054

### Look Before You Leap: A Universal Emergent Decomposition of Retrieval Tasks in Language Models

#### Anonymous Authors<sup>1</sup>

#### Abstract

When solving challenging problems, language models (LMs) are able to identify relevant information from long and complicated contexts. To study how LMs solve retrieval tasks in diverse situations, we introduce ORION, a collection of structured retrieval tasks, from text understanding to coding. We apply causal analysis on ORION for 18 open-source language models with sizes ranging from 125 million to 70 billion parameters. We find that LMs internally decompose retrieval tasks in a modular way: middle layers at the last token position process the request, while late layers retrieve the correct entity from the context. Building on our high-level understanding, we demonstrate a proof of concept application for scalable internal oversight of LMs to mitigate prompt-injection while requiring human supervision on only a single input.

#### 1. Introduction

Recent advances in language models (LMs) (Vaswani et al., 2017) have demonstrated their flexible problem-solving abilities and their expert-level knowledge in a wide range of fields (Bubeck et al., 2023; OpenAI, 2023). Researchers have developed a series of techniques such as fine-tuning (Ouyang et al., 2022) and Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al., 2022) to ensure models output honest and helpful answers. However, as their abilities reach human level, supervision from human feedback becomes costly and even impossible. This necessitates more efficient or automated methods of supervision, known generally as *scalable oversight*.

Moreover, existing methods only control for the output of the model while leaving the internals of the model unexamined (Casper et al., 2023; Ngo et al., 2023). This is a critical limitation as many internal processes can elicit the same output while using trustworthy or untrustworthy mechanisms. For instance, we would like to know whether a model answers faithfully based on available information or simply gives a user's preferred answer (Perez et al., 2022). We call this problem *internal oversight*.

Recent works on mechanistically interpreting LMs have shown success on narrow tasks (Wang et al., 2022; Nanda et al., 2023). Some have provided insight into factual recall (Geva et al., 2023) and in-context learning (Olsson et al., 2022). Causal interventions have even been used to understand how models encode tasks from few shot examples (Hendel et al., 2023) or bind entities to attributes (Feng and Steinhardt, 2023). However, these works are still scoped to relatively narrow contexts and lack demonstration of concrete applications.

In this work, we study how LMs solve retrieval tasks, i.e. incontext learning problems that involve answering a request (e.g. "What is the city of the story?") to retrieve a keyword (e.g. "Paris") from a context (e.g. a story).

We start by introducing ORION, a collection of 15 datasets of retrieval tasks spanning six different domains from question answering to coding abilities and variable binding. We systematize the task structure by annotating each textual input with an abstract representation where the context is a table of attributes, and the request is a simple SQL-like query, as illustrated in Figure 2.

We apply causal analysis (Pearl, 2009; Vig et al., 2020; Geiger et al., 2021) to 18 open source LMs ranging in size from 125 million to 70 billion parameters to investigate the successive role of layers at the last position on tasks from ORION. The shared abstract representation enables us to define and interpret experiments across tasks and models at scale, without the need for setting-specific labor. We discover that language models handle retrieval tasks by cleanly separating the layers at which they process the request and the context at the last token position. These results suggest that there exists an emergent modular decomposition of tasks that applies across models and tasks. We complement this coarse-grained causal analysis with a finer-grained case study of a question-answering task on Pythia-2.8b (Biderman et al., 2023).

We demonstrate that our understanding of how models solve retrieval tasks can be directly leveraged to mitigate the ef-

<sup>&</sup>lt;sup>1</sup>Anonymous Institution, Anonymous City, Anonymous Region, Anonymous Country. Correspondence to: Anonymous Author <anon.email@domain.com>.

Preliminary work. Under review by the International Conference on Machine Learning (ICML). Do not distribute.



Figure 1: Illustration of our main experimental discovery. Patching the mid-layer residual stream on a retrieval task from ORION causes the language model to output a modular combination of the request from  $x_1$  (asking for the city) and the context from  $x_2$  (a story about Bob in Paris). We call this phenomenon *request-patching*.

075 fect of prompt injection (Perez and Ribeiro, 2022) in a question-answering task. Models are given inputs contain-077 ing distractor sequences that trigger models to output a token 078 unrelated to the task. We present a proof-of-concept based 079 on request-patching that only requires humans to verify the model output on a single trusted input. Our technique signif-081 icantly improves the performance of models on sequences 082 with distractors  $(0\% \rightarrow 70.5\%$  accuracy for Pythia-410m, 083  $15.5\% \rightarrow 97.5\%$  for Pythia-12b). To our knowledge, this 084 is the first demonstration that scalable internal oversight of 085 LMs is feasible. 086

In summary, our main contributions are as follows:

- 1. We introduce ORION, a collection of structured retrieval tasks. It is a data-centric approach enabling a comparative study of 18 models on 6 domains.
- We discover a macroscopic modular decomposition of retrieval tasks in LMs' internals that is universal across tasks and models.
- 3. We link macroscopic and microscopic descriptions of LMs' internals with a fine-grained case study of a question-answering task on Pythia-2.8b.
- 4. We apply this knowledge to a proof of concept for *scalable internal* oversight of LMs solving a retrieval task in the presence of prompt injection.

