each arm i ∈ St, the user filters out any arms i ∈ St where the price exceeds
their valuation, i.e., vi,t < pi,t. (c) Finally, the user purchases at most one arm from the remaining
options based on preference. In what follows, we describe our models for the user behavior and the
revenue of the agent in more detail.

There are latent parameters θv and θα ∈ Rd (unknown to the agent) for valuation and price sensitiv-
ity, respectively. At each time t, each arm i ∈ [N ] has known feature information xi,t and wi,t ∈ Rd

for its valuation and price sensitivity, respectively. Then the (latent) valuation of each arm i for the
user is defined as vi,t := x⊤

i,tθv ≥ 0. We also consider that there are (latent) price sensitivity parame-
ters as αi,t := w⊤

i,tθα ≥ 0. In this work, we propose a modification of the conventional MNL choice
model with threshold-based activation functions, which we name as the censored multinomial logit
(C-MNL) choice model.

Definition 1 (Censored multinomial logit choice model) Let set of prices pt := {pi,t}i∈St
. Then,

given St and pt, the user purchases an arm i ∈ St by paying pi,t according to the probability defined
as follows:

Pt(i|St, pt) :=
exp(vi,t − αi,tpi,t)1(pi,t ≤ vi,t)

1 +
∑

j∈St
exp(vj,t − αj,tpj,t)1(pj,t ≤ vj,t)

. (1)

From the activation function in the above definition, the user considers purchasing only the arms
i ∈ St satisfying that its price is lower than the user’s valuation (or willingness to pay) as pi,t ≤ vi,t.
We also note that a higher price for an arm decreases the user’s preference for it, while a higher
valuation indicates a stronger preference. For notation simplicity, we use θ∗ := [θv; θα] ∈ R2d and
zi,t(p) := [xi,t;−pwi,t] ∈ R2d. Then the C-MNL of (1) can be represented as

Pt(i|St, pt) =
exp(x⊤

i,tθv − w⊤
i,tθαpi,t)1(pi,t ≤ x⊤

i,tθv)

1 +
∑

j∈St
exp(x⊤

j,tθv − w⊤
j,tθαpj,t)1(pj,t ≤ x⊤

i,tθv)

=
exp(zi,t(pi,t)

⊤θ∗)1(pi,t ≤ x⊤
i,tθv)

1 +
∑

j∈St
exp(zj,t(pj,t)⊤θ∗)1(pj,t ≤ x⊤

j,tθv)
.

As in the previous literature for MNL, it is allowed for each user to choose an outside option (i0),
or not to choose any, as Pt(i0|St, pt) =

1
1+

∑
j∈St

exp(zj,t(pj,t)⊤θ∗)1(pj,t≤x⊤
j,tθv)

. Importantly, at each
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time t, the agent only observes feedback of chosen arm it (at most one) but does not observe feed-
back on which arms are censored from the activation function based on the latent user’s valuation.
This makes it challenging to learn the valuation from the preference feedback, and the naive pricing
strategies for maximizing revenue (Javanmard et al., 2020; Goyal & Perivier, 2021; Erginbas et al.,
2023) do not work properly for our model.

The expected revenue from chosen arm i ∈ St is represented as Ri,t(St) = pi,tPt(i|St, pt). Then
the overall expected revenue for the agent is formulated as

Rt(St, pt) =
∑
i∈St

Ri,t(St) =
∑
i∈St

pi,t exp(zi,t(pi,t)
⊤θ∗)1(pi,t ≤ x⊤

i,tθv)

1 +
∑

j∈St
exp(zj,t(pj,t)⊤θ∗)1(pj,t ≤ x⊤

j,tθv)
.

For notation simplicity, we use p = {pi}i∈[N ]. Then we define an oracle policy (with prior knowl-
edge of θ∗) regarding assortment and prices such that

(S∗
t , p

∗
t ) ∈ argmax

S⊆[N ],p∈RN
≥0

:|S|≤K,

Rt(S, p).

Then given St and pt for all t from a policy π, regret is defined as

Rπ(T ) =
∑
t∈[T ]

E [Rt(S
∗
t , p

∗
t )−Rt(St, pt)] .

The goal of this problem is to find a policy π that minimizes regret.

4 ALGORITHMS AND REGRET ANALYSES

4.1 UCB-BASED ASSORTMENT-SELECTION WITH LCB PRICING: UCBA-LCBP

Here we propose a UCB-based assortment-selection with LCB pricing algorithm (Algorithm 1) as
follows. We denote by Pt,θ(i|S, p) :=

exp(zi,t(pi)
⊤θ)

1+
∑

j∈S exp(zj,t(pj)⊤θ)
the choice probability without the

activation functions. Let the negative log-likelihood ft(θ) := −
∑

i∈St∪{i0} yi,t logPt,θ(i|St, pt)

where yi,t ∈ {0, 1} is observed preference feedback (1 denotes a choice, and 0 otherwise) and define
the gradient of the likelihood as

gt(θ) := ∇θft(θ) =
∑
i∈St

(Pt,θ(i|St, pt)− yi,t)zi,t(pi,t). (2)

We also define gram matrices from∇2
θf(θ) as follows:

Gt(θ) :=
∑
i∈St

Pt,θ(i|St, pt)zi,t(pi,t)zi,t(pi,t)
⊤ −

∑
i,j∈St

Pt,θ(i|St, pt)Pt,θ(j|St, pt)zi,t(pi,t)zj,t(pj,t)
⊤,

Gv,t(θ) :=
∑
i∈St

Pt,θ(i|St, pt)xi,tx
⊤
i,t −

∑
i,j∈St

Pt,θ(i|St, pt)Pt,θ(j|St, pt)xi,tx
⊤
j,t. (3)

Then we construct the estimator of θ̂t ∈ R2d for θ∗ from the online mirror descent with (2) and (3),
as studied by Zhang & Sugiyama (2024); Lee & Oh (2024), within the range of Θ = {θ ∈ R2d :
∥θ1:d∥2 ≤ 1 and ∥θd+1:2d∥2 ≤ 1}, which is described in Line 5.

Now we explain the details regarding the strategy for the decision of price and assortment. For
the price strategy, we construct the lower confidence bound (LCB) of the valuation of arms. Let
βτ = C1

√
dτ log(T ) log(K) where τ is the number of estimator updates for price, Ht = λI2d +∑t−1

s=1 Gs(θ̂s), and Hv,t = λId +
∑t−1

s=1 Gv,s(θ̂s) for some constant C1 > 0 and λ > 0. We use
θn:m for representing a vector consisting of elements from index n to m in θ ∈ R2d. Then we denote
the estimator regarding valuation by θ̂v,t := θ̂1:dt . Let tτ be the time step when τ -th update of the
estimation for price occurs and we use θ̂v,(τ) := θ̂v,tτ for the pricing strategy. Then with a constant
C > 1, for the time steps t corresponding to the τ -th update, we construct the lower confidence
bound (LCB) of the valuation of arm i ∈ [N ] as

vi,t := x⊤
i,tθ̂v,(τ) −

√
Cβτ∥xi,t∥H−1

v,t
.
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Algorithm 1 UCB-based Assortment-selection with LCB Pricing (UCBA-LCBP)
Input: λ, η, βτ , C > 1

Init: τ ← 1, t1 ← 1, θ̂v,(1) ← 0d
1 for t = 1, . . . , T do
2 H̃t ← λI2d +

∑t−2
s=1 Gs(θ̂s) + ηGt−1(θ̂t−1) with (3)

3 Ht ← λI2d +
∑t−1

s=1 Gs(θ̂s) with (3)
4 Hv,t ← λId +

∑t−1
s=1 Gv,s(θ̂s) with (3)

5 θ̂t ← argminθ∈Θ gt−1(θ̂t−1)
⊤θ + 1

2η∥θ − θ̂t−1∥2H̃−1
t

with (2) ; ▷ Estimation

6 if det(Ht) > C det(Htτ ) then
7 τ ← τ + 1; tτ ← t

8 θ̂v,(τ) ← θ̂v,tτ (= θ̂1:dtτ )

9 for i ∈ [N ] do
10 vi,t ← x⊤

i,tθ̂v,(τ) −
√
Cβτ∥xi,t∥H−1

v,t
; ▷ LCB for valuation

11 pi,t ← v+i,t ; ▷ Price selection w/ LCB

12 vi,t ← x⊤
i,tθ̂v,t + βτ∥xi,t∥H−1

v,t
; ▷ UCB for valuation

13 ui,t ← zi,t(pi,t)
⊤θ̂t + βτ∥zi,t(pi,t)∥H−1

t
+ 2
√
Cβτ∥xi,t∥H−1

v,t
; ▷ UCB for utility

14 St ∈ argmaxS⊆[N ]:|S|≤L

∑
i∈S

vi,t exp(ui,t)
1+

∑
j∈S exp(uj,t)

; ▷ Assortment selection w/ UCB

15 Offer St with prices pt = {pi,t}i∈St

16 Observe preference (purchase) feedback yi,t ∈ {0, 1} for i ∈ St

We use notation x+ = max{x, 0} for x ∈ R. Then, for the LCB pricing strategy, we set the price
of arm i using its LCB as

pi,t = v+i,t.

Importantly, from this pricing strategy, the algorithm can effectively explore arms avoiding censor-
ship because the arm having a small price is likely to be activated from the user’s threshold in the
C-MNL choice model. In the analysis, under the condition of a favorable event regarding the LCB,
we can appropriately handle the preference feedback from C-MNL for estimating θ∗ with θ̂t. How-
ever, the conditional analysis for estimation introduces regret with each update. To solve this issue,
we periodically update the estimator θ̂v,(τ) for LCB with constant C > 1, as described in Line 6,
without hurting regret (in order) from estimation error.

Next, for the assortment selection, we construct upper confidence bounds (UCB) for valuation vi,t
and preference utility ui,t as vi,t and ui,t, respectively. We construct UCB for the valuation as

vi,t := x⊤
i,tθ̂v,t + βτ∥xi,t∥H−1

v,t
.

Interestingly, when constructing ui,t regarding utility ui,t = zi,t(p
∗
i,t)

⊤θ∗, it is required to consider
enhanced-exploration under the uncertainty regarding both θ̂t and pi,t (in zi,t(pi,t)). We construct

ui,t := zi,t(pi,t)
⊤θ̂t + βτ∥zi,t(pi,t)∥H−1

t
+ 2
√
Cβτ∥xi,t∥H−1

v,t
,

where βτ∥zi,t(pi,t)∥H−1
t

comes from uncertainty of θ̂t and 2
√
Cβτ∥xi,t∥H−1

v,t
comes from that of

pi,t in zi,t(pi,t). Then, using the UCB indexes, the assortment is chosen from

St ∈ argmax
S⊆[N ]:|S|≤K

∑
i∈S

vi,t exp(ui,t)

1 +
∑

j∈S exp(uj,t)
.

We set η = 1
2 log(K + 1) + 3 and λ = max{84dη, 192

√
2η} for the algorithm.
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4.2 REGRET ANALYSIS OF ALGORITHM 1 (UCBA-LCBP)

Similar to previous work for logistic and MNL bandit (Oh & Iyengar, 2019; 2021; Lee & Oh, 2024;
Goyal & Perivier, 2021; Erginbas et al., 2023; Faury et al., 2020; Abeille et al., 2021), we consider
the following regularity condition and definition for regret analysis.

Assumption 1 ∥θv∥2 ≤ 1, ∥θα∥2 ≤ 1, ∥xi,t∥2 ≤ 1, and ∥wi,t∥2 ≤ 1 for all i ∈ [N ], t ∈ [T ]

Recall Θ = {θ ∈ R2d : ∥θ1:d∥2 ≤ 1 and ∥θd+1:2d∥2 ≤ 1}. Then we define a problem-dependent
quantity regarding non-linearlity of the MNL structure as follows.

κ := inf
t∈[T ],θ∈Θ,i∈S⊆[N ],p∈[0,1]N

Pt,θ(i|S, p)Pt,θ(i0|S, p).

We note that in the worst-case, 1/κ = O(K2) from the definition of Pt,θ(·|S, p) with Assumption 1.
Then Algorithm 1 achieves the regret bound in the following.

Theorem 1 Under Assumption 1, the policy π of Algorithm 1 achieves a regret bound of

Rπ(T ) = Õ

(
d

3
2

√
T/κ+

d3

κ

)
.

Proof The full version of the proof is provided in Appendix A.2. Here we provide a proof sketch.
We first define event Et = {∥θ̂s − θ∗∥Hs

≤ βτs ,∀s ≤ t} and ET holds with a high probability. In
what follows, we assume that Et holds at each time t.

For notation simplicity, we use vi,t := x⊤
i,tθv , ui,t := zi,t(p

∗
i,t)

⊤θ∗, and up
i,t := zi,t(pi,t)

⊤θ∗. Then
we can show that for all i ∈ [N ] and t ∈ [T ], we have

v+i,t ≤ vi,t ≤ vi,t and ui,t ≤ ui,t. (4)

For the regret analysis, we need to obtain a bound for

Rt(S
∗
t , p

∗
t )−Rt(St, pt)

=
∑
i∈S∗

t

p∗i,t exp(ui,t)1(p
∗
i,t ≤ vi,t)

1 +
∑

j∈S∗
t
exp(uj,t)1(p∗j,t ≤ vj,t)

−
∑
i∈St

pi,t exp(u
p
i,t)1(pi,t ≤ vi,t)

1 +
∑

j∈St
exp(up

j,t)1(pj,t ≤ vj,t)
. (5)

For the purpose of analysis, we define u′
i,t = zi,t(pi,t)

⊤θ∗ + 2βτt∥zi,t(pi,t)∥H−1
t

+

2
√
Cβτt∥xi,t∥H−1

v,t
so that ui,t ≤ u′

i,t. For the first term in (5), with (4) and the UCB-based as-
sortment selection policy, we can show that∑

i∈S∗
t

p∗i,t exp(ui,t)1(p
∗
i,t ≤ vi,t)

1 +
∑

j∈S∗
t
exp(uj,t)1(p∗j,t ≤ vj,t)

≤
∑

i∈St
vi,t exp(u

′
i,t)

1 +
∑

i∈St
exp(u′

i,t)
. (6)

For the second term in (5), with (4) and the LCB-based pricing, we have∑
i∈St

pi,t exp(u
p
i,t)1(pi,t ≤ vi,t)

1 +
∑

j∈St
exp(up

j,t)1(pj,t ≤ vj,t)
=

∑
i∈St

v+i,t exp(u
p
i,t)

1 +
∑

i∈St
exp(up

i,t)
. (7)

From (5), (6), and (7), we have

Rt(S
∗
t , p

∗
t )−Rt(St, pt) ≤

∑
i∈St

vi,t exp(u
′
i,t)

1 +
∑

i∈St
exp(u′

i,t)
−
∑

i∈St
v+i,t exp(u

p
i,t)

1 +
∑

i∈St
exp(up

i,t)

=

∑
i∈St

vi,t exp(u
′
i,t)

1 +
∑

i∈St
exp(u′

i,t)
−
∑

i∈St
v+i,t exp(u

′
i,t)

1 +
∑

i∈St
exp(u′

i,t)
+

∑
i∈St

v+i,t exp(u
′
i,t)

1 +
∑

i∈St
exp(u′

i,t)
−
∑

i∈St
v+i,t exp(u

p
i,t)

1 +
∑

i∈St
exp(up

i,t)
.

