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We present additional analysis of GAMA in the following sections to investigate its attack capabili-
ties under various settings, including black-box embedding visualizations w.r.t. TAP [1], impact of
different types of CLIP models, performance with ensemble of surrogate models. We also demon-
strate GAMA’s transfer attack strength in comparison to prior methods under difficult black-box
transfer attacks including in different multi-label distribution, object detection, and robustness of
perturbations when victim uses defense mechanisms to minimize classifier performance deterioration.
All experiments are done with perturbation budget ℓ∞ ≤ 10.

1 Additional Analysis on GAMA

Figure 1: Embedding visualization. GAMA uses the CLIP extracted text and image embeddings to craft
highly transferable adversarial examples. This can be seen in above embedding visualizations where GAMA’s
perturbed images lie convincingly farther away from the clean images with better margins compared to TAP [1].
Left and right plots show perturbed image embeddings (both on random 1000 ImageNet images) when Gθ(·) is
trained with MS-COCO and Pascal-VOC respectively. Surrogate and victim models are given in parenthesis.

Black-box Setting Embedding Visualization. To demonstrate the phenomenon that GAMA learns
to create potent perturbations compared to prior works, we perform Principal Components Analysis
(PCA) of perturbed images extracted from GAMA and TAP [1] in Figure 1 when the Gθ(·) is trained
with MS-COCO and Pascal-VOC. We choose PCA visualization as it preserves the global differences
of high dimensional data in low dimensional regimes [2, 3]. Clearly, in an unseen distribution
(ImageNet [4]), features obtained from GAMA’s perturbed images significantly differ from those of
clean images in comparison to TAP [1].

Impact of Different CLIP models. We analyze the impact of different open-source pre-trained
CLIP models provided by Open-AI in Table 1 (surrogate model as Res152), both for the same domain
and different domain transfer attacks. We observe that the CLIP frameworks with vision encoders
with image transformers [5] (ViT-L/14, ViT-B/32, ViT-B/16) as their backbone perform better in our
proposed setting than those with the vision encoders as convolutional networks (RN50, RN101). We
attribute this to the effectual representation capability of transformers [5].

Table 1: Impact of CLIP model on GAMA

(a) Pascal-VOC → Pascal-VOC

VGG16 VGG19 Res50 Res152 Den169 Den121
No Attack 82.51 83.18 80.52 83.12 83.74 83.07

RN50 8.83 15.25 64.37 67.24 70.53 69.13
RN101 21.74 9.45 60.56 68.53 67.01 66.17

ViT-L/14 43.35 49.89 45.08 43.30 54.23 51.53
ViT-B/32 10.58 15.18 67.07 70.34 69.14 68.02
ViT-B/16 6.12 5.89 41.17 45.57 53.11 44.58

(b) Pascal-VOC → ImageNet

VGG16 VGG19 Res50 Res152 Den121 Den169
No Attack 70.15 70.94 74.60 77.34 74.22 75.74

RN50 3.13 2.06 46.25 52.01 49.33 45.91
RN101 2.93 2.41 42.73 56.16 46.67 45.97

ViT-L/14 16.63 20.04 26.41 23.18 31.10 32.53
ViT-B/32 3.90 2.81 49.61 54.41 48.02 46.41
ViT-B/16 3.07 3.41 22.32 34.04 24.51 30.35

Random Runs with Error Bars. We report the mean, and standard error in Table 2 along with the
error bar plot (with mean and standard error). We can observe that GAMA maintains its performance
with random seed values over various runs. Here, Gθ(·) was trained on Pascal-VOC with VGG19 as
a surrogate.