#### 2. Background

057

059

060

061

062 063

064

065 066

067

068

069 070

072

074

087

088

089

090

091

092

093

094

095

096

097

098

099

100

104

105

106

107

109

# 2.1. The Transformer architecture for autoregressive language models

An autoregressive language model,  $\mathcal{M}_{\theta}$  with parameters  $\theta$ , maps a sequence of input tokens  $x = (x_1, x_2, ..., x_n)$  to a probability distribution over the next token  $x_{n+1}$ . For the Transformer architecture (Vaswani et al., 2017), we have:

$$p(x_{n+1}|x) = \mathcal{M}_{\theta}(x)$$
  
= softmax(\pi\_n(x))

The pre-softmax values  $\pi_n$  are the logits at the *n*-th token position. The final logits  $\pi_l$  are constructed by iteratively building a series of intermediate activations  $z_k^l$  we call the *residual stream*, following (Elhage et al., 2021). The residual stream  $z_k^l$  at token position k and layer l is computed from the residual stream at previous token positions at the previous layer  $z_{\leq k}^{l-1}$  by adding the results of  $a_k^l$ , a multiheaded attention module that depends on  $z_{\leq k}^{l-1}$ , and  $m_k^l$ , a two-layer perceptron module that depends on  $z_k^{l-1}$ . We provide a complete description of the Transformer architecture in Appendix G.

#### 2.2. Computational graph as causal graph

The experimental paradigm of causal analysis applied to machine learning models initiated by (Vig et al., 2020) and (Geiger et al., 2021) treats the computational graph of a neural network as a causal graph. The goal of causal analysis is to answer questions about *why* a model outputs a given answer. This requires uncovering the causal links tying the inputs to the output, as well as characterizing the role of the internal components critical for the model's function. To this end, researchers rely on *causal interventions* (Pearl, 2009), experiments that replace a set of activations with fixed values.

In this work, we use single-input *interchange intervention*<sup>1</sup>

<sup>&</sup>lt;sup>1</sup>It is sometimes called "activation patching" in the literature see e.g. (Wang et al., 2022)

110 (Geiger et al., 2021). It is a simple form of causal interven-111 tion where we intervene on one variable at a time by fixing 112 its value to be the value of that same variable on another 113 input. We write  $\mathcal{M}(x|A \leftarrow A(x'))$  the output of the model 114 after the single-input interchange intervention on the *target* 115 *input* x, replacing the activation of the node A by its value 116 on the *source input* x'.

### 3. ORION: a collection of structured retrieval tasks

Our study concentrates on retrieval, a fundamental aspect
of in-context learning, which involves answering a request
(e.g. "What is the name of the city?") by identifying the
correct attribute (e.g. a city name) from the context (e.g.
a story). To facilitate this study, we crafted a collection
of datasets dubbed the Organized RetrIeval Operations for
Neural networks (ORION).

128 **Abstract representation.** Each textual input (i.e. LM 129 prompt) from ORION is annotated with an abstract rep-130 resentation (C, R) where C represents the context and R 131 the request. In the example of Figure 2, the context is a 132 story introducing a place, a character, and an action, while 133 the request is a question written in English asking for the 134 city of the story.

135 The context C is abstractly represented as a table where 136 each line is a list of attributes. The request R is retriev-137 ing a target attribute  $ATTR_t$  (e.g. the "name" attribute 138 in Figure 2), from lines where a filter attribute  $ATTR_{f}$ 139 (e.g. the narrative role) has the value  $v_f$  (e.g. "city"). 140 The request can be written using a language in the style 141 of SQL as follows: SELECT  $ATTR_t$  FROM C WHERE 142  $ATTR_{f} = v_{f}$  (e.g. SELECT Name FROM Context 143 WHERE *Role=*City).

We note R(C) the results of applying the request on the context. This is the ground truth completion for LMs evaluated on the retrieval task. In practice, R(C) is a single token called the *label token*. On the example we have R(C) = " Valencia".

Desiderata for datasets. To facilitate the application of 150 causal analysis, we enforce a list of desiderata on datasets 151 from ORION. The most important desiderata is ensuring 152 datasets are *decomposable*. For every dataset D in ORION, 153 for every abstract representations  $(C_1, R_1), (C_2, R_2)$  in D, 154  $R_2(C_1)$  and  $R_1(C_2)$  are well-defined. This means that an 155 arbitrary request can be applied to an arbitrary context from 156 the same task. Abstract representations of requests and 157 contexts can be freely interchanged across a task. This 158 constraint enables the design of interchange interventions at 159 scale. 160

We define four additional desiderata Structured, Single token, Monotasking, and Flexible in Appendix H and share
the motivation behind their definition.