(8)
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Let τt be the value of τ at the time step t. We can show that E[βτT ] = Õ(d) and E[β2
τT ] = Õ(d2).

Then, for a bound of the first two terms in (8), with expectation bounds for βτT and β2
τT in the above

and elliptical potential bounds, we show that∑
t∈[T ]

E

[(∑
i∈St

vi,t exp(u
′
i,t)

1 +
∑

i∈St
exp(u′

i,t)
−
∑

i∈St
v+i,t exp(u

′
i,t)

1 +
∑

i∈St
exp(u′

i,t)

)
1(Et)

]

= O

( ∑
t∈[T ]

E
[(

βτt max
i∈St

∥xi,t∥H−1
v,t
1(Et)

])
= Õ

(
d

3
2

√
T/κ

)
. (9)

Likewise, for the bound of the last two terms in (8), we can show that∑
t∈[T ]

E

[(∑
i∈St

v+i,t exp(ui,t)

1 +
∑

i∈St
exp(ui,t)

−
∑

i∈St
v+i,t exp(u

p
i,t)

1 +
∑

i∈St
exp(up

i,t)

)
1(Et)

]
= Õ

(
d

3
2

√
T +

d3

κ

)
, (10)

which conclude the proof with (8), (9), and the fact that ET holds with a high probability.

Under the C-MNL model, our algorithm can achieve the tight regret bound with respect to T as
those established in standard MNL bandits (Oh & Iyengar, 2021) and dynamic pricing under MNL
with arbitrary features (Goyal & Perivier, 2021; Erginbas et al., 2023). The regret bounds of Goyal
& Perivier (2021); Erginbas et al. (2023) for the MNL dynamic pricing problems include 1/κ in the
leading term where, in their work, κ was assumed to be a constant term. In the worst case where
1/κ = O(K2), their regret bounds become Õ(K2

√
T ). Our regret bound contains only

√
1/κ in

the leading term, allowing it to remain Õ(K
√
T ) for large enough T in the worst case. Moreover,

the previous works (Goyal & Perivier, 2021; Erginbas et al., 2023) assumed that x⊤
i,tθα ≥ L with

a positive constant L > 0 and their regret bounds include 1/Ln for n ≥ 1. This leads to trivial
regret bounds in the worst case when L is small, whereas our regret bound does not depend on L.
Regarding the dimensionality, the analysis of our new censored MNL model is significantly more
challenging and involved due to the presence of activation functions, which adds complexity. As a
result, our regret bound scales with d

3
2 . However, whether this dependency can be improved remains

an open question.

We now discuss the algorithmic differences between our method and the one proposed in Goyal
& Perivier (2021); Erginbas et al. (2023). In the prior work of Goyal & Perivier (2021); Erginbas
et al. (2023), the price is determined by maximizing revenue at each time. However, in our C-MNL
framework, we cannot estimate θ∗ using the revenue-maximizing price due to the hidden nature
of non-purchased feedback regarding whether it is due to stochastic preference or elimination by
an activation function. To address this issue, we employ an LCB pricing strategy that enhances
exploration across all arms by adhering to acceptable user prices. Since our pessimistic pricing
strategy introduces a gap from the optimal price, we further incorporate an exploration-enhanced
strategy for choosing assortments.

Additionally, our algorithm is computationally more efficient since it does not require solving an
optimization problem for pricing decisions, which was necessary in the previous work. We also
note that regarding the computational costs of assortment selection, which is common in all MNL
bandit literature, the assortment optimization can be computed by solving an LP (Davis et al., 2013).

4.3 TS-BASED ASSORTMENT-SELECTION WITH LCB PRICING: TSA-LCBP

Here we propose a Thompson sampling (TS)-based assortment-selection with LCB pricing algo-
rithm (Algorithm 2). As in Algorithm 1, we first estimate θ̂t using the online mirror descent
within the range of Θ = {θ ∈ R2d : ∥θ1:d∥2 ≤ 1 and ∥θd+1:2d∥2 ≤ 1}. For determining price,
we utilize the LCB pricing as pi,t = v+i,t, where, recall, vi,t = x⊤

i,tθ̂v,(τ) − βτ∥xi,t∥H−1
v,t

with

βτ = C1

√
dτ log(T ) log(K).

For choosing the assortment, we sample two different types of instances from Gaussian distributions;
one is for valuation and the other is for preference utility, each of which is sampled for M times as
θ̃
(m)
v,t ∈ Rd and θ̃

(m)
t ∈ R2d for m ∈ [M ], respectively. We set M = ⌈1− log(2N)

log(1−1/4
√
eπ)
⌉. Then we

7
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Algorithm 2 TS-based Assortment-selection with LCB Pricing (TSA-LCBP)
Input: λ, η,M, βτ , C > 1

Init: τ ← 1, t1 ← 1, θ̂v,(1) ← 0d
for t = 1, . . . , T do

H̃t ← λI2d +
∑t−2

s=1 Gs(θ̂s) + ηGt−1(θ̂t−1) with (3)
Ht ← λI2d +

∑t−1
s=1 Gs(θ̂s) with (3)

Hv,t ← λId +
∑t−1

s=1 Gv,s(θ̂s) with (3)
θ̂t ← argminθ∈Θ gt(θ̂t−1)

⊤θ + 1
2η∥θ − θ̂t−1∥2H̃−1

t

with (2) ; ▷ Estimation

Sample {θ̃(m)
v,t }m∈[M ] independently from N (θ̂v,t(= θ̂1:dt ), β2

τH
−1
v,t )

Sample {θ̃(m)
t }m∈[M ] independently from N (θ̂t, 2β

2
τH

−1
t )

if det(Ht) > C det(Htτ ) then
τ ← τ + 1; tτ ← t
θ̂v,(τ) ← θ̂v,tτ (= θ̂1:dtτ )

for i ∈ [N ] do
vi,t ← x⊤

i,tθ̂v,(τ) −
√
Cβτ∥xi,t∥H−1

v,t
; ▷ LCB for valuation

pi,t ← v+i,t ; ▷ Price selection w/ LCB

ṽi,t ← argmaxm∈[M ] x
⊤
i,tθ̃

(m)
v,t ; ▷ TS for valuation

η̃i,t ← ṽi,t − x⊤
i,tθ̂v,t

ũi,t ← argmaxm∈[M ] zi,t(pi,t)
⊤θ̃

(m)
t + 8Cη̃i,t ; ▷ TS for utility

St ∈ argmaxS⊆[N ]:|S|≤K

∑
i∈S

ṽi,t exp(ũi,t)
1+

∑
j∈S exp(ũj,t)

; ▷ Assortment selection w/ TS

Offer St with prices pt = {pi,t}i∈St

Observe preference (purchase) feedback yi,t ∈ {0, 1} for i ∈ St

construct TS indexes regarding the valuation and utility as

ṽi,t := argmax
m∈[M ]

x⊤
i,tθ̃

(m)
v,t and ũi,t := argmax

m∈[M ]

zi,t(pi,t)
⊤θ̃

(m)
t + 16η̃i,t, respectively,

where η̃i,t = ṽi,t−x⊤
i,tθ̂v,t. For the utility of ũi,t, we have to consider the uncertainty regarding pi,t

as well as θ̂t, which leads to requiring an additional exploration term η̃i,t. Then the assortment is
determined from

St ∈ argmax
S⊆[N ]:|S|≤K

∑
i∈S

ṽi,t exp(ũi,t)

1 +
∑

j∈S exp(ũj,t)
.

In the following, we provide a regret bound of the algorithm by setting η = 1
2 log(K + 1) + 3 and

λ = max{84dη, 192
√
2η}.

4.4 REGRET ANALYSIS OF ALGORITHM 2 (TSA-LCBP)

Theorem 2 Under Assumption 1, the policy π of Algorithm 2 achieves a regret bound of

Rπ(T ) = Õ

(
d2
√

T/κ+
d4

κ

)
Proof The full version of the proof is provided in Appendix A.3. Here we provide some key
components of the proof. We first define event Et = {∥θ̂s−θ∗∥Hs

≤ βt,∀s ≤ t} and ET holds with
a high probability. Let A∗

t = {i ∈ S∗
t : p∗i,t ≤ vi,t} and, recall, vi,t = x⊤

i,tθv , ui,t = zi,t(p
∗
i,t)

⊤θ∗,
and up

i,t = zi,t(pi,t)
⊤θ∗. Then under Et, from the pricing and assortment selection strategies, we

can show that

Rt(S
∗
t , p

∗
t )−Rt(St, pt) ≤

∑
i∈A∗

t
vi,t exp(ui,t)

1 +
∑

i∈A∗
t
exp(ui,t)

−
∑

i∈St
v+i,t exp(u

p
i,t)

1 +
∑

i∈St
exp(up

i,t)
. (11)
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We define event Ẽ(a)
t such that for all i ∈ [N ], we have

|ṽi,t − x⊤
i,tθ̂v,t| ≤ γt∥xi,t∥H−1

v,t
and |ũi,t − zi,t(pi,t)

⊤θ̂t| ≤ 8Cγt(∥zi,t(pi,t)∥H−1
t

+ ∥xi,t∥H−1
v,t

),

which is shown to hold with a high probability. We also define event Ẽ(b)
t such that for all i ∈ [N ],

we have ṽi,t ≥ vi,t and ũi,t ≥ ui,t, which is shown to holds at least a positive constant. Let
Ẽt = Ẽ

(a)
t ∩ Ẽ

(b)
t . Then we can show that P(Ẽt|Ft−1, Et) ≥ 1/8

√
eπ where Ft−1 is the filtration

containing information before t.

Let z̃i,t = zi,t(pi,t) − Ej∼P
t,θ̂t

(·|St,pt)[zi,t(pi,t)] and x̃i,t = xi,t − Ej∼P
t,θ̂t

(·|St,pt)[xi,t] and γt =

βτt

√
8d log(Mt) where τt is the value of τ at time t. For the ease of presentation, we use

Lt = γ2
t (max

i∈St

∥zi,t(pi,t)∥2H−1
t

+max
i∈St

∥xi,t∥2H−1
v,t

) + γ2
t (max

i∈St

∥z̃i,t∥2H−1
t

+max
i∈St

∥x̃i,t∥2H−1
v,t

)

+ γt
∑
i∈St

Pt,θ̂t
(i|St, pt)(∥z̃i,t∥H−1

t
+ ∥x̃i,t∥H−1

v,t
) + γt

∑
i∈St

∥xi,t∥H−1
v,t

).

With a constant lower bound for P(Ẽt|Ft−1, Et) and elliptical potential bounds, by omitting some
details, we can show that

E

[
E

[(∑
i∈A∗

t
vi,t exp(ui,t)

1 +
∑

i∈A∗
t
exp(ui,t)

−
∑

i∈St
v+i,t exp(u

p
i,t)

1 +
∑

i∈St
exp(up

i,t)

)
1(Et) | Ft−1

]]

= O
(
E
[
E
[
Lt | Ft−1, Ẽt, Et

]
P(Et|Ft−1)

])
= Õ

(
d2
√

T/κ+
d4

κ

)
,

which concludes the proof with (11) and the fact that ET holds with a high probability.

To the best of our knowledge, this is the first work to apply Thompson Sampling (TS) to dynamic
pricing under MNL functions, whereas the previous related works focused on UCB method (Ergin-
bas et al., 2023) (or did not consider assortment selection (Goyal & Perivier, 2021)). Additionally,
prior work on TS for MNL bandits (Oh & Iyengar, 2019) includes 1/κ in the regret bound so that
Õ((1/κ)

√
T ) and requires computationally intensive estimation with an O(t) cost at each time step

t. In contrast, by using online mirror descent updates, our TS algorithm reduces the κ dependency in
the main term of the regret bound with Õ(

√
T/κ) for large enough T and provides computationally

efficient online updates with an O(1) cost for estimation in MNL bandits. It is also worth noting
that our TS regret bound has an additional

√
d term compared to the UCB algorithm (Algorithm 1).

This phenomenon of increased regret with respect to d, compared to that of UCB, is consistent
with observations from previous TS-based bandit literature (Oh & Iyengar, 2019; Agrawal & Goyal,
2013; Abeille & Lazaric, 2017). Furthermore, achieving a regret bound for TS, even after UCB, is
widely considered an established contribution in bandit literature (Agrawal & Goyal, 2013; Abeille
& Lazaric, 2017; Kim & Oh, 2024).

5 EXPERIMENTS

Here, we present numerical results using synthetic datasets with varying numbers of products N .1
For the experiments, we generate each element in θv and θα from the uniform distribution (0, 1)
and normalize them. We also generate features in the same way. We set K = 5 and d = 4.
Unfortunately, there is no algorithm that can be directly applied to our novel setting. Therefore, for
the benchmarks, we utilize previous algorithms proposed for dynamic pricing under MNL model
such as DASP-MNL proposed in Erginbas et al. (2023) and ONM (online newton method) in Goyal
& Perivier (2021). We note that ONM works under a given assortment rather than selecting one, so
we adjust the method by adopting the method for the assortment optimization in Erginbas et al.
(2023). We also utilize the method of Explore-then-commit (ETC) (Lattimore & Szepesvári, 2020)
as a benchmark, which conducts exploration over the first T 2/3 time steps and then exploits for the
remainder of the time. In Figure 2, we can observe other benchmarks do not work properly in our
setting and our algorithms outperform the benchmarks with sublinear regret.