Effect of Surrogate Ensemble. We analyze the results when all the surrogates (VGG19, Res152,
and Den169) are employed together to train the perturbation generator Gθ(·) using GAMA. As can be
seen in Table 3 and Table 4 (ensemble denoted as All), we do not observe any significant advantage in
results when using multiple surrogates. This same observation has been noted by TAP [1] as well. We
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Table 2: Pascal-VOC →Pascal-VOC (s.e. = standard error)
VGG16 VGG19 Res50 Res152 Den169 Den121

No Attack 82.51 83.18 80.52 83.12 83.74 83.07
Run 1 5.86 5.18 45.43 50.88 52.61 43.44
Run 2 6.00 4.99 42.30 47.54 49.82 40.82
Run 3 6.08 4.88 40.71 46.64 50.31 42.73
Run 4 5.95 5.15 42.28 45.52 51.46 40.92
Run 5 6.01 4.84 41.47 45.77 49.33 39.47
mean 5.98 5.01 42.44 47.27 50.70 41.47

s.e. 0.035 0.067 0.800 0.966 0.590 0.711 VGG16 VGG19 Res50 Res152 Den169 Den121
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hypothesize that the mid-level features from multiple surrogates may not introduce complementary
features to learn comparatively powerful perturbations than single classifier based surrogates.

Table 3: Ensemble comparison: VOC→VOC
f(·) VGG16 VGG19 Res50 Res152 Den169 Den121 Average

VGG19 6.11 5.89 41.17 45.57 53.11 44.58 32.74
Res152 33.42 39.42 32.39 20.46 49.76 49.54 37.49
Den169 44.25 52.89 48.83 53.25 45.00 50.96 49.19

All 16.46 21.67 51.97 58.52 54.51 58.20 43.55

Table 4: Ensemble comparison: COCO→COCO
f(·) VGG16 VGG19 Res50 Res152 Den169 Den121 Average

VGG19 3.59 3.75 27.13 30.43 24.60 21.77 18.54
Res152 24.52 27.73 30.62 23.04 31.30 27.31 27.42
Den169 10.40 13.47 19.30 23.46 8.65 10.29 14.26

All 10.08 10.75 23.83 35.23 29.57 30.45 23.32

2 Additional Results w.r.t. Baselines
Table 5: COCO → COCO Object Detection

Method FRCN RNet DETR D2ETR Average
f(·)

No Attack 0.582 0.554 0.607 0.633 0.594
GAP [6] 0.347 0.312 0.282 0.304 0.311
CDA [7] 0.370 0.347 0.312 0.282 0.327
TAP [1] 0.130 0.120 0.099 0.104 0.113
BIA [8] 0.266 0.229 0.185 0.211 0.223V

G
G

19
GAMA 0.246 0.214 0.134 0.155 0.187

GAP [6] 0.187 0.145 0.097 0.108 0.134
CDA [7] 0.322 0.301 0.237 0.274 0.283
TAP [1] 0.167 0.151 0.087 0.123 0.132
BIA [8] 0.152 0.144 0.101 0.121 0.129R

es
15

2

GAMA 0.154 0.128 0.086 0.100 0.117
GAP [6] 0.308 0.261 0.201 0.213 0.245
CDA [7] 0.325 0.293 0.238 0.255 0.277
TAP [1] 0.181 0.155 0.126 0.147 0.152
BIA [8] 0.265 0.236 0.185 0.214 0.225D

en
16

9

GAMA 0.078 0.064 0.037 0.047 0.056

Black-box Setting (Object Detection). We evaluate a
black-box transfer attack with state-of-the-art MS-COCO
object detectors (Faster RCNN with Res50 backbone
(FRCN) [9], RetinaNet with Res50 backbone (RNet) [10],
DEtection TRansformer (DETR) [11], and Deformable
DETR (D2ETR) [12]) in Table 5, provided by [13]. It can
be observed that GAMA beats the baselines when Gθ(·) is
trained with MS-COCO in the majority of scenarios.

Black-box Setting (Multi-Label Classification). We
perform a black-box transfer attack on different multi-label domain than that of Gθ(·)’s training set:
Pascal-VOC → MS-COCO in Table 6 and MS-COCO → Pascal-VOC in Table 7. We outperform all
baselines in the majority of cases, with an average absolute difference (w.r.t. closest method) of ∼5
percentage points (pp) for Pascal-VOC → MS-COCO, and ∼13.5pp for MS-COCO → Pascal-VOC.

