
ar
X

iv
:2

50
6.

10
05

5v
1

 [
cs

.C
L

]
 1

1
Ju

n
20

25
M-A-P

TaskCraft: Automated Generation of Agentic Tasks

OPPO AI Agent Team

Full author list in Contributions

Abstract

Agentic tasks, which require multi-step problem solving with autonomy, tool use, and adaptive
reasoning, are becoming increasingly central to the advancement of NLP and AI. However, existing
instruction data lacks tool interaction, and current agentic benchmarks rely on costly human
annotation, limiting their scalability. We introduce TaskCraft, an automated workflow for
generating difficulty-scalable, multi-tool, and verifiable agentic tasks with execution trajectories.
TaskCraft expands atomic tasks using depth-based and width-based extensions to create structurally
and hierarchically complex challenges. Empirical results show that these tasks improve prompt
optimization in the generation workflow and enhance supervised fine-tuning of agentic foundation
models. We present a large-scale synthetic dataset of approximately 36,000 tasks with varying
difficulty to support future research on agent tuning and evaluation.

Date: June 13, 2025
Correspondence: zhouwangchunshu@oppo.com
Code & Data: https://github.com/OPPO-PersonalAI/TaskCraft

1 Introduction

Agentic tasks—autonomous, multi-step problem-solving requiring tool use and adaptive reasoning—are
increasingly pivotal in AI and NLP. Advances in language agents [6, 15, 26, 38–40] have shifted AI from
passive assistance to proactive agency, enabling complex workflow execution. This is exemplified by systems
combining reasoning frameworks like ReAct [33] with dynamic orchestration, where solution trajectories
critically improve inference quality. However, the inherent complexity of such tasks challenges conventional
annotation paradigms, necessitating novel approaches to model training and evaluation.

To assess advanced agent capabilities, benchmarks such as GAIA [8], BrowseComp [25], and Humanity’s Last
Exam (HLE) [9] have been introduced. GAIA evaluates reasoning, tool use, and web browsing through 466
real-world questions. BrowseComp comprises 1,266 tasks that test an agent’s ability to retrieve and integrate
complex online information. HLE includes 2,500 multi-modal questions across over 100 disciplines to measure
advanced reasoning and domain knowledge. While these datasets have significantly contributed to agent
evaluation, they suffer from scalability limitations due to the labor-intensive nature of data annotation. For
example, creating HLE required 1,000 experts to label just 2,500 data points, hindering its ability to scale.

Prior work has explored the automatic generation of instruction-following data using large language models
to alleviate the scalability issues of human-annotated datasets. A representative example is the Self-Instruct
framework [24], which demonstrated that LLMs can generate high-quality, diverse instruction data for multi-
turn dialogues. This approach has proven effective for supervised fine-tuning (SFT). However, these methods

1

mailto:zhouwangchunshu@oppo.com
https://github.com/OPPO-PersonalAI/TaskCraft
https://arxiv.org/abs/2506.10055v1

are primarily designed for static instruction-following scenarios and fall short in modeling agentic tasks, which
require interaction with external tools and environments. Consequently, such data is insufficient for training
or evaluating agents that operate in dynamic, real-world settings.

In this work, we introduce TaskCraft, an agentic workflow for the automated generation of agentic tasks.
Our approach provides the following advantages:

• Scalability. The workflow supports adaptive difficulty, seamless multi-tool integration, and the generation
of tasks beyond the capabilities of the task-generation agent, along with their corresponding trajectories.

• Efficient Verification. During each task extension, only incremental components undergo agentic
validation, eliminating the need for full verification of the extended task.

The core approach involves initially generating multiple atomic tasks, each solvable with a single target tool
invocation, and then expanding them using depth-based and width-based extension. For depth-based task
extension, we iteratively transform specific textual elements of the original task (such as key terms) into a
new atomic task to support progressive resolution. In contrast, the width-based extension formulates tasks
that require resolving multiple sub-problems by integrating distinct problem instances.

To ensure high-quality agentic tasks, we employ a rejection sampling strategy during verification. For atomic
tasks, we include cases where an agent using external tools can solve the task while an LLM cannot, ensuring
that atomic tasks genuinely necessitate tool usage. For extension tasks, we leverage linguistic analysis with
LLMs, enabling rapid validation and facilitating the creation of challenges beyond existing agent capabilities.
This approach enhances efficiency and broadens problem-solving potential.

The controlled generation process ensures inherent access to ground-truth execution trajectories, enabling
precise interpretability, reproducibility, and verifiability—critical for agent evaluation and reinforcement
learning. To further validate task effectiveness, we implement a self-evolving prompt optimization strategy
inspired by bootstrap few-shot learning [5]. This iterative refinement improves rejection sampling pass
rates while minimizing generation time. Additionally, we leverage the generated task trajectories to train
an agent foundation model [4]. Experimental results show that an independent LLM, trained on these
trajectories, effectively plans and invokes tools, yielding performance gains on HotpotQA [32], Musique [21],
and Bamboogle [10].

Based on this method, we generated a task dataset comprising approximately 36,000 tasks of varying
difficulty, each requiring different tools for resolution, including search, web browsing, PDF reading, and
image understanding.

Our key contributions are as follows:

• We introduce an automated agentic task generation workflow capable of producing scalable difficulty,
efficient verification, and multi-tool supported tasks, along with their corresponding execution trajectories.

• We empirically evaluate task effectiveness through prompt learning, which facilitates the self-evolution of
our workflow and holds potential for optimizing existing agent workflows. Additionally, SFT is applied
to an agent foundation model, enabling it to substitute agent workflows where applicable.

• We release a synthetic dataset comprising about 32k agentic tasks of varying difficulty levels, complete
with their execution trajectories, to facilitate further research.

2

2 Notations and Preliminary

Tool-Assisted Task Execution

As Figure 1 shown, given a task q, the agent extracts the input index iT (e.g., document name, webpage
title) for invoking a target tool T . We focus solely on steps that yield a valid tool context, omitting
unrelated processes such as file location or search for simplicity. Executing tool T with iT retrieves the
associated context C. The LLM implicitly deduces the relationship R between C and the expected
outcome, producing the final result a.

Task q Answer a
"Stock with highest
price increase
today?"

Input Index iT

Tool Execution

LLM Parsing

"Nasdaq Stock Market Data"​

"INTC (+10.44%),
 NVDA(+4.11%),
 TSLA(+1.65%) ..."

Tool Context C

"Highest stock price
increase"

Implicit Relation R

"INTC
 (+10.44%)"

LLM
Reasoning

Web Tool

Image Tool

PDF Tool

Tool List

LLM Reasoning

Figure 1 Execution flow of a single tool invocation. The agent extracts the input index iT (e.g., document name,
webpage title) for invoking tool T , focusing solely on steps that yield valid tool context. Executing T with iT retrieves
context C, enabling the LLM to infer the relationship R and produce the final result a.