1Source code: https://github.com/junghunkim7786/DynamicAssortmentSelectionPricing
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Figure 2: Experimental results for the regret of algorithms

6 RANDOMNESS IN ACTIVATION FUNCTION.

We further investigate the presence of randomness in the activation function in C-MNL. Let ζi,t be
a zero-mean random noise drawn from the range of [−c, c] for some 0 < c ≤ 1. we consider

P̃t(i|St, pt) =
exp(zi,t(pi,t)

⊤θ∗)1(pi,t ≤ (x⊤
i,tθv + ζi,t)

+)

1 +
∑

j∈St
exp(zj,t(pj,t)⊤θ∗)1(pj,t ≤ (x⊤

j,tθv + ζj,t)+)
.

We propose a variant of Algorithm 1 (Algorithm 3 in Appendix A.4) using a robust LCB pricing
strategy, which achieves Õ(d

3
2

√
T/κ) when c = O(1/

√
T ). Further details on the algorithm and

theorem can be found in Appendix A.4.

7 CONCLUSION

In this study, we explore dynamic multi-product selection and pricing within a new framework of
the censored multi-nomial logit choice model. We introduce algorithms that incorporate an LCB
pricing strategy along with either a UCB or TS product selection strategy. These algorithms achieve
regret bounds of Õ(d

3
2

√
T/κ) and Õ(d2

√
T/κ), respectively. Lastly, we validate our algorithms

through experiments with synthetic datasets.

Reproducibility Statement. Complete proofs of the theorems are included in the appendix.
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bandits. Advances in neural information processing systems, 24, 2011.

Marc Abeille and Alessandro Lazaric. Linear thompson sampling revisited. In Artificial Intelligence
and Statistics, pp. 176–184. PMLR, 2017.
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A APPENDIX

A.1 NOTATION TABLE FOR THE PROOFS

Table 1: We provide definitions of notations for the proofs.

vi,t := x⊤
i,tθv

αi,t := w⊤
i,tθα

θ∗ := [θv; θα]
zi,t(p) := [xi,t;−pwi,t]

Pt(i|St, pt) :=
exp(vi,t−αi,tpi,t)1(pi,t≤vi,t)

1+
∑

j∈St
exp(vj,t−αj,tpj,t)1(pj,t≤vj,t)

=
exp(x⊤

i,tθv−w⊤
i,tθαpi,t)1(pi,t≤x⊤

i,tθv)

1+
∑

j∈St
exp(x⊤

j,tθv−w⊤
j,tθαpj,t)1(pj,t≤x⊤

i,tθv)

=
exp(zi,t(pi,t)

⊤θ∗)1(pi,t≤x⊤
i,tθv)

1+
∑

j∈St
exp(zj,t(pj,t)⊤θ∗)1(pj,t≤x⊤

j,tθv)

Ri,t(St) := pi,tPt(i|St, pt)
Rt(St, pt) :=

∑
i∈St

Ri,t(St)

Pt,θ(i|S, p) :=
exp(zi,t(pi)

⊤θ)
1+

∑
j∈S exp(zj,t(pj)⊤θ)

θ̂v,t := θ̂1:dt

vi,t := x⊤
i,tθv

u′
i,t := zi,t(pi,t)

⊤θ∗ + 2βτt∥zi,t(pi,t)∥H−1
t

+ 2
√
Cβτt∥xi,t∥H−1

v,t

ui,t := zi,t(p
∗
i,t)

⊤θ∗

xo
i,t := [xi,t;0d]

ûi,t := zi,t(pi,t)
⊤θ̂t

xi0,t := 0d

zi0,t := 02d

Q(u) :=
∑

i∈St
v+
i,t exp(ui)

1+
∑

i∈St
exp(ui)

x̃i,t := xi,t − Ej∼P
t,θ̂t

(·|St,pt)[xj,t]

z̃i,t := zi,t(pi,t)− Ej∼P
t,θ̂t

(·|St,pt)[zj,t(pj,t)]

G̃t(θ̂t) :=
∑

i∈St
Pt,θ̂t

(i|St, pt)zi,t(pi,t)zi,t(pi,t)
⊤
1(Et)

−
∑

i∈St

∑
j∈St

Pt,θ̂t
(i|St, pt)Pt,θ̂t

(j|St, pt)zi,t(pi,t)zj,t(pj,t)
⊤
1(Et)

H ′
t := λI2d +

∑t−1
s=1 G̃s(θ̂s)

ũ′
i,t := zi,t(pi,t)

⊤θ∗ + 9Cγt(∥zi,t(pi,t)∥H−1
t

+ ∥xi,t∥H−1
v,t

)

A.2 PROOF OF THEOREM 1

Let τt be the value of τ at time t according to the update procedure in the algorithm. We first define
event Et = {∥θ̂s − θ∗∥Hs

≤ βτs ,∀s ≤ t}. Then we have ET ⊂ ET−1, . . . ,⊂ E1 and ET holds
with a high probability (to be shown). In what follows, we first assume that Et holds for each t.
Under this event, we provide inequalities regarding the upper and lower bounds of valuation and
utility function in the following. For notation simplicity, we use vi,t := x⊤

i,tθv , ui,t := zi,t(p
∗
i,t)

⊤θ∗,
and xo

i,t := [xi,t;0d].

Lemma 1 For t > 0, under Et, for all i ∈ [N ] we have

v+i,t ≤ vi,t ≤ vi,t and ui,t ≤ ui,t.

13
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Proof For tτ ≤ t ≤ tτ+1 − 1 for τ ≥ 1, under Et, we have

|x⊤
i,tθv − x⊤

i,tθ̂v,(τ)| = |xo
i,t

⊤θ∗ − xo
i,t

⊤θ̂tτ |

≤ ∥xo
i,t∥H−1

t
∥θ∗ − θ̂tτ ∥Ht

≤ ∥xo
i,t∥H−1

t

√
det(Ht)

det(Htτ )
∥θ∗ − θ̂tτ ∥Htτ

≤ ∥xo
i,t∥H−1

t

√
C∥θ∗ − θ̂tτ ∥Htτ

≤ ∥xi,t∥H−1
v,t

√
Cβτt ,

where the second inequality is obtained from Lemma 12 with the update procedure of θ̂v,(τ) in the
algorithm. This implies vi,t ≤ vi,t. Then with vi,t ≥ 0, we have

v+i,t ≤ vi,t.

Under Et, we also have

|x⊤
i,tθv − x⊤

i,tθ̂v,t| = |xo
i,t

⊤θ∗ − xo
i,t

⊤θ̂t| ≤ ∥xo
i,t∥H−1

t
∥θ∗ − θ̂t∥Ht

≤ ∥xi,t∥H−1
v,t

βτt ,

which implies
vi,t ≤ vi,t.

Now we provide the proof for the upper bound of ui,t. Under Et, we have

zi,t(p
∗
i,t)

⊤θ∗ − zi,t(pi,t)
⊤θ̂t = zi,t(p

∗
i,t)

⊤θ∗ − zi,t(pi,t)
⊤θ∗ + zi,t(pi,t)

⊤θ∗ − zi,t(pi,t)
⊤θ̂t

≤ zi,t(p
∗
i,t)

⊤θ∗ − zi,t(pi,t)
⊤θ∗ + |zi,t(pi,t)⊤θ̂t − zi,t(pi,t)

⊤θ∗|

≤ p∗i,tw
⊤
i,tθα − pi,tw

⊤
i,tθα + ∥zi,t(pi,t)∥H−1

t
∥θ̂t − θ∗∥Ht

≤ (p∗i,t − pi,t)w
⊤
i,tθα + βτt∥zi,t(pi,t)∥H−1

t

≤ (vi,t − v+i,t) + βτt∥zi,t(pi,t)∥H−1
t

≤ (vi,t − vi,t) + βτt∥zi,t(pi,t)∥H−1
t

≤ 2
√
Cβτt∥xi,t∥H−1

v,t
+ βτt∥zi,t(pi,t)∥H−1

t
,

where the third last inequality comes from p∗i,t ≤ vi,t, pi,t = v+i,t, vi,t ≥ v+i,t, and (positive sensitiv-
ity) 0 ≤ w⊤

i,tθα ≤ 1. This concludes the proof.

We have

Rt(S
∗
t , p

∗
t )−Rt(St, pt)

=
∑
i∈S∗

t

p∗i,t exp(zi,t(p
∗
i,t)

⊤θ∗)1(p∗i,t ≤ x⊤
i,tθv)

1 +
∑

j∈S∗
t
exp(zj,t(p∗j,t)

⊤θ∗)1(p∗j,t ≤ x⊤
j,tθv)

−
∑
i∈St

pi,t exp(zi,t(pi,t)
⊤θ∗)1(pi,t ≤ x⊤

i,tθv)

1 +
∑

j∈St
exp(zj,t(pj,t)⊤θ∗)1(pj,t ≤ x⊤

j,tθv)
. (12)

Let u′
i,t = zi,t(pi,t)

⊤θ∗ + 2
√
Cβτt∥zi,t(pi,t)∥H−1

t
+ 2
√
Cβτt∥xi,t∥H−1

v,t
. Then under Et, we have

zi,t(pi,t)
⊤θ̂t − βτt∥zi,t(pi,t)∥H−1

t
≤ zi,t(pi,t)

⊤θ∗, which implies ui,t ≤ u′
i,t. In what follows,

we provide lemmas for the bounds of each term in the above instantaneous regret. For notation
simplicity, we use up

i,t := zi,t(pi,t)
⊤θ∗.

Lemma 2 For t > 0, under Et we have∑
i∈S∗

t

p∗i,t exp(zi,t(p
∗
i,t)

⊤θ∗)1(p∗i,t ≤ x⊤
i,tθv)

1 +
∑

j∈S∗
t
exp(zj,t(p∗j,t)

⊤θ∗)1(p∗j,t ≤ x⊤
j,tθv)

≤
∑

i∈St
vi,t exp(u

′
i,t)

1 +
∑

i∈St
exp(u′

i,t)
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and ∑
i∈St

pi,t exp(zi,t(pi,t)
⊤θ∗)1(pi,t ≤ x⊤

i,tθv)

1 +
∑

j∈St
exp(zj,t(pj,t)⊤θ∗)1(pj,t ≤ x⊤

j,tθv)
=

∑
i∈St

v+i,t exp(u
p
i,t)

1 +
∑

i∈St
exp(up

i,t)
.

Proof First, we provide a proof for the inequality in this lemma. We define A∗
t = {i ∈ S∗

t : p∗i,t ≤
vi,t}. We observe that A∗

t = argmaxS⊆[N ]:|S|≤K

∑
i∈S p∗

i,t exp(ui,t)

1+
∑

i∈S exp(ui,t)
. Then, from Lemma A.3 in

Agrawal et al. (2017a) and ui,t ≤ ui,t from Lemma 1, we can show that∑
i∈A∗

t
p∗i,t exp(ui,t)

1 +
∑

i∈A∗
t
exp(ui,t)

≤
∑

i∈A∗
t
p∗i,t exp(ui,t)

1 +
∑

i∈A∗
t
exp(ui,t)

. (13)

From the above, under Et, we have

Rt(S
∗
t , p

∗
t ) =

∑
i∈A∗

t
p∗i,t exp(ui,t)

1 +
∑

i∈A∗
t
exp(ui,t)

≤
∑

i∈A∗
t
p∗i,t exp(ui,t)

1 +
∑

i∈A∗
t
exp(ui,t)

≤
∑

i∈A∗
t
vi,t exp(ui,t)

1 +
∑

i∈A∗
t
exp(ui,t)

≤
∑

i∈A∗
t
vi,t exp(ui,t)

1 +
∑

i∈A∗
t
exp(ui,t)

≤
∑

i∈St
vi,t exp(ui,t)

1 +
∑

i∈St
exp(ui,t)

, (14)

where the first inequality is obtained from (13), the second last inequality is obtained from vi,t ≤ vi,t
from Lemma 1, and the last inequality is obtained from the policy π of constructing St. Then from
the definition of St, as in Lemma H.2 in Lee & Oh (2024), we can show that∑

i∈St
vi,t exp(ui,t)

1 +
∑

i∈St
exp(ui,t)

≤
∑

i∈St
vi,t exp(u

′
i,t)

1 +
∑

i∈St
exp(u′

i,t)
. (15)

Here we provide a proof for the equation in this lemma. Since pi,t = v+i,t from the policy π and
v+i,t ≤ vi,t from Lemma 1, we have

Rt(St, pt) =

∑
i∈St

v+i,t exp(u
p
i,t)1(v

+
i,t ≤ vi,t)

1 +
∑

i∈St
exp(up

i,t)1(v
+
i,t ≤ vi,t)

=

∑
i∈St

v+i,t exp(u
p
i,t)

1 +
∑

i∈St
exp(up

i,t)
, (16)

which concludes the proof.

From (12) and Lemma 2, under Et, we have

Rt(S
∗
t , p

∗
t )−Rt(St, pt)

=
∑
i∈S∗

t

p∗i,t exp(zi,t(pi,t)
⊤θ∗)1(p∗i,t ≤ x⊤

i,tθv)

1 +
∑

j∈S∗
t
exp(zj,t(pj,t)⊤θ∗)1(p∗j,t ≤ x⊤

j,tθv)

−
∑
i∈St

pi,t exp(zi,t(pi,t)
⊤θ∗)1(pi,t ≤ x⊤

i,tθv)

1 +
∑

j∈St
exp(zj,t(pj,t)⊤θ∗)1(pj,t ≤ x⊤

j,tθv)

≤
∑

i∈St
vi,t exp(u

′
i,t)

1 +
∑

i∈St
exp(u′

i,t)
−
∑

i∈St
v+i,t exp(u

p
i,t)

1 +
∑

i∈St
exp(up

i,t)

=

∑
i∈St

vi,t exp(u
′
i,t)

1 +
∑

i∈St
exp(u′

i,t)
−
∑

i∈St
v+i,t exp(u

′
i,t)

1 +
∑

i∈St
exp(u′

i,t)
+

∑
i∈St

v+i,t exp(u
′
i,t)

1 +
∑

i∈St
exp(u′

i,t)
−
∑

i∈St
v+i,t exp(u

p
i,t)

1 +
∑

i∈St
exp(up

i,t)
.