Table 6: Pascal-VOC → MS-COCO
Method VGG16 VGG19 Res50 Res152 Den169 Den121 Average

f(·)
No Attack 65.80 66.49 65.64 67.94 67.60 66.39 66.64

GAP [6] 20.14 20.61 54.12 58.71 53.68 50.87 43.02
CDA [7] 18.87 15.93 41.96 48.09 47.62 42.74 35.86
TAP [1] 7.84 10.03 45.96 48.46 43.40 39.76 32.57
BIA [8] 8.56 10.06 41.32 49.07 46.03 40.60 32.60V

G
G

19

GAMA 2.92 3.83 23.37 28.26 22.07 17.69 16.35
GAP [6] 32.90 33.63 46.70 54.18 53.71 51.40 45.41
CDA [7] 27.28 32.25 41.32 44.59 48.33 45.10 39.81
TAP [1] 31.68 37.33 36.09 36.85 47.77 45.59 39.22
BIA [8] 26.99 29.83 33.86 35.35 45.87 41.70 35.59R

es
15

2

GAMA 21.43 28.59 29.54 24.95 32.92 29.89 27.89
GAP [6] 42.64 44.07 50.14 57.48 57.01 53.16 50.75
CDA [7] 39.60 39.13 44.85 53.07 50.01 47.52 45.69
TAP [1] 38.96 40.87 40.86 47.01 28.67 40.62 39.50
BIA [8] 31.86 37.59 37.98 44.93 28.25 36.15 36.13D

en
16

9

GAMA 26.43 32.64 32.30 38.88 22.06 30.62 30.49

Table 7: MS-COCO → Pascal-VOC
Method VGG16 VGG19 Res50 Res152 Den169 Den121 Average

f(·)
No Attack 82.51 83.18 80.52 83.12 83.74 83.07 82.69

GAP [6] 17.07 15.01 61.14 67.17 69.30 63.04 48.78
CDA [7] 15.23 13.19 58.81 63.80 67.43 62.23 46.78
TAP [1] 15.35 12.74 42.12 42.52 48.61 42.23 33.93
BIA [8] 8.10 8.82 52.85 55.82 63.05 56.58 40.87V

G
G

19

GAMA 6.60 7.08 44.16 49.20 57.49 52.52 36.17
GAP [6] 27.09 28.45 45.91 37.28 58.07 51.28 41.34
CDA [7] 53.45 55.82 64.68 64.12 70.74 65.04 62.31
TAP [1] 42.21 41.26 41.02 35.35 58.99 54.77 45.60
BIA [8] 37.04 36.46 44.91 36.12 54.60 49.95 43.18R

es
15

2

GAMA 36.86 40.62 38.23 23.52 48.56 48.03 39.30
GAP [6] 48.37 46.35 58.04 60.73 52.89 57.83 54.03
CDA [7] 58.51 58.20 67.61 69.73 67.26 65.88 64.53
TAP [1] 46.83 47.88 46.98 57.68 44.95 43.99 48.05
BIA [8] 42.14 49.84 54.47 62.05 48.75 50.91 51.34D

en
16

9

GAMA 19.68 20.29 23.22 33.57 26.33 16.37 23.25

Robustness Analysis. We launch misclassification attacks (Gθ(·) trained on Pascal-VOC with the
surrogate model as Den169) when the victim uses input processing based defense such as median blur
with window size as 3× 3 (Table 8(a)), and Neural Representation purifier (NRP) [14] (Table 8(b))
on three ImageNet models (VGG16, Res152, Den169). We can observe that the attack success of
GAMA is better than prior methods even when the victim pre-processes the perturbed image. Further,
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in Figure 8(c), we see that Projected Gradient Descent (PGD) [15] assisted Res50 is difficult to break
with GAMA performing slightly better than other methods.