Atomic Task

An atomic task is resolved with a single target tool invocation. To simplify, we disregard search and
file system operations, assuming a detailed input index iT enables retrieval through finite navigation.

Given an answer a, the most direct approach to construct an atomic task involves prompting an LLM to
generate the corresponding question. However, questions produced in this manner often suffer from low tool
invocation rates, unpredictable difficulty levels, unregulated tool requirements, and inconsistent verification
complexity (see Section 4.5 for more details).

To mitigate these issues, we assume an ideal search engine capable of retrieving precise data based on iT
(e.g., paper titles, image paths, music names, etc.). Under this assumption, we can construct a task question
q = f(iT , R) −→ a, where f represents a sampling function that enables the LLM to generate the corresponding
natural language representation of the question q based on the provided information.

3 Automated Task Generation Workflow

3

Tool List

Web Tool

Image Tool

PDF Tool

Music Tool

Extract context
using PDF tool

《Apple2025AnnualReport.pdf》

iT: "Apple2025AnnualReport"

What is the
relationship?

What is
the task?

q = f (iT,R)

...

2. Financial Highlights

In the 2025 fiscal year, Apple's

total revenue reached $383.3 billion,

a 2% increase from the previous year.

 • Net profit was $94.7 billion,

with a gross margin of 44.3%.

• Operating cash flow from operations

amounted to $108.2 billion.

Answer

Context

Context

What's the
answers and
context content
in the PDF?

 R: "total revenue"

q: "In the financial report'
Apple2025Annual

Report', what is total
revenue value in 2025?"

Figure 2 Atomic task generation: From an unlabeled corpus, we extract iT and derive textual content C via tool
execution. LLM identifies candidate answers a from C, infers their relationship R, and constructs question q conditioned
on iT and R.

3.1 Atomic Task Generation

As Figure 2 shown, we begin by compiling a corpus of unlabeled data aligned with the tool’s input requirements.
From this corpus, we extract iT and derive textual content C via tool execution. For example, browsing, PDF,
and image comprehension tools yield webpage titles, PDF names, and image paths, from which we extract
textual content C for answer sampling. We prompt an LLM to identify key candidate answers a from C and
infer their relationship R with C, ultimately constructing question q conditioned on iT and R.

3.2 Task Extension

In order to increase task difficulty in a scalable way, we adopted two extended task strategies: the depth-based
extension and the width-based extension.

Depth-based extension. We aim to construct tasks requiring multiple sequential tool executions, where each
step depends on the output of the previous one. To achieve this, a new subproblem must be derived from a
known problem qn. The tool input index iT at each stage exhibits strong extensibility due to (1) its frequent
association with proper nouns, which are less likely to be memorized by LLMs, and (2) its natural suitability
for recursive definition. Specifically, a single atomic task follows the formulation:

qn = f(inT , R
n) −→ a. (1)

To extend a n-hot task qn into a (n+1)-hop dependency task qn+1, we can define the recursive formulation:

qn+1 = f(q̂n+1, Rn) −→ a, (2)

where we ensure that
q̂n+1 = f(in+1

T , Rn+1) −→ inT . (3)

Here, in+1
T denotes a new tool input index derived from inT through reversible operations (e.g., retrieving lyrics

from a song name or vice versa). To obtain in+1
T and its corresponding relationship Rn+1, we employ a search

agent that retrieves supersets of inT to mitigate cyclic generation risks. Specifically, the agent extracts textual
content Cn+1 as superset candidates, expanding contextual coverage. An LLM then analyzes Cn+1 to derive
the superset index in+1

T and its relationship Rn+1 with inT . This process ensures progressive context expansion
and effective information association. The resulting in+1

T and Rn+1 are synthesized into an intermediate
question candidate q̂n+1, which undergoes rigorous verification. Upon verification, the system generates the
refined question qn+1 by integrating q̂n+1 with all historical relationships {R1, R2, ..., Rn}.

4

a₂="Interstellar"

Atomic task (first hop) The second-hop task

 : What science fiction film
was released Nov 7, 2014?

i1T: Interstellar

 a1: Christopher
Nolan

i2T: science fiction film i2T: science fiction film

a2: Interstellar

q1: Interstellar's
director?

Interstellar

 R1: The director of
Interstellar R2: science fiction film

released Nov 7, 2014

q2: Who is the director of the
science fiction film, which

was released on Novermber 7,
2014?

The merged task

step3

step4

search agentstep1

step2

 R2: science fiction film
released Nov 7, 2014

Figure 3 Depth-based extension. A 1-hop task q1 is recursively extended to a 2-hop task q2. A search agent derives
the new tool input index i2T by extracting superset candidates C2, which an LLM analyzes to determine i2T and its
relationship R2 with i1T . After verification, the refined question q2 integrates q̂2 with historical relationships R1.

Width-based extension. The goal of the width-based extension is to generate a new task that needs to be
decoupled into multiple subtasks to be completed. For simplicity, for two subtasks q1 −→ a1 and q2 −→ a2, the
combined task qwidth can be represented as

(qwidth = q1 + q2) −→ a1 + a2, (4)

where the + indicates using LLM to merge and rephrase two question strings.

a1: $2.40

q1:What was Apple
Inc.'s Q1 2025 EPS?

q2: What's Apple Inc.'s P/E
ratio for the same period?

a2: 39.65

q1:What were Apple Inc.'s Q1
2025 EPS and P/E ratio for
the same period?

LLM Merging

a1: $2.40, 39.65

Execute Tool Execute Tool

Figure 4 Width-based extension. A new task is formed by merging two subtasks q1 and q2, creating qwidth = q1 + q2,
where + denotes LLM-based rephrasing.

Trajectory generation. Two strategies exist for generating execution trajectories in this task: (1) For simple
tasks, such as atomic tasks, existing agents can directly infer and capture the trajectory, including tool
selection, parameters, return results, and plans. (2) For complex tasks, such as depth-wise extension tasks,
the trajectory is recorded while iteratively expanding and validating new atomic tasks. At each step, the
LLM refines the plan or reasoning based on generated intermediate questions.

5

3.3 Task Verification

Under this generation workflow, the verification of generated tasks can be easily performed in two distinct
phases:

Atomic task verification: An atomic task is defined as a simple agent task solvable via a single tool call.
During verification, we relax this definition slightly: for each candidate task, we evaluate the task agent’s
output within a limited number of tool-use steps (e.g., three) and compare it with an infer-LLM separately. A
judge-LLM verifies whether only the agent’s output contains the golden answer, retaining only validated tasks.
(see Appendix C for more details)

Task extension verification: This process is conducted purely through linguistic analysis without agent
involvement. During depth-wise extension, we first employ a judge-LLM to validate: (1) whether the obtained
in+1
T and its relation Rn+1 constitute a proper superset of inT with logically sound relationships, and (2) whether

the final input index inT in qn is appropriately replaced by q̂n+1 in the expanded task qn+1. Furthermore, an
infer-LLM derives the merged task, while the judge-LLM filters out tasks where the correct result is easily
inferred, preventing information leakage that could render the problem trivially solvable after merging.(see
Appendix B for more details).