(17)

To obtain a bound for the above, we provide the following lemmas.
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Lemma 3 For t > 0, under Et we have∑
i∈St

vi,t exp(u
′
i,t)

1 +
∑

i∈St
exp(u′

i,t)
−
∑

i∈St
v+i,t exp(u

′
i,t)

1 +
∑

i∈St
exp(u′

i,t)
= O

(
βτt max

i∈St

∥xi,t∥H−1
v,t

)
.

Proof For τ ≥ 0 and tτ ≤ t ≤ tτ+1 − 1, under Et, we have

vi,t − vi,t = x⊤
i,tθ̂v,t − x⊤

i,tθ̂v,(τt) + (
√
C + 1)βτt∥xi,t∥H−1

v,t

= x⊤
i,tθ̂v,t − x⊤

i,tθv + x⊤
i,tθv − x⊤

i,tθ̂v,(τt) + (
√
C + 1)βτt∥xi,t∥H−1

v,t

= xo
i,t

⊤θ̂t − xo
i,t

⊤θ∗ + xo
i,t

⊤θ∗ − xo
i,t

⊤θ̂tτ + (
√
C + 1)βτt∥xi,t∥H−1

v,t

≤ ∥θ̂t − θ∗∥Ht∥xo
i,t∥H−1

t
+ ∥θ̂tτ − θ∗∥Ht∥xo

i,t∥H−1
t

+ (
√
C + 1)βτt∥xi,t∥H−1

v,t

≤ βτt∥xi,t∥H−1
v,t

+

√
det(Ht)

det(Htτ )
∥θ̂tτ − θ∗∥Htτ

∥xo
i,t∥H−1

t
+ (
√
C + 1)βτt∥xi,t∥H−1

v,t

≤ 2(
√
C + 1)βτt∥xi,t∥H−1

v,t
,

where the second inequality is obtained from Lemma 12.

Let ûi,t = zi,t(pi,t)
⊤θ̂t. Using the above inequality, under Et, we have∑

i∈St
vi,t exp(u

′
i,t)

1 +
∑

i∈St
exp(u′

i,t)
−
∑

i∈St
v+i,t exp(u

′
i,t)

1 +
∑

i∈St
exp(u′

i,t)
=

∑
i∈St

(vi,t − v+i,t) exp(u
′
i,t)

1 +
∑

i∈St
exp(u′

i,t)

≤
∑

i∈St
(vi,t − vi,t) exp(u

′
i,t)

1 +
∑

i∈St
exp(u′

i,t)

=

∑
i∈St

2(
√
C + 1)βτt∥xi,t∥H−1

v,t
exp(u′

i,t)

1 +
∑

i∈St
exp(u′

i,t)

≤ 2(
√
C + 1)βτt max

i∈St

∥xi,t∥H−1
v,t

. (18)

Let z̃i,t = zi,t(pi,t)− Ej∼P
t,θ̂t

(·|St,pt)[zj,t(pj,t)] and x̃i,t = xi,t − Ej∼P
t,θ̂t

(·|St,pt)[xj,t].

Lemma 4 For t > 0, under Et we have∑
i∈St

v+i,t exp(u
′
i,t)

1 +
∑

i∈St
exp(u′

i,t)
−
∑

i∈St
v+i,t exp(u

p
i,t)

1 +
∑

i∈St
exp(up

i,t)

= O

(
β2
τt(max

i∈St

∥zi,t(pi,t)∥2H−1
t

+max
i∈St

∥xi,t∥2H−1
v,t

) + β2
τt(max

i∈St

∥z̃i,t∥2H−1
t

+max
i∈St

∥x̃i,t∥2H−1
v,t

)

+βτt

∑
i∈St

Pt,θ̂t
(i|St, pt)(∥z̃i,t∥H−1

t
+ ∥x̃i,t∥H−1

v,t
)

)
.

Proof The proof is provided in Appendix A.5

In the below, we provide elliptical potential lemmas.

16



Published as a conference paper at ICLR 2025

Lemma 5
T∑

t=1

max
i∈St

∥zi,t(pi,t)∥2H−1
t
1(Et) ≤ (4d/κ) log(1 + (2TK/dλ)),

T∑
t=1

max
i∈St

∥z̃i,t∥2H−1
t
1(Et) ≤ (4d/κ) log(1 + (8TK/dλ)),

T∑
t=1

∑
i∈St

Pt,θ̂t
(i|St, pt)∥z̃i,t∥2H−1

t
1(Et) ≤ 4d log(1 + (8TK/dλ)).

Proof Define

G̃t(θ̂t)

:=
∑
i∈St

Pt,θ̂t
(i|St, pt)zi,t(pi,t)zi,t(pi,t)

⊤
1(Et)

−
∑
i∈St

∑
j∈St

Pt,θ̂t
(i|St, pt)Pt,θ̂t

(j|St, pt)zi,t(pi,t)zj,t(pj,t)
⊤
1(Et). (19)

Then we first have

G̃t(θ̂t)

=
∑
i∈St

Pt,θ̂t
(i|St, pt)zi,t(pi,t)zi,t(pi,t)

⊤
1(Et)

−
∑
i∈St

∑
j∈St

Pt,θ̂t
(i|St, pt)Pt,θ̂t

(j|St, pt)zi,t(pi,t)zj,t(pj,t)
⊤
1(Et)

=
∑
i∈St

Pt,θ̂t
(i|St, pt)zi,t(pi,t)zi,t(pi,t)

⊤
1(Et)

− 1

2

∑
i∈St

∑
j∈St

Pt,θ̂t
(i|St, pt)Pt,θ̂t

(j|St, pt)(zi,t(pi,t)zj,t(pj,t)
⊤ + zj,t(pj,t)zi,t(pi,t)

⊤)1(Et)

⪰
∑
i∈St

Pt,θ̂t
(i|St, pt)zi,t(pi,t)zi,t(pi,t)

⊤
1(Et)

− 1

2

∑
i∈St

∑
j∈St

Pt,θ̂t
(i|St, pt)Pt,θ̂t

(j|St, pt)(zi,t(pi,t)zi,t(pi,t)
⊤ + zj,t(pj,t)zj,t(pj,t)

⊤)1(Et)

=
∑
i∈St

Pt,θ̂t
(i|St, pt)zi,t(pi,t)zi,t(pi,t)

⊤
1(Et)

−
∑
i∈St

∑
j∈St

Pt,θ̂t
(i|St, pt)Pt,θ̂t

(j|St, pt)zi,t(pi,t)zi,t(pi,t)
⊤
1(Et)

=
∑
i∈St

Pt,θ̂t
(i|St, pt)

1−
∑
j∈St

Pt,θ̂t
(j|St, pt)

 zi,t(pi,t)zi,t(pi,t)
⊤
1(Et)

⪰
∑
i∈St

Pt,θ̂t
(i|St, pt)Pt,θ̂t

(i0|St, pt)zi,t(pi,t)zi,t(pi,t)
⊤
1(Et)

⪰
∑
i∈St

κzi,t(pi,t)zi,t(pi,t)
⊤
1(Et). (20)

Define H ′
t := λI2d +

∑t−1
s=1 G̃s(θ̂s). Then we have

H ′
t+1 = H ′

t + G̃t(θ̂t) ⪰ H ′
t +

∑
i∈St

κzi,t(pi,t)zi,t(pi,t)
⊤
1(Et), (21)
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which implies that

det(H ′
t+1) = det(H ′

t + G̃t(θ̂t))

≥ det(H ′
t +

∑
i∈St

κzi,t(pi,t)zi,t(pi,t)
⊤
1(Et))

= det(H ′
t) det(I2d +

∑
i∈St

κH
′−1/2
t zi,t(pi,t)(H

′−1/2
t zi,t(pi,t))

⊤
1(Et))

= det(H ′
t)(1 +

∑
i∈St

κ∥zi,t(pi,t)∥2H′−1
t

1(Et))

≥ det(λI2d)

t∏
s=1

(
1 +

∑
i∈Ss

κ∥zi,s(pi,s)∥2H′−1
s

1(Es))

)

≥ λ2d
t∏

s=1

(
1 + max

i∈Ss

κ∥zi,s(pi,s)∥2H′−1
s

1(Es))

)

≥ λ2d
t∏

s=1

(
1 + max

i∈Ss

κ∥zi,s(pi,s)∥2H′−1
s

1(Es))

)
. (22)

Since pi,t = v+i,t ≤ vi,t ≤ 1 under Et, we have ∥zi,t(pi,t)∥22 ≤ (∥xi,t∥2 + ∥wi,t∥2)2 ≤ 4. Then
under Et, from the above inequality, λ ≥ 4, and 0 < κ ≤ 1, using the fact that x ≤ 2 log(1 + x)
for any x ∈ [0, 1] and κmaxi∈St ∥zi,t(pi,t)∥2H′−1

t

1(Et) ≤ maxi∈St ∥zi,t(pi,t)∥221(Et)/λ ≤ 1, we
have

∑
t∈[T ]

κmax
i∈St

∥zi,t(pi,t)∥2H′−1
t

1(Et) ≤ 2
∑
t∈[T ]

log

(
1 + κmax

i∈St

∥zi,t(pi,t)∥2H′−1
t

1(Et)

)

= 2 log
∏
t∈[T ]

(
1 + κmax

i∈St

∥zi,t(pi,t)∥2H′−1
t

1(Et)

)

≤ 2 log

(
det(H ′

t+1)

λ2d

)
. (23)

Using Lemma 13, |St| ≤ K, H ′
t ⪯ λI2d+

∑t−1
s=1 zi,s(pi,s)zi,s(pi,s)

⊤
1(Et), ∥zi,t(pi,t)∥2 ≤ 2 under

Et, and zi,t(pi,t) ∈ R2d, we can show that

det(H ′
t+1) ≤ (λ+ (2TK/d))2d.

Then from the above inequality, (23), and using the fact that 0 ≺ H ′
t ⪯ Ht from Gt(θ) ⪰ 0, we can

conclude

T∑
t=1

max
i∈St

∥zi,t(pi,t)∥2H−1
t
1(Et) ≤

T∑
t=1

max
i∈St

∥zi,t(pi,t)∥2H′−1
t

1(Et) ≤ (4d/κ) log(1 + (2TK/dλ)).
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Now we provide a proof for the second inequality of this lemma. Let xi0,t = 0d and wi0,t = 0d

which implies zi0,t = 02d. Then we have

G̃t(θ̂t)

:=
∑
i∈St

Pt,θ̂t
(i|St, pt)zi,t(pi,t)zi,t(pi,t)

⊤
1(Et)

−
∑
i∈St

∑
j∈St

Pt,θ̂t
(i|St, pt)Pt,θ̂t

(j|St, pt)zi,t(pi,t)zj,t(pj,t)
⊤
1(Et)

=
∑
i∈St

Pt,θ̂t
(i|St, pt)zi,t(pi,t)zi,t(pi,t)

⊤
1(Et)

−
∑

i∈St∪{i0}

∑
j∈St∪{i0}

Pt,θ̂t
(i|St, pt)Pt,θ̂t

(j|St, pt)zi,t(pi,t)zj,t(pj,t)
⊤
1(Et)

= Ei∼P
t,θ̂t

(·|St,pt)[zi,t(pi,t)zi,t(pi,t)
⊤]1(Et)− Ei∼P

t,θ̂t
(·|St,pt)[zi,t(pi,t)]Ei∼P

t,θ̂t
(·|St,pt)[zi,t(pi,t)]

⊤
1(Et)

= Ei∼P
t,θ̂t

(·|St,pt)[z̃i,tz̃
⊤
i,t]1(Et)

⪰
∑
i∈St

Pt,θ̂t
(i|St, pt)z̃i,tz̃

⊤
i,t1(Et)

⪰
∑
i∈St

κz̃i,tz̃
⊤
i,t1(Et). (24)

Define H ′
t := λI2d +

∑t−1
s=1 G̃s(θ̂s). Then by following the same proof steps of the first inequality

of this lemma, we can show that

det(H ′
t+1) ≥ λ2d

t∏
s=1

(
1 + κmax

i∈Ss

∥z̃i,s∥H′−1
s

1(Es)

)
(25)

Since, under Et, we have ∥zi,t(pi,t)∥2 ≤ ∥xi,t∥2 + ∥wi,t∥2 ≤ 2 implying that ∥z̃i,t∥22 ≤ 16. Then,
from the above inequality and λ ≥ 16, using the fact that x ≤ 2 log(1 + x) for any x ∈ [0, 1] and
κmaxi∈St

∥z̃i,t∥2H′−1
t

1(Et) ≤ maxi∈St
∥z̃i,t∥221(Et)/λ ≤ 1, we have

∑
t∈[T ]

κmax
i∈St

∥z̃i,t∥2H′−1
t

1(Et) ≤ 2
∑
t∈[T ]

log

(
1 + κmax

i∈St

∥z̃i,t∥2H′−1
t

1(Et)

)

= 2 log
∏
t∈[T ]

(
1 + κmax

i∈St

∥z̃i,t∥2H′−1
t

1(Et)

)

≤ 2 log

(
det(H ′

t+1)

λ2d

)
. (26)

Since we have det(H ′
t+1) ≤ (λ + (8TK/d))2d and 0 ≺ H ′

t ⪯ Ht, from the above inequality and
(26), we can conclude

T∑
t=1

max
i∈St

∥z̃i,t∥2H−1
t
1(Et) ≤

T∑
t=1

max
i∈St

∥z̃i,t∥2H′−1
t

1(Et) ≤ (4d/κ) log(1 + (8TK/dλ)).
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Now we provide a proof for the third inequality in this lemma. Then we have

G̃t(θ̂t)

:=
∑
i∈St

Pt,θ̂t
(i|St, pt)zi,t(pi,t)zi,t(pi,t)

⊤
1(Et)

−
∑
i∈St

∑
j∈St

Pt,θ̂t
(i|St, pt)Pt,θ̂t

(j|St, pt)zi,t(pi,t)zj,t(pj,t)
⊤
1(Et)

=
∑
i∈St

Pt,θ̂t
(i|St, pt)zi,t(pi,t)zi,t(pi,t)

⊤
1(Et)

−
∑

i∈St∪{i0}

∑
j∈St∪{i0}

Pt,θ̂t
(i|St, pt)Pt,θ̂t

(j|St, pt)zi,t(pi,t)zj,t(pj,t)
⊤
1(Et)

= Ei∼P
t,θ̂t

(·|St,pt)[zi,t(pi,t)zi,t(pi,t)
⊤]1(Et)

− Ei∼P
t,θ̂t

(·|St,pt)[zi,t(pi,t)]Ei∼P
t,θ̂t

(·|St,pt)[zi,t(pi,t)]
⊤
1(Et)

= Ei∼P
t,θ̂t

(·|St,pt)[z̃i,tz̃
⊤
i,t]1(Et)

⪰
∑
i∈St

Pt,θ̂t
(i|St, pt)z̃i,tz̃

⊤
i,t1(Et). (27)

Define H ′
t := λI2d +

∑t−1
s=1 G̃s(θ̂s). Then by following the same proof steps, we can show that

det(H ′
t+1) ≥ (2λ)2d

t∏
s=1

(
1 +

∑
i∈Ss

Ps,θ̂s
(i|Ss, ps)∥z̃i,s∥H′−1

s
1(Es)

)
(28)

Since, under Et, we have ∥zi,t(pi,t)∥2 ≤ ∥xi,t∥2 + ∥wi,t∥2 ≤ 2 implying that ∥z̃i,t∥22 ≤ 16. Then,
from the above inequality and λ ≥ 16, using the fact that x ≤ 2 log(1 + x) for any x ∈ [0, 1] and∑

i∈St
Pt,θ̂t

(i|St, pt)∥z̃i,t∥2H′−1
t

1(Et) ≤ maxi∈St
∥z̃i,t∥221(Et)/λ ≤ 1, we have

∑
t∈[T ]

∑
i∈St

Pt,θ̂t
(i|St, pt)∥z̃i,t∥2H′−1

t
1(Et) ≤ 2

∑
t∈[T ]

log

(
1 +

∑
i∈St

Pt,θ̂t
(i|St, pt)∥z̃i,t∥2H′−1

t
1(Et)

)

= 2 log
∏
t∈[T ]

(
1 +

∑
i∈St

Pt,θ̂t
(i|St, pt)∥z̃i,t∥2H′−1

t
1(Et)

)

≤ 2 log

(
det(H ′

t+1)

λ2d

)
.