Method VGG16 Res152 Den121 Average
No Attack 64.57 74.04 71.68 69.92

GAP [6] 47.91 65.64 61.69 58.41
CDA [7] 33.62 58.70 50.12 47.48
TAP [1] 23.92 48.89 43.66 38.82
BIA [8] 24.49 50.96 40.29 38.58
GAMA 22.84 52.10 36.19 37.04

(a) Median Blur

Method VGG16 Res152 Den121 Average
No Attack 56.26 62.37 68.62 62.41

GAP [6] 33.09 50.50 53.80 45.79
CDA [7] 33.48 48.28 49.74 43.83
TAP [1] 27.45 42.98 42.66 37.69
BIA [8] 24.62 41.81 37.91 34.78
GAMA 18.61 34.66 24.93 26.06

(b) NRP
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Table 8: Robustness Analysis against various defenses. GAMA consistently shows better robustness in cases
where victim uses attack defenses (Gθ(·) trained on Pascal-VOC). ‘NA’ in Figure 8(c) denotes ‘No Attack’.

Evaluation of adversarial images on CLIP. We evaluated CLIP (as a “zero-shot prediction”
model) on the perturbed images from Pascal-VOC and computed the top two associated labels in
Figure 2 using CLIP’s image-text aligning property. Specifically, we used the whole class list of
Pascal-VOC and computed the top-2 associated labels both for clean and perturbed images. We can
observe the perturbations change the labels associated with the clean image.

Figure 2: Evaluation of adversarial images on CLIP. Surrogate model is VGG19 trained on Pascal-VOC.

Mid-layer selection from surrogate model for training perturbation generator. Our mid-layer
from surrogate model is chosen based on the embedding size of CLIP: e.g. if the embedding size of
the CLIP encoder is 512, we select the layer from the surrogate model that outputs 512 dimension
features. In comparison, prior state-of-the-art generative attack TAP [1] manually searches for the
optimal layer from the surrogate model to train the perturbation generator (see Limitations in Section
4.6 in their paper [1]). In particular, finding the optimal mid-layer (that gives the best attack results)
requires searching over each block of M layers (which is around an average of M = 5 layers [1]) for
each surrogate model. Hence to find the best layer to train a perturbation generator for a particular
model, the computation time cost for such an exhaustive search will be MN GPU hours where N
is the total training time (in GPU hours) per layer. Moreover, our analysis shows this layer might
not result in best attack results when the training data distribution varies and would require a manual
search for all the different combinations of surrogate model and data distributions. Such a search is
very time-consuming, impractical, and clearly not scalable. Finally, directly using TAP’s suggested
layer is not possible because the embedding size doesn’t match that of CLIP, and would require
us to introduce embedding modifications mechanisms (e.g. Principal Component Analysis (PCA),
t-distributed stochastic neighbor embedding (t-SNE)) leading to an unreasonable increase in training
time for every epoch. Note that if we do not consider the manual search of an optimal layer from the
surrogate model to train the perturbation generator, then the proper baseline on ImageNet would be
CDA [7]. As evident throughout our analysis, we convincingly outperform them on all settings.
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3 Implementation Details

We use two multi-label datasets to stimulate the scenario of multi-object scenes: Pascal-VOC (training
set: trainval from ‘VOC2007’ and ‘VOC2012’, testing set: ‘VOC2007_test’) and MS-COCO (training
set: train2017, testing set: val2017). We follow prior works [7, 8] for the generator network for
Gθ(·). To stabilize the training, we replace all the ReLU [16] activation functions with Fused Leaky
ReLU [17] activation function (negative slope = 0.2, scale =

√
2). We use a margin α = 1.0 for the

contrastive loss. All our training setup uses ViT-B/16 as the CLIP model. We use Adam optimizer
[18] with a learning rate 0.0001, batch size 16, and exponential decay rates between 0.5 and 0.999.
All images were resized to 224 × 224. Training time was observed to be ∼1 hr for Pascal-VOC
dataset (10 epochs) and ∼10 hrs for MS-COCO dataset (5 epochs) on one NVIDIA GeForce RTX
3090 GPUs. PyTorch is employed [19] in all code implementations.
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