This framework ensures efficiency by applying agent reasoning only in atomic task verification at creation,
while relying on LLM-based verification elsewhere for faster execution. It also enables complex task generation
beyond agent capabilities, with reverse reasoning providing supervisory signals to enhance agent learning or
reinforcement learning.

4 Experiments

4.1 Corpus Construction

Figure 5 Corpus source distribution. Webpages, PDFs, and images are processed to construct tool-specific tasks.

We collect seed documents across multiple modalities to generate tool-specific atomic tasks, extracting key
insights to ensure task relevance. For instance, our PDF processor constructs atomic tasks by combining
document titles with core findings, thereby enhancing the necessity for agent-based PDF tool invocation.
To support atomic task generation, we constructed a dataset comprising webpages, PDF files, and images.
Webpage data constitutes the largest proportion (75%), sourced from up-to-date news across multiple domains.
Image data accounts for 15%, primarily derived from financial reports and research papers, with filtering

6

to retain images containing information beyond text. PDF data makes up 10%, originating from English
financial documents and academic publications.

4.2 Synthetic Tasks Analysis

Agent reasoning analysis . To practically assess task difficulty, we sample 1,000 tasks and deploy both
Smolagents [14] and its enhanced variant, Smolagents+ (see Section E for more details), for execution and
validation. While both agents performed identical tasks, Smolagents+ incorporated advanced tool capabilities
for refined analysis.

html pdf image0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

13.6% 21.2%
6.4%

37.1%
33.2%

15.8%

49.2% 45.6%

77.9%

60.2% 55.7%

30.3%

32.4%
31.3%

14.7%

7.3% 13.0%

55.0%

Smol Smol+ Smol Smol+ Smol Smol+
Score: 2
Score: 1
Score: 0

Figure 6 score distribution comparison

Responses were evaluated by comparing the agents’ outputs to the golden answer, following a three-point
scoring scheme: 2 for fully correct responses, 1 for answers that included the golden answer but contained
additional information, and 0 for incorrect responses.

In Figure 6, task failure rates increase from web pages to PDFs and then to images within PDFs, indicating
that multi-hop web search tasks are more manageable for agents, while complex comprehension challenges,
such as PDF extraction and image interpretation, remain difficult. Additionally, these results demonstrate
that our generated tasks span varying difficulty levels, including those that pose significant challenges for
current agent capabilities.

Comparison with the GAIA dataset. Table 1 presents the accuracy comparison of Smolagent on the GAIA
dataset and our generated dataset. The results indicate that tasks derived from different tool corpora align
with GAIA’s varying difficulty levels, with image understanding tasks posing the greatest challenge and
achieving accuracy comparable to LEVEL3 data.

Table 1 Accuracy comparison of Smolagents on the GAIA dataset and our synthetic tasks.

GAIA Level1 Level2 Level3 Avg.
54.71 43.02 26.92 44.20

Synthetic Task PDF html Image Avg.
54.4 50.7 22.1 42.4

Unlike GAIA, which requires extensive human annotation, our approach automates task generation, eliminating
the need for labor-intensive data labeling while maintaining scalability and adaptability for agent self-evolution
and optimization.

4.3 Enhancing Task Generation Efficiency via Prompt Learning

We employ rejection sampling in both atomic task generation and task extension. To reduce the rejection rate
and enhance sampling efficiency, several key challenges must be addressed:

7

Answer :
The live - action
'Lilo & Stitch' was
set to premiere on
Disney+ in 2024.
But by June that
year, Disney hadn't
announced its
release date.

 Task 2: For the classic Disney animated series featuring an alien experiment character and set in Hawaii, centered around the
 theme of alien creatures and family bonds, when will its live-action spin-off movie be officially released?

 Step 1 : Q : What is the classic Disney animated series about an alien experiment set in Hawaii?
 A : Lilo & Stitch

 Step 2 : Q : When will the live - action spin - off movie of "Lilo & Stitch" be officially released?
 A : The live - action "Lilo & Stitch" movie is scheduled to be released on May 23, 2025.

 Answer : The official release date for the Disney live-action adaptation of Lilo & Stitch is May 23, 2025.

Answer :
In April 2025
OpenAI security
docs, for SWE -
Lancer Diamond
(SWE Manager
task) eval, o1
model's pass@1
rate was just
0.14/14%, much
lower than
expected.

 Task 1: In OpenAI's 2025 release, there's a security doc for new - gen models. It mentions SWE - Lancer Diamond benchmark.
 What's the highest pass@1 value? Which model & config reach it?

 Step 1 : Q : In OpenAI's April 2025 release, what's the evaluation doc for new - gen models?
 A : OpenAI o3 and o4-mini System Card

 Step 2 : Q : What does the SWE-Lancer Diamond benchmark in the OpenAI o3 and o4-mini System Card include?
 A : PDF context and some images.

 Step 3 : Q : In Fig. 21, what's the highest top - 1 (pass@1) accuracy? Which models & configs achieve it?
 A : Top pass@1 accuracy: 50% (achieved by o3, deep research, and o4-mini browsing launch candidates).

 Answer : In OpenAI's 2025 o3 & o4-mini System Card, the SWE-Lancer Diamond benchmark shows a highest
 Pass@1 of 50% by o3, deep research, and o4-mini in Browsing launch configs.

Figure 7 Generated case examples requiring multiple tool calls for completion.

• Efficiently extract candidate answers from the corpus to support atomic task formation and minimize
rejections (Section 3.1).

• Guide the agent to find an input index in+1
T , ensuring coherent depth-wise extension.

• Prompt the LLM in depth-wise extension to articulate the relationship Rn+1 between the previous input
index inT and observed content Cn+1, refining problem construction and mitigating incoherence-related
rejections.

• Integrate tasks to ensure precise substitution, i.e., qn+1 = f(q̂n+1, Rn), and clarity while maintaining
logical coherence.

Evaluation. We assess atomic task generation and task extension separately. For atomic task generation, we
evaluate three key metrics: (1) pass rate, representing the proportion of successfully validated atomic tasks
relative to candidate tasks. (2) task density, quantifying the average number of validated atomic tasks per
document. (3) sampling time, measuring the time required for processing each document.

For task extension, we evaluate three key metrics: (1) pass rate, the proportion of successful extensions across
nk attempts (set to 6 in our experiment). (2) sampling time, measuring the time required for extending each
task.

Prompt Learning. Intuitively, providing the LLM with effective exemplars can further enhance its ability to
identify intermediate objectives. To this end, we employ bootstrap few-shot learning [5] to systematically
optimize the four prompts corresponding to the aforementioned challenges, thereby facilitating the generated
workflow.

For atomic task generation, each prompt is optimized by appending 20 randomly sampled examples. Multiple
prompt configurations are then generated by varying these samples, followed by an iterative evaluation
process where pass rates determine the optimal selection of inserted examples. For task extension, we focus
on depth-wise extension and adopt a similar strategy to optimize the prompts using 10 randomly sampled
examples. These prompts are refined to maximize the number of hops.