(29)

Since we have det(H ′
t+1) ≤ (λ + (8TK/d))2d and 0 ≺ H ′

t ⪯ Ht, from the above inequality and
(29), we can conclude

T∑
t=1

∑
i∈St

Pt,θ̂t
(i|St, pt)∥z̃i,t∥2H−1

t
1(Et) ≤

T∑
t=1

∑
i∈St

Pt,θ̂t
(i|St, pt)∥z̃i,t∥2H′−1

t
1(Et)

≤ 4d log(1 + (8TK/dλ)).
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Lemma 6
T∑

t=1

max
i∈St

∥xi,t∥2H−1
v,t
≤ (2d/κ) log(1 + (TK/dλ)),

T∑
t=1

max
i∈St

∥x̃i,t∥2H−1
v,t
≤ (2d/κ) log(1 + (4TK/dλ)),

T∑
t=1

max
i∈St

Pt,θ̂t
(i|St, pt)∥x̃i,t∥H−1

v,t
≤ 2d log(1 + (4TK/dλ)).

Proof By following the proof steps in Lemma 5, we can prove the inequalities.

Here we provide a lemma regarding the probability of the good event Et. We define

β2
1 := η(6 log(1 + (K + 1)t) + 6)

(
17

16
λ+ 2

√
λ log

(
2
√
1 + 2tT 2

)
+ 16

(
log(2

√
1 + 2tT 2)

)2)
+ 4η

+ 2η
√
6cd log(1 + (t+ 1)/2λ) + 16λ

and for τ ≥ 1,

β2
τ+1 := η(6 log(1 + (K + 1)t) + 6)

(
17

16
λ+ 2

√
λ log

(
2
√
1 + 2tT 2

)
+ 16

(
log(2

√
1 + 2tT 2)

)2)
+ 4η

+ 2η
√
6cd log(1 + (t+ 1)/2λ) + β2

τ .

Lemma 7 Let c = 2η, λ ≥ max{192
√
2η, 84dη}, and η = 1

2 log(K+1)+3. Then for 1 ≤ t ≤ t2,
we have

P(Et) ≥ 1− 1

T 2
,

and for τ ≥ 2 and tτ + 1 ≤ t ≤ tτ+1, we have

P(Et|Etτ ) ≥ 1− 1

T 2
.

Proof The proof is provided in Appendix A.6

Lemma 8
P(ET ) ≥ 1− 2

T
.

Proof Recall Et = {∥θ̂s − θ∗∥Hs
≤ βs,∀s ≤ t}. For the time step tτ + 1 ≤ t ≤ tτ+1 for

τ ≥ 2, since E1 ⊆ E2, . . . ,⊆ ET , from Lemma 7 we have P(Et|Etτ ) = P(Et)/P(Etτ ) ≥ 1− 1
T 2

implying P(Et) ≥
(
1− 1

T 2

)
P(Etτ ). Likewise, we have P(Etτ ) ≥

(
1− 1

T 2

)
P(Etτ−1

). We also
have P(Et) ≥ 1− 1

T 2 for 1 ≤ t ≤ t2.

Therefore, from τT ≤ T , we can obtain

P(ET ) ≥
(
1− 1

T 2

)
P(EtτT

) ≥
(
1− 1

T 2

)T−1

P(Et2) ≥
(
1− 1

T 2

)T

.

Let X =
(
1− 1

T 2

)T
. By using the fact that 1− 1

x ≤ log(x) ≤ x− 1 for x > 0, we have

X − 1 ≥ log(X) = T log

(
1− 1

T 2

)
≥ T

(
1− 1

1− 1
T 2

)
=
−T

T 2 − 1
,
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which conclude that P(ET ) ≥ 1− T
T 2−1 ≥ 1− 2

T .

Now we provide a bound for the total number of estimation updates, τT . Using Lemma 13, under
ET , with ∥zi,t(pi,t)∥2 ≤ 2 and zi,t(pi,t) ∈ R2d, we can show that det(HT+1) ≤ (λ+(2TK/d))2d.
Therefore, from the update procedure in the algorithm, τT satisfies 2τT ≤ 2(λ+(TK/2d))2d, which
implies τT = O(d log(TK)). Then we have

E[βτT ] = E[βτT |ET ]P(ET ) + E[βτT |Ec
T ]P(Ec

T )

≤ C1d
√

log(KT ) log(T ) log(K) + E[βτT |Ec
T ]P(Ec

T )

≤ C1d
√

log(KT ) log(T ) log(K) + C1

√
dT log(T ) log(K)(2/T )

= Õ(d), (30)

where the second inequality is obtained from P(Ec
T ) ≤ 2

T and τT ≤ T . Likewise, we have

E[β2
τT ] = E[β2

τT |ET ]P(ET ) + E[β2
τT |E

c
T ]P(Ec

T )

≤ C2
1d

2log(KT ) log(T )2 log(K)2 + E[β2
τT |E

c
T ]P(Ec

T )

≤ C2
1d

2log(KT ) log(T )2 log(K)2 + C2
1dT log(T )2 log(K)2(2/T )

= Õ(d2), (31)

Then from Lemmas 3, 4, 5, 8, and (17), (30), (31), using the fact that Ec
1 ⊆ Ec

2, . . . ,⊆ Ec
T , we

obtain

Rπ(T ) =
∑
t∈[T ]

E[Rt(S
∗
t , p

∗
t )−Rt(St, pt)]

=
∑
t∈[T ]

E[(Rt(S
∗
t , p

∗
t )−Rt(St, pt))1(Et)] +

∑
t∈[T ]

E[(Rt(S
∗
t , p

∗
t )−Rt(St, pt))1(E

c
t )]

≤
∑
t∈[T ]

E[(Rt(S
∗
t , p

∗
t )−Rt(St, pt))1(Et)] +

∑
t∈[T ]

P(Ec
T )

≤
∑
t∈[T ]

E

[(∑
i∈St

vi,t exp(ui,t)

1 +
∑

i∈St
exp(ui,t)

−
∑

i∈St
v+i,t exp(u

p
i,t)

1 +
∑

i∈St
exp(up

i,t)

)
1(Et)

]
+O(1)

≤
∑
t∈[T ]

E

[(∑
i∈St

vi,t exp(ui,t)

1 +
∑

i∈St
exp(ui,t)

−
∑

i∈St
v+i,t exp(ui,t)

1 +
∑

i∈St
exp(ui,t)

+

∑
i∈St

v+i,t exp(ui,t)

1 +
∑

i∈St
exp(ui,t)

−
∑

i∈St
v+i,t exp(u

p
i,t)

1 +
∑

i∈St
exp(up

i,t)

)
1(Et)

]
+O(1)
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= O

E

βτT

∑
t∈[T ]

(
max
i∈St

∥xi,t∥H−1
v,t

+
∑
i∈St

Pt,θ̂t
(i|St, pt)

(
∥x̃i,t∥H−1

v,t
+ ∥z̃i,t∥H−1

t

))
1(Et)


+E

β2
τT

∑
t∈[T ]

(
max
i∈St

∥xi,t∥2H−1
v,t

+max
i∈St

∥zi,t(pi,t)∥2H−1
t

+max
i∈St

∥x̃i,t∥2H−1
v,t

+max
i∈St

∥z̃i,t∥2H−1
t

)
1(Et)


= Õ

E

βτT

√
T

√∑
t∈[T ]

max
i∈St

∥xi,t∥2H−1
v,t

+ βτT

√∑
t∈[T ]

∑
i∈St

Pt,θ̂t
(i|St, pt)×

√∑
t∈[T ]

∑
i∈St

Pt,θ̂t
(i|St, pt)∥x̃i,t∥2H−1

v,t

+

√∑
t∈[T ]

∑
i∈St

Pt,θ̂t
(i|St, pt)∥z̃i,t∥2H−1

t

1(Et)

+
d

κ
E[β2

τT ]


= Õ

(
E[βτT ]

√
dT/κ+

d3

κ

)
= Õ

(
d3/2

√
T

κ
+

d3

κ

)
.

A.3 PROOF OF THEOREM 2

Let τt be the value of τ at time t according to the update procedure in the algorithm. We first define
event Et = {∥θ̂s − θ∗∥Hs

≤ βτs ,∀s ≤ t}. Then we can observe ET ⊂ ET−1, . . . ,⊂ E1 and
P(ET ) ≥ 1− 1/T from Lemma 8. From Lemma 1, under Et, we have

v+i,t ≤ vi,t. (32)

We let γt = βτt

√
8d log(Mt) and filtration Ft−1 be the σ-algebra generated by random variables

before time t. In the following, we provide a lemma for error bounds of TS indexes.

Lemma 9 For any given Ft−1, with probability at least 1−O(1/t2), for all i ∈ [N ], we have

|ṽi,t − x⊤
i,tθ̂v,t| ≤ γt∥xi,t∥H−1

v,t
and |ũi,t − zi,t(pi,t)

⊤θ̂t| ≤ 8Cγt(∥zi,t(pi,t)∥H−1
t

+ ∥xi,t∥H−1
v,t

).

Proof We can show this lemma by adopting proof techniques of Lemma 10 in Oh & Iyengar (2019).
We first provide a proof of the first inequality in this lemma. Given Ft−1, Gaussian random variable
x⊤
i,tθ̃

(m)
v,t has mean x⊤

i,tθ̂t and standard deviation βτt∥xi,t∥H−1
t

. Let m′ = argmaxm∈M x⊤
i,tθ̃

(m)
v,t .

Then we have

| max
m∈[M ]

x⊤
i,tθ̃

(m)
v,t − x⊤

i,tθ̂t| = |x⊤
i,t(θ̃

(m′)
v,t − θ̂t)|

= |x⊤
i,tH

−1/2
v,t H

1/2
v,t (θ̃

(m′)
v,t − θ̂t)|

≤ βτt∥xi,t∥H−1
v,t
∥β−1

τt H
1/2
v,t (θ̃

(m′)
v,t − θ̂t)∥2

≤ βτt∥xi,t∥H−1
v,t

max
m∈[M ]

∥β−1
τt H

1/2
v,t (θ̃

(m)
v,t − θ̂t)∥2

= βτt∥xi,t∥H−1
v,t

max
m∈[M ]

∥ξv,m∥2,

where each element in ξv,m is a standard normal random variable, which concludes the proof of
the last inequality in this lemma from maxm∈[M ] ∥ξv,m∥2 ≤

√
4d log(Mt) with probability at least

1− 1
t2 .
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Now we provide a proof for the second inequality in this lemma. Let m∗ = argmaxm∈[M ] x
⊤
i,tθ̃

(m)
t .

Then we have

| max
m∈[M ]

zi,t(pi,t)
⊤θ̃

(m)
t − zi,t(pi,t)

⊤θ̂t + 8Cη̃i,t|

≤ |zi,t(pi,t)⊤(θ̃(m
∗)

t − θ̂t)|+ 8C|x⊤
i,t(θ̃

(m′)
v,t − θ̂v,t)|

= |zi,t(pi,t)⊤H−1/2
t H

1/2
t (θ̃

(m∗)
t − θ̂t)|+ 8C|x⊤

i,tH
−1/2
v,t H

1/2
v,t (θ̃

(m′)
v,t − θ̂v,t)|

≤
√
2βτt∥zi,t(pi,t)∥H−1

t
∥(
√
2βτt)

−1H
1/2
t (θ̃

(m∗)
t − θ̂t)∥2 + 8Cβτt∥xi,t∥H−1

v,t
∥β−1

τt H
1/2
v,t (θ̃

(m′)
v,t − θ̂v,t)∥2

≤
√
2βτt∥zi,t(pi,t)∥H−1

t
max
m∈[M ]

∥(
√
2βτt)

−1H
1/2
t (θ̃

(m)
t − θ̂t)∥2

+ 8Cβτt∥xi,t∥H−1
v,t

max
m∈[M ]

∥β−1
τt H

1/2
v,t (θ̃

(m)
v,t − θ̂v,t)∥2

=
√
2βτt∥zi,t(pi,t)∥H−1

t
max
m∈[M ]

∥ξm∥2 + 8Cβτt∥xi,t∥H−1
v,t

max
m∈[M ]

∥ξv,m∥2,

where each element in ξm and ξv,m is a standard normal random variable. We use the fact that
∥ξm∥2 ≤

√
8d log(t) and ∥ξv,m∥2 ≤

√
4d log(t) with probability at least 1 − 2

t2 . By using union
bound for all m ∈ [M ], with probability at least 1−O(1/t2), we have∣∣∣∣ max
m∈[M ]

zi,t(pi,t)
⊤θ̃

(m)
t − zi,t(pi,t)

⊤θ̂t

∣∣∣∣ ≤ (√8d log(Mt)
)
βτt(
√
2∥zi,t(pi,t)∥H−1

t
+ 8C∥xi,t∥H−1

v,t
)

≤ 8Cγt(∥zi,t(pi,t)∥H−1
t

+ ∥xi,t∥H−1
v,t

),

which concludes the proof.