8

Table 2 Effectiveness of generated task data in prompt learning and depth-wise extension across six extension attempts.

Method Pass rate Time
Atomic Task 54.9% 29.1s
+ Optimization 68.1% 23.5s

Depth-wise@6 41.0% 31.5s
+ Optimization 51.2% 30.2s

Results. Table 2 examines atomic task generation and depth-wise task extension before and after prompt
learning, highlighting the role of generated task data in enabling self-evolution within both workflows. For
atomic task generation, the data improves efficiency by reducing generation time by 19.2% (29.1 to 23.5
seconds) and increasing pass rate from 54.9% to 68.1%. Similarly, depth-wise extension benefits from the
data, with pass rate rising by 10.2% (41.0% to 51.2%) across six extension attempts, and generation time
decreasing by 1.3 seconds (31.5 to 30.2 seconds). These results validate the effectiveness of generated task data
in enhancing sampling efficiency and supporting workflow adaptation. The optimized prompts are presented
in Appendix C.2.

4.4 Fine-Tuning Agent Models Using Synthetic Trajectory

To validate the effectiveness of our synthetic multi-hop data method, we apply supervised fine-tuning (SFT)
and reinforcement learning (RL) using the generated trajectory, refining an agent foundation model—an LLM
with tool-integrated reasoning.

Evaluation. We evaluate our models on three multi-hop question answering benchmark datasets, as follows:
HotpotQA [31], Musique [22], and Bamboogle [11]. These datasets encompass a diverse range of search with
reasoning challenges, enabling a comprehensive evaluation.

Baselines. We conduct a comprehensive evaluation by comparing various baseline models before and after
SFT with generated tasks to assess performance improvements: (1) Base workflow: We implement agent
workflows (Search-R1 without training) across different LLM models. (2) Search-R1: An agentic workflow
leveraging reinforcement learning for LLM model optimization.

Implementation setup. We evaluate two model variants: Qwen2.5-3B-Base and Qwen2.5-3B-Instruct. To
facilitate multi-hop reasoning, we synthesize 3,202 multi-hop tasks and their trajectories for SFT. Following
the Chain-of-Action framework [37], we apply content masking to search tool contexts during training. Our
search method, RL training data, and reinforcement learning strategy follow the Search-R1 [4]. For further
training details, refer to Appendix D.

Method HotpotQA Musique Bamboogle Avg.
Qwen2.5-3b-Base

Base workflow 0.032 0.006 0.063 0.034
+ SFT 0.232 0.067 0.224 0.174

Search-R1 0.284 0.049 0.088 0.140
+ SFT 0.344 0.111 0.280 0.245

Qwen2.5-3b-Instruct

Base workflow 0.190 0.037 0.112 0.113
+ SFT 0.221 0.049 0.248 0.173

Search-R1 0.324 0.103 0.264 0.230
+ SFT 0.340 0.104 0.264 0.236

Table 3 Performance across three datasets and two models. Avg. denotes average.

Results. As shown in Table 3, our method demonstrates significant performance improvements across three
representative datasets and two model variants.

First, our synthetic data demonstrates significant value in standalone SFT training, achieving average
performance improvements of +14.0% (Qwen2.5-3B-Base) and +6.0% (Qwen2.5-3B-Instruct) over the base

9

workflow for their respective models. These gains validate the quality and effectiveness of our synthetic data
generation methodology.

Second, compared to the Search-R1 baseline, the workflow with Qwen2.5-3b-Base achieves maximum gains
of +19.2% on Bamboogle and +6.2% on Musique. The Qwen2.5-3B-Instruct maintains steady gains, with
an average performance margin of +0.6%. The strong performance of our SFT-trained models underscores
their suitability for subsequent reinforcement learning, suggesting that our synthetic data not only enhances
immediate task execution but also provides a more effective initialization for RL optimization.

4.5 Effectiveness of Tool Context in Constructing Agentic Tasks.

In atomic task generation, we integrate the additional input index iT along with the relational mapping R
between the tool context and a given answer to systematically structure tasks.

To assess the efficiency of our atomic task generation approach, we perform an ablation study using an LLM
to directly generate a task q that requires only one external tool to obtain the answer a, explicitly excluding
the conditions iT and R. Evaluation metrics include pass rate, task resolution time, average tool usage, and
the variance in tool usage frequency.

Table 4 The effectiveness of tool context.

Method Pass rate Time #Tool-use σ2

LLM only 18.5% 119.7s 2.8 1.2
Ours 43.0% 86.7s 2.1 0.4

Compared to atomic tasks generated via direct prompting of GPT-4.1, our approach significantly enhances
atomic task generation efficiency. Specifically, our workflow achieves a 24.5% higher pass rate (43.0% vs.
18.5%) while reducing task generation time by 28 seconds (86.7s vs. 119.7s), underscoring the limitations
of vanilla LLMs in constructing agentic tasks. Furthermore, our atomic tasks exhibit greater atomicity, as
evidenced by a lower average tool invocation count (2.1 vs. 2.8 per query). Task complexity also remains
more stable and controllable, with a reduced variance in tool usage (0.4 vs. 1.2). These findings underscore
the robustness of our workflow, validating its efficacy in structured task generation.

5 Related Work

5.1 Instruction Data Generation

Synthetic data has emerged as a promising solution for enhancing performance and enabling new capabili-
ties. STaR [36] augments learning with chain-of-thought (CoT) rationales but often requires a substantial
number of task queries beforehand. Methods such as Self-Instruct [24], Self-Chat [28], NuminaMath [7],
and OpenMathInstruct-2 [19] generate data from minimal seed examples using LLMs, yet they struggle to
extend task generation for multiple tool invocations. WizardLM [27] employs Evol-Instruct to incrementally
enhance instruction complexity. However, it relies primarily on rule-based modifications, making its generated
instructions unsuitable for agentic task scenarios. MetaMath [34] generates mathematical data by rewriting
questions, but adapting agent tasks to environmental feedback presents challenges beyond simple rephrasing.
WebInstruct [35] extracts question-answer pairs from a pre-training corpus across multiple domains; however,
the generated questions often fail to incorporate tool utilization in their solutions. AutoAct [12] uses a
self-planning mechanism to generate planning trajectories for QA tasks.

5.2 Language Agent

Existing research on agentic task execution primarily advances along two core dimensions: role specialization
and functional partitioning. Role-based paradigms structure collaborative networks by dynamically allocating
differentiated tools, as demonstrated by AutoGPT [15], AutoGen [26], and Camel [6]. In contrast, functional
partitioning frameworks, such as Barcelona2, Omne, and AgentIM 1, define distinct task execution roles,

1These are closed-source frameworks.

10

optimizing modular efficiency. Smolagents [14] combines the ReAct [33] and CodeAct [23] architectures
to build a multi-functional agents hierarchy to perform multiple rounds of interactions and actions in
code to accomplish complex tasks. Magnetic-One [2] refines vision-language processing by decoupling
perception [29, 30], planning [16, 18], and execution modules [13, 23], improving efficiency in multimodal
environments. Dynamic orchestration mechanisms address real-time task reallocation and system resilience.
Trase-Agent [20] adapts execution strategies based on real-time feedback, while TapeAgents [1] employs
asynchronous communication to enhance robustness in agent coordination. Empirical findings suggest that
stabilized sub-agent interactions yield higher task success rates than complex, centralized orchestration
algorithms.

To further extend agentic autonomy, AutoAgent [17] facilitates intelligent execution and personalized agent
customization without requiring manual coding. Its core components—natural language-driven coordination,
customizable workflows, and self-managing file systems—streamline agent development. Hybrid architectures,
such as h2oGPTe-Agent [3], explore multi-agent optimization strategies, achieving over 70% accuracy in code
generation tasks. However, significant cross-modal processing bottlenecks remain an open challenge.

6 Conclusion

We present TaskCraft, an automated workflow for scalable, multi-tool, verifiable agentic task generation.
Through width-based and depth-based extension, our framework constructs hierarchically complex challenges.
Empirical results demonstrate its effectiveness in structured task generation, improving prompt optimization
and supervised fine-tuning while reducing reliance on human annotation. Additionally, we release a large-scale
synthetic dataset of approximately 36,000 tasks with varying difficulty to support future research on agent
tuning and evaluation.

7 Limitation

This work currently focuses on constructing atomic tasks for common tools, including browsing, PDF processing,
and image analysis. Future iterations will enable users to generate atomic tasks tailored to their agents’
specific tool requirements.

11

Contributions

Core Contributors

• Dingfeng Shi

• Qianben Chen

• Jingyi Cao

Contributors

• Weichen Sun

• Hongxuan Lu

• Tianrui Qin

• Minghao Yang

• Ge Zhang

• Changwang Zhang

• Yuchen Eleanor Jiang

• Weizhen Li

• Fangchen Dong

• King Zhu

• Jian Yang

• Jiaheng Liu

• Jun Wang

Corresponding Authors

• Wangchunshu Zhou

12

References

[1] Dzmitry Bahdanau, Nicolas Gontier, Gabriel Huang, Ehsan Kamalloo, Rafael Pardinas, Alex Piché, Torsten
Scholak, Oleh Shliazhko, Jordan Prince Tremblay, Karam Ghanem, Soham Parikh, Mitul Tiwari, and Quaizar
Vohra. Tapeagents: a holistic framework for agent development and optimization, 2024. URL https://arxiv.
org/abs/2412.08445.

[2] Adam Fourney, Gagan Bansal, Hussein Mozannar, Cheng Tan, Eduardo Salinas, Friederike Niedtner, Grace
Proebsting, Griffin Bassman, Jack Gerrits, Jacob Alber, et al. Magentic-one: A generalist multi-agent system for
solving complex tasks. arXiv preprint arXiv:2411.04468, 2024.

[3] H2O.ai. Autonomous agentic ai: execute multi-step workflows autonomously. [Online], 2024. https://h2o.ai/
platform/enterprise-h2ogpte/#AgenticAI.

[4] Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and Jiawei
Han. Search-r1: Training llms to reason and leverage search engines with reinforcement learning, 2025. URL
https://arxiv.org/abs/2503.09516.

[5] Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri Vardhamanan,
Saiful Haq, Ashutosh Sharma, Thomas T. Joshi, Hanna Moazam, Heather Miller, Matei Zaharia, and Christopher
Potts. Dspy: Compiling declarative language model calls into self-improving pipelines. 2024.

[6] Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. Camel: Communicative
agents for" mind" exploration of large language model society. Advances in Neural Information Processing
Systems, 36:51991–52008, 2023.

[7] Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif Rasul, Longhui
Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in ai4maths with 860k pairs of
competition math problems and solutions. Hugging Face repository, 13:9, 2024.

[8] Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia: a benchmark for
general ai assistants. In The Twelfth International Conference on Learning Representations, 2023.

[9] Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Chen Bo Calvin Zhang, Mohamed
Shaaban, John Ling, Sean Shi, Michael Choi, Anish Agrawal, Arnav Chopra, Adam Khoja, Ryan Kim, Richard Ren,
Jason Hausenloy, Oliver Zhang, et al. Humanity’s last exam, 2025. URL https://arxiv.org/abs/2501.14249.

[10] Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A Smith, and Mike Lewis. Measuring and narrowing
the compositionality gap in language models. arXiv preprint arXiv:2210.03350, 2022.

[11] Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A. Smith, and Mike Lewis. Measuring and narrowing
the compositionality gap in language models. In Houda Bouamor, Juan Pino, and Kalika Bali, editors, Findings
of the Association for Computational Linguistics: EMNLP 2023, Singapore, December 6-10, 2023, pages 5687–
5711. Association for Computational Linguistics, 2023. doi: 10.18653/V1/2023.FINDINGS-EMNLP.378. URL
https://doi.org/10.18653/v1/2023.findings-emnlp.378.

[12] Shuofei Qiao, Ningyu Zhang, Runnan Fang, Yujie Luo, Wangchunshu Zhou, Yuchen Jiang, Chengfei Lv, and Huajun
Chen. AutoAct: Automatic agent learning from scratch for QA via self-planning. In Lun-Wei Ku, Andre Martins,
and Vivek Srikumar, editors, Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 3003–3021, Bangkok, Thailand, August 2024. Association for Compu-
tational Linguistics. doi: 10.18653/v1/2024.acl-long.165. URL https://aclanthology.org/2024.acl-long.165/.

[13] Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen, Ning Ding, Ganqu Cui, Zheni Zeng, Xuanhe Zhou, Yufei
Huang, Chaojun Xiao, et al. Tool learning with foundation models. ACM Computing Surveys, 57(4):1–40, 2024.

[14] Aymeric Roucher, Albert Villanova del Moral, Thomas Wolf, Leandro von Werra, and Erik Kaunismäki. ‘smola-
gents‘: a smol library to build great agentic systems. https://github.com/huggingface/smolagents, 2025.

[15] Significant-Gravitas. Autogpt. [Online], 2023. https://github.com/Significant-Gravitas/AutoGPT.

[16] Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M Sadler, Wei-Lun Chao, and Yu Su. Llm-planner:
Few-shot grounded planning for embodied agents with large language models. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 2998–3009, 2023.

[17] Jiabin Tang, Tianyu Fan, and Chao Huang. Autoagent: A fully-automated and zero-code framework for llm
agents. arXiv e-prints, pages arXiv–2502, 2025.