For notation simplicity, we use up
i,t = zi,t(pi,t)

⊤θ∗. We define A∗
t = {i ∈ S∗

t : p∗i,t ≤ vi,t}. As in
(14) and (16), under Et, we have

Rt(S
∗
t , p

∗
t )−Rt(St, pt)

=

∑
i∈A∗

t
p∗i,t exp(ui,t)

1 +
∑

i∈A∗
t
exp(ui,t)

−
∑

i∈St
v+i,t exp(u

p
i,t)1(v

+
i,t ≤ vi,t)

1 +
∑

i∈St
exp(up

i,t)1(v
+
i,t ≤ vi,t)

≤
∑

i∈A∗
t
vi,t exp(ui,t)

1 +
∑

i∈A∗
t
exp(ui,t)

−
∑

i∈St
v+i,t exp(u

p
i,t)1(v

+
i,t ≤ vi,t)

1 +
∑

i∈St
exp(up

i,t)1(v
+
i,t ≤ vi,t)

=

∑
i∈A∗

t
vi,t exp(ui,t)

1 +
∑

i∈A∗
t
exp(ui,t)

−
∑

i∈St
v+i,t exp(u

p
i,t)

1 +
∑

i∈St
exp(up

i,t)
. (33)

In what follows, we provide several definitions of sets and events for the analysis of Thompson sam-
pling. Regarding the valuation, we first define ṽi,t(Θv) = maxm∈[M ] x

⊤
i,tθ

(m)
v for Θv = {θ(m)

v ∈
Rd}m∈[M ] and define sets

Θ̃v,t =
{
Θv ∈ Rd×M :

∣∣∣ṽi,t(Θv)− x⊤
i,tθ̂v,t

∣∣∣ ≤ γt∥xi,t∥H−1
v,t
∀i ∈ [N ]

}
and

Θ̃′
v,t =

{
Θv ∈ Rd×M : ṽi,t(Θ) ≥ vi,t ∀i ∈ [N ]

}
∩ Θ̃t.

Then we define event Ẽv,t = {{θ̃(m)
v,t }m∈[M ] ∈ Θ̃′

v,t}.

Regarding the utility, we define ũi,t(Θu,Θv) = maxm∈[M ] zi,t(pi,t)
⊤θ(m) +

maxm∈[M ] zi,t(pi,t)
⊤(θ

(m)
v − θ̂v,t) for Θu = {θ(m) ∈ R2d}m∈[M ] and Θv = {θ(m)

v ∈ Rd}m∈[M ],
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and define sets

Θ̃t =

{
Θu ×Θv ∈ R2d×M × Rd×M :

∣∣∣ũi,t(Θu,Θv)− zi,t(pi,t)
⊤θ̂t

∣∣∣
≤ 8Cγt(∥zi,t(pi,t)∥H−1

t
+ ∥xi,t∥H−1

v,t
) ∀i ∈ [N ]

}

and Θ̃′
t =

{
Θu ×Θv ∈ R2d×M × Rd×M : ũi,t(Θu,Θv) ≥ ui,t ∀i ∈ [N ]

}
∩ Θ̃t

Then we define event Ẽu,t = {{θ̃(m)
t }m∈[M ]×{θ̃

(m)
v,t }m∈[M ] ∈ Θ̃′

t}. For the ease of presentation, we
define Ẽt = Ẽv,t∩ Ẽu,t. In the following, we provide a lemma that will be used for following regret
analysis. Let z̃i,t = zi,t(pi,t)− Ej∼P

t,θ̂t
(·|St,pt)[zi,t(pi,t)] and x̃i,t = xi,t − Ej∼P

t,θ̂t
(·|St,pt)[xi,t].

Lemma 10 For t ∈ [T ], under Ẽu,t and Et, we have

sup
Θu×Θv∈Θ̃t

(∑
i∈St

ṽi,t exp(ũi,t)

1 +
∑

i∈St
exp(ũi,t)

−
∑

i∈St
v+i,t exp(ũi,t(Θu,Θv))

1 +
∑

i∈St
exp(ũi,t(Θu,Θv))

)

= O

(
γ2
t (max

i∈St

∥zi,t(pi,t)∥2H−1
t

+max
i∈St

∥xi,t∥2H−1
v,t

) + γ2
t (max

i∈St

∥z̃i,t∥2H−1
t

+max
i∈St

∥x̃i,t∥2H−1
v,t

)

+ γt
∑
i∈St

Pt,θ̂t
(i|St, pt)(∥z̃i,t∥H−1

t
+ ∥x̃i,t∥H−1

v,t
) + γt max

i∈St

∥xi,t∥H−1
v,t

)
.

Proof We define ũ′
i,t = zi,t(pi,t)

⊤θ∗ + 9Cγt(∥zi,t(pi,t)∥H−1
t

+ ∥xi,t∥H−1
v,t

). Then from Ẽu,t and
Et, we have

ũi,t ≤ zi,t(pi,t)
⊤θ̂t + 8Cγt(∥zi,t(pi,t)∥H−1

t
+ ∥xi,t∥H−1

v,t
)

≤ zi,t(pi,t)
⊤θ∗ + βτt∥zi,t(pi,t)∥H−1

t
+ 8Cγt(∥zi,t(pi,t)∥H−1

t
+ ∥xi,t∥H−1

v,t
)

≤ ũ′
i,t.

From the definition of St, we have ṽi,t ≥ 0 for i ∈ St. This is because if ṽi,t < 0 for some i ∈ [N ]
then i /∈ St. Then as in (15), we can show that∑

i∈St
ṽi,t exp(ũi,t)

1 +
∑

i∈St
exp(ũi,t)

≤
∑

i∈St
ṽi,t exp(ũ

′
i,t)

1 +
∑

i∈St
exp(ũ′

i,t)
.

Then we have∑
i∈St

ṽi,t exp(ũi,t)

1 +
∑

i∈St
exp(ũi,t)

−
∑

i∈St
v+i,t exp(ũi,t(Θu,Θv))

1 +
∑

i∈St
exp(ũi,t(Θu,Θv))

≤
∑

i∈St
ṽi,t exp(ũ

′
i,t)

1 +
∑

i∈St
exp(ũ′

i,t)
−
∑

i∈St
v+i,t exp(ũi,t(Θu,Θv))

1 +
∑

i∈St
exp(ũi,t(Θu,Θv))

≤
∑

i∈St
ṽi,t exp(ũ

′
i,t)

1 +
∑

i∈St
exp(ũ′

i,t)
−
∑

i∈St
v+i,t exp(ũ

′
i,t)

1 +
∑

i∈St
exp(ũ′

i,t)
+

∑
i∈St

v+i,t exp(ũ
′
i,t)

1 +
∑

i∈St
exp(ũ′

i,t)
−
∑

i∈St
v+i,t exp(ũi,t(Θu,Θv))

1 +
∑

i∈St
exp(ũi,t(Θu,Θv))

.

(34)

We define ûi,t = zi,t(pi,t)
⊤θ̂t. Then, for the first two terms in the above, we have
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∑
i∈St

ṽi,t exp(ũ
′
i,t)

1 +
∑

i∈St
exp(ũ′

i,t)
−
∑

i∈St
v+i,t exp(ũ

′
i,t)

1 +
∑

i∈St
exp(ũ′

i,t)
=

∑
i∈St

(ṽi,t − v+i,t) exp(ũ
′
i,t)

1 +
∑

i∈St
exp(ũ′

i,t)

≤
∑

i∈St
(ṽi,t − vi,t) exp(ũ

′
i,t)

1 +
∑

i∈St
exp(ũ′

i,t)
≤
∑

i∈St
(|ṽi,t − x⊤

i,tθ̂v,t|+ |x⊤
i,tθ̂v,t − vi,t|) exp(ũ′

i,t)

1 +
∑

i∈St
exp(ũ′

i,t)

=

∑
i∈St

(γt + βt)∥xi,t∥H−1
v,t

exp(ũ′
i,t)

1 +
∑

i∈St
exp(ũ′

i,t)
≤

∑
i∈St

2γt∥xi,t∥H−1
v,t

exp(ũ′
i,t)

1 +
∑

i∈St
exp(ũ′

i,t)
≤ 2γt max

i∈St

∥xi,t∥H−1
v,t

.

(35)

For the latter two terms in (34), by following the same proof technique in Lemma 4 and using
the fact that |ũ′

i,t − ũi,t(Θu,Θv)| ≤ |ũ′
i,t − zi,t(pi,t)

⊤θ̂t| + |zi,t(pi,t)⊤θ̂t − ũi,t(Θu,Θv)| =

O(γt(∥zi,t(pi,t)∥H−1
t

+ ∥xi,t∥H−1
v,t

)) from Et and Θu × Θv ∈ Θ̃t with βt ≤ γt, we can show
that

sup
Θu×Θv∈Θ̃t

(∑
i∈St

v+i,t exp(ũ
′
i,t)

1 +
∑

i∈St
exp(ũ′

i,t)
−
∑

i∈St
v+i,t exp(ũi,t(Θu,Θv))

1 +
∑

i∈St
exp(ũi,t(Θu,Θv))

)

= O

(
γ2
t (max

i∈St

∥zi,t(pi,t)∥2H−1
t

+max
i∈St

∥xi,t∥2H−1
v,t

) + γ2
t (max

i∈St

∥z̃i,t∥2H−1
t

+max
i∈St

∥x̃i,t∥2H−1
v,t

)

+γt
∑
i∈St

Pt,θ̂t
(i|St, pt)(∥z̃i,t∥H−1

t
+ ∥x̃i,t∥H−1

v,t
)

)
, (36)

We can conclude the proof from (34), (35), and (36).

Then, for a bound of instantaneous regret of (33), we have

E

[
E

[(∑
i∈A∗

t
vi,t exp(ui,t)

1 +
∑

i∈A∗
t
exp(ui,t)

−
∑

i∈St
v+i,t exp(u

p
i,t)

1 +
∑

i∈St
exp(up

i,t)

)
1(Et) | Ft−1

]]

≤ E

[
E

[(∑
i∈A∗

t
vi,t exp(ui,t)

1 +
∑

i∈A∗
t
exp(ui,t)

− inf
Θu×Θv∈Θ̃t

max
S⊆[N ]:|S|≤K

∑
i∈S v+i,t exp(ũi,t(Θu,Θv))

1 +
∑

i∈S exp(ũi,t(Θu,Θv))

)
1(Et) | Ft−1

]]

= E

[
E

[(∑
i∈A∗

t
vi,t exp(ui,t)

1 +
∑

i∈A∗
t
exp(ui,t)

− inf
Θu×Θv∈Θ̃t

max
S⊆[N ]:|S|≤K

∑
i∈S v+i,t exp(ũi,t(Θu,Θv))

1 +
∑

i∈S exp(ũi,t(Θu,Θv))

)
1(Et) | Ft−1, Ẽt

]]

≤ E

[
E

[(∑
i∈A∗

t
vi,t exp(ũi,t)

1 +
∑

i∈A∗
t
exp(ũi,t)

− inf
Θu×Θv∈Θ̃t

∑
i∈St

v+i,t exp(ũi,t(Θu,Θv))

1 +
∑

i∈St
exp(ũi,t(Θu,Θv))

)
1(Et) | Ft−1, Ẽt

]]

≤ E

[
E

[(∑
i∈A∗

t
ṽi,t exp(ũi,t)

1 +
∑

i∈A∗
t
exp(ũi,t)

− inf
Θu×Θv∈Θ̃t

∑
i∈St

v+i,t exp(ũi,t(Θu,Θv))

1 +
∑

i∈St
exp(ũi,t(Θu,Θv))

)
1(Et) | Ft−1, Ẽt

]]

≤ E

[
E

[(∑
i∈St

ṽi,t exp(ũi,t)

1 +
∑

i∈St
exp(ũi,t)

− inf
Θu×Θv∈Θ̃t

∑
i∈St

v+i,t exp(ũi,t(Θu,Θv))

1 +
∑

i∈St
exp(ũi,t(Θu,Θv))

)
1(Et) | Ft−1, Ẽt

]]

= E

[
E

[
sup

Θu×Θv∈Θ̃t

(∑
i∈St

ṽi,t exp(ũi,t)

1 +
∑

i∈St
exp(ũi,t)

−
∑

i∈St
v+i,t exp(ũi,t(Θu,Θv))

1 +
∑

i∈St
exp(ũi,t(Θu,Θv))

)
1(Et) | Ft−1, Ẽt

]]

= O

(
E
[
E
[(

γ2
t (max

i∈St

∥zi,t(pi,t)∥2H−1
t

+max
i∈St

∥xi,t∥2H−1
v,t

) + γ2
t (max

i∈St

∥z̃i,t∥2H−1
t

+max
i∈St

∥x̃i,t∥2H−1
v,t

)

+γt
∑
i∈St

Pt,θ̂t
(i|St, pt)(∥z̃i,t∥H−1

t
+ ∥x̃i,t∥H−1

v,t
) + γt max

i∈St

∥xi,t∥H−1
v,t

)

)
1(Et) | Ft−1, Ẽt

]])
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= O

(
E
[
E
[
γ2
t (max

i∈St

∥zi,t(pi,t)∥2H−1
t

+max
i∈St

∥xi,t∥2H−1
v,t

) + γ2
t (max

i∈St

∥z̃i,t∥2H−1
t

+max
i∈St

∥x̃i,t∥2H−1
v,t

)

+γt
∑
i∈St

Pt,θ̂t
(i|St, pt)(∥z̃i,t∥H−1

t
+ ∥x̃i,t∥H−1

v,t
) + γt max

i∈St

∥xi,t∥H−1
v,t
| Ft−1, Ẽt, Et

]
× P(Et|Ẽt,Ft−1)

])

= O

(
E
[
E
[
γ2
t (max

i∈St

∥zi,t(pi,t)∥2H−1
t

+max
i∈St

∥xi,t∥2H−1
v,t

) + γ2
t (max

i∈St

∥z̃i,t∥2H−1
t

+max
i∈St

∥x̃i,t∥2H−1
v,t

)

+γt
∑
i∈St

Pt,θ̂t
(i|St, pt)(∥z̃i,t∥H−1

t
+ ∥x̃i,t∥H−1

v,t
) + γt max

i∈St

∥xi,t∥H−1
v,t
| Ft−1, Ẽt, Et

]
P(Et|Ft−1)

])
,

(37)

where the first equality comes from the independency of Ẽt given Ft−1, the second inequality is
obtained from ui,t ≤ ũi,t under the event Ẽt and from the definition of St, the third inequality is
obtained from the fact that v+i,t ≤ ṽ+i,t under Ẽt, the third last equality is obtained from Lemma 10,
and the last equality comes from independence between Et and Ẽt given Ft−1.

We provide a lemma below for further analysis.

Lemma 11 For all t ∈ [T ], we have

P (ṽi,t ≥ vi,t and ũi,t ≥ ui,t ∀i ∈ [N ] | Ft−1, Et) ≥
1

4
√
eπ

.

Proof GivenFt−1, x⊤
i,tθ̃

(m)
v,t follows Gaussian distribution with mean x⊤

i,tθ̂v,t and standard deviation
βτt∥xi,t∥H−1

v,t
. Then we have

P
(

max
m∈[M ]

x⊤
i,tθ̃

(m)
v,t ≥ x⊤

i,tθv ∀i ∈ [N ]|Ft−1, Et

)
≥ 1−NP

(
x⊤
i,tθ̃

(m)
v,t < x⊤

i,tθv ∀m ∈ [M ]|Ft−1, Et

)
≥ 1−NP

(
Zm <

x⊤
i,tθv − x⊤

i,tθ̂v,t

βτt∥xi,t∥H−1
v,t

∀m ∈ [M ]|Ft−1, Et

)
≥ 1−NP (Z < 1)

M
,

where Zm and Z are standard normal random variables. Likewise, we have

P
(

max
m1∈[M ]

zi,t(pi,t)
⊤θ̃

(m1)
t + 8C max

m2∈[M ]
(x⊤

i,tθ̃
(m2)
v,t − x⊤

i,tθ̂v,t) ≥ zi,t(p
∗
i,t)

⊤θ∗ ∀i ∈ [N ] | Ft−1, Et

)
≥ P

(
max
m∈[M ]

zi,t(pi,t)
⊤θ̃

(m)
t + 8C(x⊤

i,tθ̃
(m)
v,t − x⊤

i,tθ̂v,t) ≥ zi,t(p
∗
i,t)

⊤θ∗ ∀i ∈ [N ] | Ft−1, Et

)
≥ 1−NP

(
zi,t(pi,t)

⊤θ̃
(m)
t + 8C(x⊤

i,tθ̃
(m)
v,t − x⊤

i,tθ̂v,t) < zi,t(p
∗
i,t)

⊤θ∗ ∀m ∈ [M ] | Ft−1, Et

)
= 1−NP

(
zi,t(pi,t)

⊤θ̃
(m)
t − zi,t(pi,t)

⊤θ̂t + 8C(x⊤
i,tθ̃

(m)
v,t − x⊤

i,tθ̂v,t)

βτt

√
2∥zi,t(pi,t)∥2H−1

t

+ 8C∥xi,t∥2H−1
v,t

×
βτt

√
2∥zi,t(pi,t)∥2H−1

t

+ 8C∥xi,t∥2H−1
v,t

βτt(∥zi,t(pi,t)∥H−1
t

+ 2
√
C∥xi,t∥H−1

v,t
)

<
zi,t(p

∗
i,t)

⊤θ∗ − zi,t(pi,t)
⊤θ̂t

βτt(∥zi,t(pi,t)∥V −1
t

+ 2
√
C∥xi,t∥V −1

v,t
)
∀m ∈ [M ] | Ft−1, Et

)
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≥ 1−NP

Zm

βτt

√
2∥zi,t(pi,t)∥2H−1

t

+ 8C∥xi,t∥2H−1
v,t

)

βτt(∥zi,t(pi,t)∥H−1
t

+ 2
√
C∥xi,t∥H−1

v,t
)

<
zi,t(p

∗
i,t)

⊤θ∗ − zi,t(pi,t)
⊤θ̂t

βτt(∥zi,t(pi,t)∥V −1
t

+ 2
√
C∥xi,t∥V −1

v,t
)
∀m ∈ [M ] | Ft−1, Et


≥ 1−NP

Zm <
zi,t(p

∗
i,t)

⊤θ∗ − zi,t(pi,t)
⊤θ̂t

βτt(∥zi,t(pi,t)∥V −1
t

+ 2
√
C∥xi,t∥V −1

v,t
)
∀m ∈ [M ] | Ft−1, Et


≥ 1−NP (Z < 1)

M
,

where the third last inequality is obtained from the fact that the variance of zi,t(pi,t)
⊤θ̃

(m)
t −

zi,t(pi,t)
⊤θ̂t +8C(x⊤

i,tθ̃
(m)
v,t − x⊤

i,tθ̂v,t) is β2
τt(2∥zi,t(pi,t)∥

2
H−1

t

+8C∥xi,t∥2H−1
v,t

) and second last in-

equality is obtained from
√

2(a2 + b2) ≥ (a+b), and the last inequality is obtained from ui,t ≤ ui,t

in Lemma 1 and independency for M samples.

Then using union bound, we have

P (ṽi,t ≥ vi,t and ũi,t ≥ ui,t ∀i ∈ [N ]|Ft−1, Et)

≥ 1− 2NP (Z < 1)
M

.

≥ 1− 2N(1− 1

4
√
eπ

)M

≥ 1

4
√
eπ

,

where the second last inequality is obtained from P(Z ≤ 1) ≤ 1 − 1/4
√
eπ using

the anti-concentration of standard normal distribution, and the last inequality comes from
M = ⌈1− log 2N

log(1−1/4
√
eπ)
⌉. This concludes the proof.

From Lemmas 9 and 11, for t ≥ t0 for some constant t0 > 0, we have

P(Ẽt|Ft−1, Et)

= P
(
ũi,t ≥ ui,t, ṽi,t ≥ vi,t ∀i ∈ [N ] and {θ̃(m)

v,t }m∈[M ] ∈ Θ̃v,t, {θ̃(m)
t }m∈[M ] × {θ̃

(m)
v,t }m∈[M ] ∈ Θ̃t|Ft−1, Et

)
= P (ũi,t ≥ ui,t, ṽi,t ≥ vi,t ∀i ∈ [N ]|Ft−1, Et)

− P
(
{θ̃(m)

v,t }m∈[M ] /∈ Θ̃v,t, {θ̃(m)
t }m∈[M ] × {θ̃

(m)
v,t }m∈[M ] /∈ Θ̃t|Ft−1, Et

)
≥ 1/4

√
eπ −O(1/t2)

≥ 1/8
√
eπ.

For simplicity of the proof, we ignore the time steps before (constant) t0, which does not affect our
final result. For simplicity, we also use

Lt = γ2
t (max

i∈St

∥zi,t(pi,t)∥2H−1
t

+max
i∈St

∥xi,t∥2H−1
v,t

) + γ2
t (max

i∈St

∥z̃i,t∥2H−1
t

+max
i∈St

∥x̃i,t∥2H−1
v,t

)

+ γt
∑
i∈St

Pt,θ̂t
(i|St, pt)(∥z̃i,t∥H−1

t
+ ∥x̃i,t∥H−1

v,t
) + γt max

i∈St

∥xi,t∥H−1
v,t

.

Hence, we have

E [Lt | Ft−1, Et] ≥ E
[
Lt | Ft−1, Et, Ẽt

]
P(Ẽt|Ft−1, Et)

≥ E
[
Lt | Ft−1, Et, Ẽt

]
1/8
√
eπ. (38)
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With (37) and (38), we have

E

[(∑
i∈A∗

t
vi,t exp(ui,t)

1 +
∑

i∈A∗
t
exp(ui,t)

−
∑

i∈St
v+i,t exp(u

p
i,t)

1 +
∑

i∈St
exp(up

i,t)

)
1(Et) | Ft−1

]
= O

(
E
[
Lt | Ft−1, Ẽt, Et

]
P(Et | Ft−1)

)
= O (E [Lt | Ft−1, Et]P(Et | Ft−1)) . (39)

Then from (33), (39), (30), (31) and Lemma 5, 6, 8, with Ec
T ⊃ Ec

T−1, . . . ,⊃ Ec
1, we have

Rπ(T ) =
∑
t∈[T ]

E[Rt(S
∗
t , p

∗
t )−Rt(St, pt)1(Et)] +

∑
t∈[T ]

E[Rt(S
∗
t , p

∗
t )−Rt(St, pt)1(E

c
t )]

≤
∑
t∈[T ]

E

[(∑
i∈A∗

t
p∗i,t exp(ui,t)

1 +
∑

i∈A∗
t
exp(ui,t)

−
∑

i∈St
v+i,t exp(u

p
i,t)1(v

+
i,t ≤ vi,t)

1 +
∑

i∈St
exp(up

i,t)1(v
+
i,t ≤ vi,t)

)
1(Et)

]
+
∑
t∈[T ]

P[Ec
T ]

= O

∑
t∈[T ]

E [E [Lt | Ft−1, Et]P(Et | Ft−1)]


= O

∑
t∈[T ]

E [Lt1(Et)]


= Õ

E

√dβτT

√
T

√∑
t∈[T ]

max
i∈St

∥xi,t∥2H−1
v,t

++
√
dβτT

√∑
t∈[T ]

∑
i∈St

Pt,θ̂t
(i|St, pt)×

√∑
t∈[T ]

∑
i∈St

Pt,θ̂t
(i|St, pt)∥x̃i,t∥2H−1

v,t

+

√∑
t∈[T ]

∑
i∈St

Pt,θ̂t
(i|St, pt)∥z̃i,t∥2H−1

t

1(Et)

+
d2

κ
E[βτ2

T
]


= Õ

(
E[βτT ]d

√
T/κ+

d4

κ

)
= Õ

(
d2
√
T/κ+

d4

κ

)
.

A.4 RANDOMNESS IN ACTIVATION FUNCTION

In this section, we study the case where there exists randomness in the activation function of C-
MNL. Let ζi,t be a zero-mean random noise drawn from the range of [−c, c] for some 0 < c ≤ 1.
Then the noisy activation is modeled in C-MNL as

P̃t(i|St, pt) =
exp(zi,t(pi,t)

⊤θ∗)1(pi,t ≤ (x⊤
i,tθv + ζi,t)

+)

1 +
∑

j∈St
exp(zj,t(pj,t)⊤θ∗)1(pj,t ≤ (x⊤

j,tθv + ζj,t)+)
.

A.4.1 ALGORITHM & REGRET ANALYSIS

Here we provide an algorithm (Algorithm 3) for the random activation C-MNL. The different part
from Algorithm 1 is in pricing strategy such that pi,t = (vi,t − c)+. The remaining parts are the
same.

Now we provide a regret bound of the algorithm in the following.

Theorem 3 Under Assumption 1, the policy π of Algorithm 3 achieves a regret bound of

Rπ(T ) = Õ
(
d

3
2

√
T/κ+ cT

)
.
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Algorithm 3 UCB-based Assortment-selection with Robust-LCB Pricing (UCBA-RLCBP)
Input: λ, η, βτ , c

Init: τ ← 1, t1 ← 1, θ̂v,(1) ← 0d
for t = 1, . . . , T do

H̃t ← λI2d +
∑t−2

s=1 Gs(θ̂s) + ηGt−1(θ̂t−1) with (3)
Ht ← λI2d +

∑t−1
s=1 Gs(θ̂s) with (3)

Hv,t ← λId +
∑t−1

s=1 Gv,s(θ̂s) with (3)
θ̂t ← argminθ∈Θ gt(θ̂t−1)

⊤θ + 1
2η∥θ − θ̂t−1∥2H̃−1

t

with (2) ; ▷ Estimation

if det(Ht) > 2 det(Htτ ) then
τ ← τ + 1; tτ ← t
θ̂v,(τ) ← θ̂v,tτ (= θ̂1:dtτ )

for i ∈ [N ] do
vi,t ← x⊤

i,tθ̂v,(τ) −
√
2βt∥xi,t∥H−1

v,t
; ▷ LCB for valuation

pi,t ← (vi,t − c)+ ; ▷ Price selection w/ LCB

vi,t ← x⊤
i,tθ̂v,t + βt∥xi,t∥H−1

v,t
; ▷ UCB for valuation

uc
i,t ← zi,t(pi,t)

⊤θ̂t + βt∥zi,t(pi,t)∥H−1
t

+ 2
√
2βt∥xi,t∥H−1

v,t
+ c ; ▷ UCB for utility

St ← argmaxS⊆[N ]:|S|≤L

∑
i∈S

vi,t exp(ui,t)
1+

∑
j∈S exp(uj,t)

; ▷ Assortment selection w/ UCB

Offer St with prices pt = {pi,t}i∈St

Observe preference (purchase) feedback yi,t ∈ {0, 1} for i ∈ St

Therefore, if we have c = O(1/
√
T ), the regret bound in the above theorem becomes Õ(d

3
2

√
T/κ)

same as that in Theorem 1 for the case without the noise in activation functions.

Proof Here we provide only the different parts from the proof of Theorem 1. Let vci,t = (vi,t − c)

and u′c
i,t = zi,t(pi,t)

⊤θ∗ + 2
√
2βτt∥zi,t(pi,t)∥H−1

t
+ 2
√
2βτt∥xi,t∥H−1

v,t
+ c. Then we can observe

that under Et, pi,t ≤ vi,t + ζi,t and ui,t ≤ u′
i,t. From (12) and Lemma 2, under Et, we have

Rt(S
∗
t , p

∗
t )−Rt(St, pt)

≤
∑

i∈St
vi,t exp(u

′c
i,t)

1 +
∑

i∈St
exp(u′c

i,t)
−
∑

i∈St
vc+i,t exp(u

′c
i,t)

1 +
∑

i∈St
exp(u′c

i,t)
+

∑
i∈St

vc+i,t exp(u
′c
i,t)

1 +
∑

i∈St
exp(u′c

i,t)
−
∑

i∈St
vc+i,t exp(u

p
i,t)

1 +
∑

i∈St
exp(up

i,t)
.