13

https://arxiv.org/abs/2412.08445
https://arxiv.org/abs/2412.08445
https://h2o.ai/platform/enterprise-h2ogpte/#AgenticAI
https://h2o.ai/platform/enterprise-h2ogpte/#AgenticAI
https://arxiv.org/abs/2503.09516
https://arxiv.org/abs/2501.14249
https://doi.org/10.18653/v1/2023.findings-emnlp.378
https://aclanthology.org/2024.acl-long.165/
https://github.com/huggingface/smolagents
https://github.com/Significant-Gravitas/AutoGPT

[18] Jesus Tordesillas and Jonathan P How. Mader: Trajectory planner in multiagent and dynamic environments.
IEEE Transactions on Robotics, 38(1):463–476, 2021.

[19] Shubham Toshniwal, Wei Du, Ivan Moshkov, Branislav Kisacanin, Alexan Ayrapetyan, and Igor Gitman.
Openmathinstruct-2: Accelerating ai for math with massive open-source instruction data. arXiv preprint
arXiv:2410.01560, 2024.

[20] Trase. Meet trase systems. [Online], 2024. https://www.trasesystems.com/.

[21] Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Musique: Multihop questions
via single-hop question composition. Transactions of the Association for Computational Linguistics, 10:539–554,
2022.

[22] Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Interleaving retrieval with chain-
of-thought reasoning for knowledge-intensive multi-step questions. In Anna Rogers, Jordan L. Boyd-Graber, and
Naoaki Okazaki, editors, Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), ACL 2023, Toronto, Canada, July 9-14, 2023, pages 10014–10037. Association for
Computational Linguistics, 2023. doi: 10.18653/V1/2023.ACL-LONG.557. URL https://doi.org/10.18653/
v1/2023.acl-long.557.

[23] Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji. Executable code
actions elicit better llm agents. In Forty-first International Conference on Machine Learning, 2024.

[24] Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and Hannaneh Ha-
jishirzi. Self-instruct: Aligning language models with self-generated instructions. arXiv preprint arXiv:2212.10560,
2022.

[25] Jason Wei, Zhiqing Sun, Spencer Papay, Scott McKinney, Jeffrey Han, Isa Fulford, Hyung Won Chung,
Alex Tachard Passos, William Fedus, and Amelia Glaese. Browsecomp: A simple yet challenging benchmark for
browsing agents. arXiv preprint arXiv:2504.12516, 2025.

[26] Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang, Shaokun
Zhang, Jiale Liu, et al. Autogen: Enabling next-gen llm applications via multi-agent conversation. arXiv preprint
arXiv:2308.08155, 2023.

[27] Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin Jiang.
Wizardlm: Empowering large language models to follow complex instructions. arXiv preprint arXiv:2304.12244,
2023.

[28] Canwen Xu, Daya Guo, Nan Duan, and Julian McAuley. Baize: An open-source chat model with parameter-efficient
tuning on self-chat data. arXiv preprint arXiv:2304.01196, 2023.

[29] Dingkang Yang, Kun Yang, Yuzheng Wang, Jing Liu, Zhi Xu, Rongbin Yin, Peng Zhai, and Lihua Zhang.
How2comm: Communication-efficient and collaboration-pragmatic multi-agent perception. Advances in Neural
Information Processing Systems, 36:25151–25164, 2023.

[30] Kun Yang, Dingkang Yang, Jingyu Zhang, Hanqi Wang, Peng Sun, and Liang Song. What2comm: Towards
communication-efficient collaborative perception via feature decoupling. In Proceedings of the 31st ACM
international conference on multimedia, pages 7686–7695, 2023.

[31] Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question answering. In Ellen
Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii, editors, Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, Brussels, Belgium, October 31 - November 4, 2018,
pages 2369–2380. Association for Computational Linguistics, 2018. doi: 10.18653/V1/D18-1259. URL
https://doi.org/10.18653/v1/d18-1259.

[32] Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov, and Christo-
pher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question answering. arXiv preprint
arXiv:1809.09600, 2018.

[33] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. React:
Synergizing reasoning and acting in language models. In International Conference on Learning Representations
(ICLR), 2023.

14

https://www.trasesystems.com/
https://doi.org/10.18653/v1/2023.acl-long.557
https://doi.org/10.18653/v1/2023.acl-long.557
https://doi.org/10.18653/v1/d18-1259

[34] Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo Li, Adrian
Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for large language models.
arXiv preprint arXiv:2309.12284, 2023.

[35] Xiang Yue, Tianyu Zheng, Ge Zhang, and Wenhu Chen. Mammoth2: Scaling instructions from the web. Advances
in Neural Information Processing Systems, 37:90629–90660, 2024.

[36] Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D Goodman. Star: Self-taught reasoner bootstrapping reasoning
with reasoning. In Proc. the 36th International Conference on Neural Information Processing Systems, volume
1126, 2024.

[37] Yuxiang Zhang, Yuqi Yang, Jiangming Shu, Xinyan Wen, and Jitao Sang. Agent models: Internalizing chain-of-
action generation into reasoning models, 2025. URL https://arxiv.org/abs/2503.06580.

[38] Wangchunshu Zhou, Yuchen Eleanor Jiang, Peng Cui, Tiannan Wang, Zhenxin Xiao, Yifan Hou, Ryan Cotterell,
and Mrinmaya Sachan. Recurrentgpt: Interactive generation of (arbitrarily) long text, 2023. URL https:
//arxiv.org/abs/2305.13304.

[39] Wangchunshu Zhou, Yuchen Eleanor Jiang, Long Li, Jialong Wu, Tiannan Wang, Shi Qiu, Jintian Zhang, Jing
Chen, Ruipu Wu, Shuai Wang, Shiding Zhu, Jiyu Chen, Wentao Zhang, Xiangru Tang, Ningyu Zhang, Huajun
Chen, Peng Cui, and Mrinmaya Sachan. Agents: An open-source framework for autonomous language agents.
2023. URL https://arxiv.org/abs/2309.07870.

[40] Wangchunshu Zhou, Yixin Ou, Shengwei Ding, Long Li, Jialong Wu, Tiannan Wang, Jiamin Chen, Shuai Wang,
Xiaohua Xu, Ningyu Zhang, Huajun Chen, and Yuchen Eleanor Jiang. Symbolic learning enables self-evolving
agents. 2024. URL https://arxiv.org/abs/2406.18532.

15

https://arxiv.org/abs/2503.06580
https://arxiv.org/abs/2305.13304
https://arxiv.org/abs/2305.13304
https://arxiv.org/abs/2309.07870
https://arxiv.org/abs/2406.18532

Appendix

A Data Statistics

1 2 3 4 5 6 70
10
20
30
40
50
60
70

Pe
rc

en
ta

ge
 (%

)

Domain
html
image
pdf

Figure 8 Analysis of all tasks.

As illustrated in Figure 8, task generation exhibits a hierarchical decay pattern across all domains as hop
count increases, revealing distinct scalability trends:

• PDF domain: Shows gradual performance attenuation with hop depth, with 1-hop tasks accounting for
33.62% (2,737 tasks), decreasing to 22.36% (1,820 tasks) for 2-hop and 18.60% (1,514 tasks) for 3-hop.
The sharp drop in 5-7 hop tasks (11.80% combined) indicates limited deep-extension capability, yet still
surpasses other domains in depth scalability.