(40)

By following the proof of Lemmas 3 and 4, under Et , we can show that

(a)

∑
i∈St

vi,t exp(u
′
i,t)

1 +
∑

i∈St
exp(u′

i,t)
−
∑

i∈St
vc+i,t exp(u

′
i,t)

1 +
∑

i∈St
exp(u′

i,t)

= O

(
β2
τt max

i∈St

∥xi,t∥2H−1
v,t

+ β2
τt max

i∈St

∥zi,t(pi,t)∥2H−1
t

+ βτt max
i∈St

∥xi,t∥H−1
v,t

+ c

)
,

(b)

∑
i∈St

vc+i,t exp(u
′
i,t)

1 +
∑

i∈St
exp(u′

i,t)
−
∑

i∈St
vc+i,t exp(u

p
i,t)

1 +
∑

i∈St
exp(up

i,t)

= O

(
β2
τt(max

i∈St

∥zi,t(pi,t)∥2H−1
t

+max
i∈St

∥xi,t∥2H−1
v,t

) + β2
τt(max

i∈St

∥z̃i,t∥2H−1
t

+max
i∈St

∥x̃i,t∥2H−1
v,t

)

+βτt

∑
i∈St

Pt,θ̂t
(i|St, pt)(∥z̃i,t∥H−1

t
+ ∥x̃i,t∥H−1

v,t
) + c

)
.

Then by following the proof steps of Theorem 1, we can show that

Rπ(T ) = Õ

(
d

3
2

√
T/κ+ cT +

d3

κ

)
.
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A.5 PROOF OF LEMMA 4

Here we utilize some proof techniques in Lee & Oh (2024). Let Q(u) =
∑

i∈St
v+
i,t exp(ui)

1+
∑

i∈St
exp(ui)

and up
t =

[up
i,t : i ∈ St]. Then by applying a second-order Taylor expansion, there exists ξ′t = (1− c)up

t + cu′
t

for some c ∈ (0, 1) such that

∑
i∈St

v+i,t exp(u
′
i,t)

1 +
∑

i∈St
exp(u′

i,t)
−
∑

i∈St
v+i,t exp(u

p
i,t)

1 +
∑

i∈St
exp(up

i,t)

=
∑
i∈St

∇iQ(up
t )(u

′
i,t − up

i,t) +
1

2

∑
i∈St

∑
j∈St

(u′
i,t − up

i,t)∇ijQ(ξ′t)(u
′
i,t − up

i,t). (41)

Let xi0,t = 0d and wi0,t = 0d implying zi0,t = 02d. Then for the first order term in the above, we
have∑
i∈St

∇iQ(up
t )(u

′
i,t − up

i,t)

=
∑
i∈St

v+i,tPi,t(u
p
t )(u

′
i,t − up

i,t)−
∑

i,j∈St

v+i,tPi,t(u
p
t )Pj,t(u

p
t )(u

′
j,t − up

j,t)

=
∑
i∈St

2
√
Cβtv

+
i,tPi,t(u

p
t )(∥zi,t(pi,t)∥H−1

t
+ ∥xi,t∥H−1

v,t
)

−
∑

i,j∈St

2
√
Cβtv

+
i,tPi,t(u

p
t )Pj,t(u

p
t )(∥zj,t(pj,t)∥H−1

t
+ ∥xj,t∥H−1

v,t
)

=
∑
i∈St

2
√
Cβtv

+
i,tPi,t(u

p
t )

×

∥zi,t(pi,t)∥H−1
t
−
∑
j∈St

Pj,t(u
p
t )∥zj,t(pj,t)∥H−1

t
+ ∥xi,t∥H−1

v,t
−
∑
j∈St

Pj,t(u
p
t )∥xj,t∥H−1

v,t
)

 .

For the first two terms in the above, we have

∥zi,t(pi,t)∥H−1
t
−
∑
j∈St

Pj,t(u
p
t )∥zj,t(pj,t)∥H−1

t

= ∥zi,t(pi,t)∥H−1
t
−

∑
j∈St∪{i0}

Pj,t(u
p
t )∥zj,t(pj,t)∥H−1

t

= ∥zi,t(pi,t)∥H−1
t
− Ej∼Pt,θ∗ (·|St,pt)

[
∥zj,t(pj,t)∥H−1

t

]
≤ ∥zi,t(pi,t)∥H−1

t
−
∥∥∥Ej∼Pt,θ∗ (·|St,pt) [zj,t(pj,t)]

∥∥∥
H−1

t

≤
∥∥∥zi,t(pi,t)− Ej∼Pt,θ∗ (·|St,pt) [zj,t(pj,t)]

∥∥∥
H−1

t

,

where the first inequality is obtained from Jensen’s inequality and the last inequality is from ∥a∥ =
∥a− b+ b∥ ≤ ∥a− b∥+ ∥b∥. By following the proof steps in (H.1), (H.2), (H.3), and (H.4) in Lee
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& Oh (2024), we can show that∑
i∈St

v+i,tPi,t(u
p
t )
∥∥∥zi,t(pi,t)− Ej∼Pt,θ∗ (·|St,pt) [zj,t(pj,t)]

∥∥∥
H−1

t

≤
∑
i∈St

Pi,t(u
p
t )
∥∥∥zi,t(pi,t)− Ej∼Pt,θ∗ (·|St,pt) [zj,t(pj,t)]

∥∥∥
H−1

t

= O

(
βτt max

i∈St

∥zi,t(pi,t)∥2H−1
t

+ βτt max
i∈St

∥z̃i,t∥2H−1
t

+
∑
i∈St

Pt,θ̂t
(i|St, pt)∥z̃i,t∥H−1

t

)
,

where the first inequality is obtained from 0 ≤ v+i,t ≤ 1 under Et.

Then, likewise, we can show that∑
i∈St

v+i,tPi,t(u
p
t )

∥xi,t∥H−1
v,t
−
∑
j∈St

Pj,t(u
p
t )∥xj,t∥H−1

v,t


≤
∑
i∈St

Pi,t(u
p
t )
∥∥∥xi,t − Ej∼Pt,θ∗ (·|St,pt) [xj,t]

∥∥∥
H−1

v,t

= O

(
βτt max

i∈St

∥xi,t∥2H−1
v,t

+ βτt max
i∈St

∥x̃i,t∥2H−1
v,t

+
∑
i∈St

Pt,θ̂t
(i|St, pt)∥x̃i,t∥H−1

v,t

)
.

Putting the above results together, for the first-order term, we have∑
i∈St

∇iQ(ut)(u
′
i,t − ui,t)

= O

(
β2
τt(max

i∈St

∥zi,t(pi,t)∥2H−1
t

+max
i∈St

∥xi,t∥2H−1
v,t

) + β2
τt(max

i∈St

∥z̃i,t∥2H−1
t

+max
i∈St

∥x̃i,t∥2H−1
v,t

)

+βτt

∑
i∈St

Pt,θ̂t
(i|St, pt)(∥z̃i,t∥H−1

t
+ ∥x̃i,t∥H−1

v,t
)

)
. (42)

Now we provide a bound for the second order term. By following the proof steps in (H.6) in Lee &
Oh (2024) with 0 ≤ v+i,t ≤ 1 under Et, we can show that

1

2

∑
i,j∈St

(u′
i,t − ui,t)∇ijQ(ξ′t)(u

′
i,t − ui,t) = O

(
β2
τt(max

i∈St

∥zi,t(pi,t)∥2H−1
t

+max
i∈St

∥xi,t∥2H−1
v,t

)

)
.

(43)

Then we can conclude the proof by (41), (42), and (43).

A.6 PROOF OF LEMMA 7

For 1 ≤ t ≤ t2− 1, since pi,t = 0 from the algorithm, we have yi,t ∼ Pt(·|St, pt) = Pt,θ∗(·|St, pt).
Then from Lemma 1 in Lee & Oh (2024), for 1 ≤ t ≤ t2, we can show that P(Et) ≥ 1− 1

T 2 .

Now, we provide a proof for the time steps tτ + 1 ≤ t ≤ tτ+1 for τ ≥ 2. We utilize the proof
procedure in Lemma 1 in Lee & Oh (2024). The main difference lies in focusing on the conditional
probability for a good event in our proof. Under Etτ , for tτ ≤ t ≤ tτ+1 − 1, since vi,t ≤ vi,t, we
have yi,t ∼ Pt(·|St, pt) = Pt,θ∗(·|St, pt). Then from Lemma F.1 in the previous work, we can show
that for tτ + 1 ≤ t ≤ tτ+1, with η = 1

2 log(K + 1) + 3 and λ ≥ 1, we have

∥θ̂t − θ∗∥2Ht
≤ 2η

(
t−1∑
s=tτ

fs(θ
∗)− fs(θ̂s+1)

)
+ ∥θ̂tτ − θ∗∥2Htτ

+ 96
√
2η

t−1∑
s=tτ

∥θ̂s+1 − θ̂s∥22

−
t−1∑
s=tτ

∥θ̂s+1 − θ̂s∥2Hs
.

(44)

32



Published as a conference paper at ICLR 2025

Then from Lemmas 14 and 15, for any c > 0 with λ ≥ 84dη , we can show that with probability at
least 1− δ,

t−1∑
s=tτ

fs(θ
∗)− fs(θ̂s+1)

≤ (3 log(1 + (K + 1)t) + 3)

(
17

16
λ+ 2

√
λ log

(
2
√
1 + 2t/δ

)
+ 16

(
log(2

√
1 + 2t/δ)

)2)
+ 2

+
1

2c

t−1∑
s=tτ

∥θ̂s − θ̂s+1∥2Hs
+ 2
√
6cd log(1 + (t+ 1)/2λ). (45)

By setting c = 2η and with λ ≥ 192
√
2η, we have

96
√
2η

t−1∑
s=tτ

∥θ̂s+1 − θ̂s∥22 +
(η
c
− 1
) t−1∑

s=tτ

∥θ̂s+1 − θ̂s∥2Hs

= 96
√
2η

t−1∑
s=tτ

∥θ̂s+1 − θ̂s∥22 +
(η
c
− 1
) t−1∑

s=tτ

∥θ̂s+1 − θ̂s∥2Hs

≤
(
96
√
2η − λ

2

) t∑
s=tτ

∥θ̂s+1 − θ̂s∥22 ≤ 0, (46)

where the first inequality comes from Hs ⪰ λI2d. Set δ = 1/T 2. Then under Etτ , from (44), (45),
(46), with probability at least 1− 1/T 2, we obtain

∥θ̂t − θ∗∥2Ht

≤ η(6 log(1 + (K + 1)t) + 6)

(
17

16
λ+ 2

√
λ log

(
2
√
1 + 2tT 2

)
+ 16

(
log(2

√
1 + 2tT 2)

)2)
+ 4η

+ 4η
√
6cd log(1 + (t+ 1)/2λ) + ∥θ̂tτ − θ∗∥2Htτ

≤ η(6 log(1 + (K + 1)t) + 6)

(
17

16
λ+ 2

√
λ log

(
2
√
1 + 2tT 2

)
+ 16

(
log(2

√
1 + 2tT 2)

)2)
+ 4η

+ 4η
√
6cd log(1 + (t+ 1)/2λ) + β2

τ = β2
τ+1.

Finally, we can conclude that, for 1 ≤ t ≤ t2, we have P(Et) ≥ 1 − 1
T 2 , and for τ ≥ 2 and

tτ + 1 ≤ t ≤ tτ+1, we have P(Et|Etτ ) ≥ 1− 1
T 2 .

A.7 NECESSARY LEMMAS

Lemma 12 (Lemma 12 in Abbasi-Yadkori et al. (2011)) Let A,B, and C be positive semi-
definite matrices such that A = B + C. Then we have

sup
x ̸=0

x⊤Ax

x⊤Bx
≤ det(A)

det(B)
.

Lemma 13 (Lemma 10 in Abbasi-Yadkori et al. (2011)) Suppose X1, X2, . . . , Xt ∈ Rd and for
any 1 ≤ s ≤ t, ∥Xs∥2 ≤ L. Let Vt+1 = λI +

∑t
s=1 XsX

⊤
s for some λ > 0. Then we have

det(Vt+1) ≤ (λ+ tL2/d))d.

We define σt(z) : RSt → RSt such that [σt(z)]i =
exp(zi)

1+
∑St

j=1 exp(zj)
. We also denote the probability

of choosing the outside option as [σt(z)]0 = 1

1+
∑St

j=1 exp(zj)
with i0 := 0. We define a pseudo-

inverse function of σt(·) such that σ(σ+(p)) = p for any q ∈ {p ∈ [0, 1]St |∥p∥1 < 1}. We

33



Published as a conference paper at ICLR 2025

can observe that σ+
t : RSt → RSt where [σ+

t (q)]i = log(qi/(1 − ∥q∥1)) for any q ∈ {p ∈
[0, 1]St |∥p∥1 < 1}. We also define z̃s = σ+

s (Ew∼Ps [σs([zi,t(pi,t)
⊤w]i∈Ss)]) and Ps = N (θ̂s, (1 +

cH−1
s )) for a positive constant c > 0. We define ft(z, y) =

∑St

i=0 1(yi,t) log(
1

[σt(z)]i
). Then we

have the following lemmas.

Lemma 14 (Lemma F.2 in Lee & Oh (2024)) Let δ ∈ (0, 1] and λ ≥ 1. For τ > 2 and tτ + 1 ≤
t ≤ tτ+1, under Etτ , with probability at least 1− δ, we have

t−1∑
s=tτ

fs(θ
∗)−

t∑
s=1

fs(z̃s, ys)

≤ (3 log(1 + (K + 1)t) + 3)

(
17

16
λ+ 2

√
λ log

(
2
√
1 + 2t

δ

)
+ 16

(
log

(
2
√
1 + 2t

δ

))2
)

+ 2.

Lemma 15 (Lemma F.3 in Lee & Oh (2024)) For any c > 0, let λ ≥ max{2, 72cd}. For τ > 2
and tτ + 1 ≤ t ≤ tτ+1, under Etτ , we have

t−1∑
s=tτ

fs(z̃s, ys)− fs(θ̂s+1) ≤
1

2c

t−1∑
s=tτ

∥θ̂s − θ̂s+1∥2Hs
+
√
6cd log

(
1 +

t+ 1

2λ

)
.
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