• Image domain: Presents the most pronounced performance decay, with 1-3 hops comprising 80.45%
(4,342/5,397 tasks) but only 8.64% (467 tasks) for 5-7 hops, highlighting fundamental constraints in
deep hierarchical task generation.

• HTML domain: In the HTML domain, 1-hop tasks dominate, constituting 74.84% (17,154 tasks) of the
total. However, this domain also has the highest absolute number of deep extensions, with 5-7 hop tasks
accounting for 4.75% (1,089 tasks).

W
eb

 To
ol

78
%

Pdf Tool
12%

Image Tool10%

Academic
25%

Finance
22%

Other
10%

Cultural
8%

Economic
6%

G
ov

er
nm

en
t

6%

Report
11%

Paper2%

Report
6%

Paper
4%

Figure 9 Distribution of atomic data.

Atomic task analysis. We collect data from webpages, PDF files, and images to support the generation of
atomic tasks, which form the basis of the dataset, totaling 22,053 instances as shown in Figure 8.

Among them, atomic conclusions extracted by web-based tools account for the largest proportion, reaching
77.78%, with sources spanning multiple domains: academic (25.42%), financial (21.58%), cultural (8.09%),

16

economic (6.45%), and governmental (6.08%) resources. These conclusions are derived from up-to-date news
and curated online materials to ensure relevance.

Image-based tools contribute 9.80% of the data, primarily extracting structured insights (e.g., key trends,
comparisons) from charts and tables in financial reports and research papers. To avoid redundancy, we
implement strict verification to exclude conclusions that directly replicate source text.

PDF-based extraction accounts for 12.41%, supplementing the dataset with findings from financial reports
and academic publications. This multi-source approach enhances diversity while maintaining consistency in
atomic fact representation.

By systematically integrating these extraction methods, we ensure high-quality task generation, providing a
robust foundation for downstream model training and optimization.

B Verification Requirements for Depth-Based Extension

Effective n-hop task extension requires rigorous verification to ensure valid multi-hop reasoning. The
transformation must preserve superset validity:

q̂n+1 = f(in+1
T , Rn+1) → inT (5)

qn+1 = f(q̂n+1, Rn) −→ a (6)

Current depth-based extension methods often introduce two critical flaws when replacing tool inputs iT
without proper verification:

• Pseudo-Superset Problem: Superficial substitutions that preserve semantic equivalence but lack genuine
superset relationships

• Information Leakage: Premature disclosure of information that should only emerge through proper
multi-step reasoning

These issues undermine the intended multi-hop reasoning process.

B.1 Pseudo-Superset Problem

A fundamental limitation arises when replacing iT with a semantically equivalent but non-superset index in+1
T .

Consider the following task extension example:

Original task

Query (qn): How many travel trends for 2022 does ’Travel Trends 2025 | Our Annual Report’ present?
Answer: 5

Substituting iT ("Travel Trends 2025 | Our Annual Report") with the synonymous in+1
T ("2025 Annual

Travel Trends Report") yields a intermediate task:

Intermediate task

Query (q̂n+1): What is the title of 2025 Annual Travel Trends Report?
Answer : Travel Trends 2025

Despite valid hop annotations, the intermediate question does not constitute an effective extension: it does
not represent a necessary tool-use step. The core issue lies in the absence of a genuine superset relationship
between inT and in+1

T , leading to superficial expansion.

17

Extended task

Query (qn+1): How many travel trends for 2022 does ’2025 Annual Travel Trends Report’ present?
Answer: 5

B.2 Information Leakage

A second failure mode occurs when expanded tasks inadvertently expose original answers, enabling large
language models (LLMs) to bypass tool retrieval. For instance, consider the extended task:

Extended task

Query (qn+1): In the AP Sports daily summary, Charter and Cox’s proposed merger is valued at
approximately $34.5 billion. What is the exact amount?
Answer : 34.5B USD

While this query appropriately conceals the previous inT ("Sports In Brief"), it directly reveals the answer
"34.5B USD", allowing the LLM to bypass the intended retrieval process. This compromises the essential tool
dependency required for multi-hop task answering.

B.3 Verification for Task Extension

To address these challenges, we propose a rigorous verification framework to ensure the validity of in+1
T , q̂n+1

and qn+1 in task extension.

B.3.1 Strict Superset Verification

in+1
T must be the index of a strict superset of inT , and the relationship can be formalized as:

q̂n+1 = f(in+1
T , Rn+1) → inT (7)

where Rn+1 denotes hierarchical relations (e.g., contains, part_of). Valid extensions must introduce genuine
depth, such as "Sports In Brief" → "AP News’s Sports Section" (relation: contains), while rejecting
synonymous substitutions. Additionally, invalid extensions that allow the LLM to derive inT directly should be
excluded.

B.3.2 Information Leakage Verification

qn+1 = f(q̂n+1, Rn) −→ a (8)

The extended query qn+1 must adhere to the information-sealing principle to ensure proper tool-use reasoning.
This requires that the query does not directly expose the original answer, and any query from which the LLM
can directly obtain the answer should be filtered out.

B.4 Advantages of the Verification Framework

Our approach provides three key advantages:

• Superset Integrity: Guarantees valid hierarchical progression (e.g., column → page → website) without
logical gaps.

• Strict Tool Dependency: Enforces authentic multi-hop reasoning by eliminating solution shortcuts,
ensuring mandatory tool-use.

• Transparent Reasoning: Offers full explainability through explicit relation paths (Rn).

18

A properly expanded task under this framework would appear as follows:

Qualified Extended task

Query (qn+1): According to the recurring AP News’s sports section feature that regularly provides
concise summaries of top sports events and highlights, what is the merger value currently being pursued
by US cable giants Charter and Cox as they face increasing competition from streaming services?
Answer : 34.5B USD

C Core Prompts

This section presents key components of the verification prompts used in our framework.

C.1 Atomic task verification

The following prompt is used in atomic task verification (Section 3.3):

Atomic task verification

Task: Evaluate the consistency between the golden answer (GA) and another answer (AA, either
agent or LLM-generated) as follows:

• 2 points (Fully Consistent): AA and GA are semantically equivalent, even if phrased differently.
Example:

– GA: “Interest rates should be raised and inflation monitored.”
– AA: “It is necessary to raise interest rates and monitor inflation.”

• 1 point (Partially Consistent): AA includes all GA information but adds valid extra details.
Example:

– GA: “The interest rates should be raised.”
– AA: “The interest rates should be raised, and inflation monitored.”

• 0 points (Inconsistent): AA omits key GA information or contradicts it.
Examples:

– Omission: GA: “Raise rates and monitor inflation.”
AA: “Raise rates.”

– Contradiction: GA: “Raise rates by 50bps.”
AA: “Raise rates by 25bps.”

The criteria prioritize semantic equivalence while accommodating informative expansions or reductions.
Output Format: ...

A task is retained as an atomic task if and only if: (1) the AgentScore strictly exceeds the LLMScore, and (2)
the AgentAnswer is non-zero.

C.2 optimized prompts

The following prompts is optimized prompt mentioned in (Section 4.3):

19

Atomic Conclusion Extraction
Task: Extract standalone conclusions from document chunks meeting these criteria:

1. Atomicity: Extract only indivisible basic facts (no combined conclusions, e.g., split “A increased
by 5% and B decreased by 2%” into two separate conclusions)

2. Verifiability: Include at least one definite identifier (numeric value, time, unique name) and reject
vague expressions (e.g., “Performance has improved”)

3. Timeliness Handling: Explicitly mark time ranges for time-sensitive information (e.g., “Global
GDP grew by 3.0% in 2023” instead of “Recent GDP growth of 3.0%”)

4. Citation Integrity: Embed complete content of cited references (e.g., expand “as stated in (2)” to
include the full text of (2) in the conclusion)

Valid Examples:
• Example 1: 3D deconvolution microscopy illumination optimization for refractive index tomogra-

phy (Optics Express 29, 6293-6301, 2021)
• Example 2: Azimuthal energy Φ parameters: (θ0 = 0.5, θd = 2π/7, θw = π/9, θf = 0.06,
p = 1.0004, q = 100)
. . . (more examples omitted) . . .

Output Format: ...

20

Depth-wise Extension: Index in+1
T Guidance and Rn+1 Articulation

Task: Identify a minimal unique superset for an input element based on its attributes, ensuring the
superset+relationship uniquely points to the element.
Examples:

1. Paragraph/sentence: Its belonging text content
2. Specific term: Corresponding discipline/category
3. Specific date: Date range it’s in (e.g., its week/month)
4. Short event: Complete specific event it’s part of
5. Page: Referencing pages or parent page
6. Generate only one relationship, avoiding strongly specific proper nouns

Relationship expression guidelines:
1. Clearly show hierarchical/ownership. Indicate position for series sub-items; clarify ownership for

parts of a superset
2. Specify input content’s positioning (e.g., time range, publication field, role in superset)
3. Use research/industry standard wording
4. Provide only necessary associations

Notes:
1. Return the superset’s unique identifier (e.g., attribute name, page title, paper title)
2. Obtain superset content via tool (web, PDF, image)
3. Concisely describe the relationship, listing unique qualification conditions
4. Use ≤3 search keywords per search; do multiple searches if needed
5. Derive the identifier from search results, excluding the input content
6. Prioritize reading PDF content with tools if the input is a PDF

Valid Examples:
• Example 1:

– Input: Avatar 3: Fire and Ash
– Superset Identifier: Avatar film series
– Relation: The third film

• Example 2:

– Input: V3LMA: Visual 3D-enhanced Language Model for Autonomous Driving
– Superset Index: cs.CV
– Relation: A paper on visual 3D-enhanced language models for autonomous driving

. . . (more examples omitted). . .
Output Format: ...

21

Logical Substitution: qn+1 as f(q̂n+1,Rn)

Task: Substitute elements in core queries using auxiliary queries while preserving:
1. Complexity Balance: The new query should be slightly more complex than the original core

Query and require more steps to solve. But do not make too many changes to the core query.
2. Answer Uniqueness: The new query should point to the unique answer: golden answer, and

should not point to other answers.
3. Answer Concealment: The new query must not reveal information about the golden answer.
4. Natural Language Polish: After merging, polish the question to make it conform to human

expression habits without changing the original meaning. Do not modify the proper nouns
appearing in it.

Valid Examples (20 in total):
• Example 1:

– Core Query: What is the 2nd positive integer?
– Auxiliary Query: Numbers except 0 in natural numbers
– New Query: What is the 2nd natural number except 0?

• Example 2:

– Core Query: Ne Zha 2 attendance ranking
– Auxiliary Query: 2025 May Day box office summary
– New Query: Given 2025 May Day box office data, what is Ne Zha 2’s attendance ranking?

. . . (18 more examples omitted)
Output Format: ...

C.3 Strict Superset Verification

The following prompt is used in Appendix B.3.1:

Strict Superset Verification

Task: Verify if index in+1
T uniquely determines subset inT under relation Rn in given queries.

Criteria:
1. SupersetSubset Relationship:

• in+1
T must be the index of a superset that properly contains inT

• in+1
T ̸≈ inT (excluding synonym pairs like Car/Automobile)

2. Relationship Validity:
• The relationship Rn must explicitly and uniquely link the superset to the subset (no

many-to-one mappings)
Output Format: ...

D Further Training Detail

For SFT training, we synthesize 3,202 multi-hop tasks and their trajectories and apply content masking to
search tool contexts in these trajectories.

For RL training, we follow the Search-R1 [4] and use the 2018 Wikipedia dump as a knowledge source and the
E5 embedding model as a retriever. For fair evaluation, we fix the retrieval depth to 3 passages for all methods.
We merge the training sets of NQ and HotpotQA to form a unified dataset. Evaluation is conducted on the
test or validation sets of three datasets to assess both in-domain and out-of-domain performance. Exact Match
is used as the evaluation metric. In the PPO settings, we set the learning rate of the policy LLM to 1e-6 and
that of the value LLM to 1e-5. Training is conducted for 500 steps, with warm-up ratios of 0.285 and 0.015
for the policy and value models, respectively. We use Generalized Advantage Estimation with parameters λ =
1 and γ = 1. We employ vLLM for efficient LLM rollouts, configured with a tensor parallelism degree of 1
and a GPU memory allocation ratio of 0.6. Our sampling strategy utilizes a temperature parameter of 1.0
and top-p threshold of 1.0. For policy optimization, we apply KL divergence regularization with coefficient

22

π=0.001 and implement a clip ratio ϵ=0.2. The action budget is constrained to 4, with a default retrieval
depth of 3 passages per query.

E Smolagents+

We developed Smolagents+, enhancing its web search capabilities, integrating multiple information sources,
streamlining search results, and implementing a query rewriting strategy to optimize search performance.

23

	Introduction
	Notations and Preliminary
	Automated Task Generation Workflow
	Atomic Task Generation
	Task Extension
	Task Verification

	Experiments
	Corpus Construction
	Synthetic Tasks Analysis
	Enhancing Task Generation Efficiency via Prompt Learning
	Fine-Tuning Agent Models Using Synthetic Trajectory
	Effectiveness of Tool Context in Constructing Agentic Tasks.

	Related Work
	Instruction Data Generation
	Language Agent

	Conclusion
	Limitation
	Data Statistics
	Verification Requirements for Depth-Based Extension
	Pseudo-Superset Problem
	Information Leakage
	Verification for Task Extension
	Strict Superset Verification
	Information Leakage Verification

	Advantages of the Verification Framework

	Core Prompts
	Atomic task verification
	optimized prompts
	Strict Superset Verification

	Further Training Detail
	Smolagents+