164

117

**Dataset composition.** The dataset includes the retrieval task from domains: question-answering, translation, factual recall, variable binding, induction pattern-matching, and type hint understanding. For each domain, we created two or three variations. Each dataset is created using a semiautomated process leveraging the LLM assistant ChatGPT. We provide a detailed overview of the dataset and its creation in Appendix H.

**Performance metrics.** We define a task T as a set of inputoutput pairs (x, y) where x is the LM input and y is the expected label token. We use two main metrics to quantify the performance of a language model on an ORION task T.

- Accuracy:  $\mathbf{E}_{(x,y)\sim T}[\mathcal{M}(x)=y]$
- Token probability:  $\mathbf{E}_{(x,y)\sim T}[p(y|x)]$

Accuracy serves as our primary metric to assess model performance in solving tasks due to its straightforward interpretation and practical application in language models, where the most probable token is often chosen.

However, accuracy falls short in capturing nuanced aspects of predictions, for instance, accuracy doesn't measure the margin by which a token is the most probable. To have a granular evaluation of model behavior after interventions, we employ token probability, offering a continuous measure.

We evaluate the performance of 18 models from four different model families: GPT-2 (Radford et al., 2019), Pythia (Biderman et al., 2023), Falcon (Almazrouei et al., 2023) and Llama 2 (Touvron et al., 2023). We study base language models for all families except Falcon where we include two instruction fine-tuned models. We choose the models to capture diverse scales, architecture, and training techniques.

Unsurprisingly, larger models can solve a wider range of problems. Models with more than 6 billion parameters are able to solve every task with more than 70% accuracy. Nonetheless, even GPT-2 small with 125M parameters, one of the smallest models, can solve the simplest version of the question-answering task with 100% accuracy. Detailed evaluations using the token probability and logit difference are available in Appendix A.

In the following analyses, we only consider settings where the model can robustly solve the task. Thus, we focus on pairs of models and tasks that have greater than 70% accuracy.

# 4. Macroscopic causal analysis on ORION: a universal emergent decomposition of retrieval tasks

To correctly solve retrieval tasks, an LM has to gather and combine at the last token position information coming from the request and the context. We focus our investigations on



Figure 2: Example input from ORION for the question-answering task. Textual inputs are annotated with an abstract
representation of the context and the request. Abstract context representations are tables where each line lists attributes
relative to a story element. Requests can be formulated using simple SQL-like queries.

understanding how these two processing steps are organizedin the intermediate layers of the last token position.

184 In this section, we choose to consider a coarse-grained di-185 vision of the model, intervening on full layers instead of 186 a finer-grained division, e.g. considering single-attention 187 heads and MLP blocks. We find this level of analysis is 188 sufficient to develop a high-level causal understanding of 189 how language models solve retrieval tasks while providing a 190 computationally tractable set of experiments to run at scale. 191 We complement this general coarse-grained analysis in Section 5 with a finer-grained case study on Pythia-2.8b solving 193 a question-answering task.

#### 195 4.1. Methods

176

181

194

196 Our main experimental technique is residual stream patch-197 ing. Residual stream patching is a single-input interchange 198 intervention, replacing the residual stream at a layer L 199 at the last position in the forward pass of the model on 200 input  $x_2$  with its activation from another input  $x_1$ . Fol-201 lowing the notation introduced in Section 2.2, we note 202  $\mathcal{M}(x_2|z_n^L \leftarrow z_n^L(x_1))$  the model output on  $x_2$  after this 203 intervention. 204

As shown in Figure 1, residual stream patching makes every component before layer L have the activation it takes on  $x_1$ while the components after layer L receive mixed activations (denoted by the yellow color in the figure). These later layers see activations at the last position coming from  $x_1$  while activations from earlier positions come from  $x_2$ .

211 To characterize the output of the patched model, we mea-212 sure the token probability and accuracy for three different 213 label tokens related to the inputs  $x_1$  and  $x_2$ . We use both 214 label tokens from the input  $x_1$  and  $x_2$ ,  $R_1(C_1)$  and  $R_2(C_2)$ 215 respectively, and the label token  $R_1(C_2)$  that is the result of 216 applying the request from  $x_1$  on the context of  $x_2$ .

To facilitate comparisons between different tasks and models, we normalize the token probability based on the mean probability of the correct token given by the model for the task. In addition, we calculate the normalized accuracy where 0 represents the accuracy of random guess, i.e. responding to a random request in a given context while 1 denotes the model's baseline accuracy for that task.

We perform residual stream patching at the last position for every layer, model, and task of ORION. For each task, we use a dataset of 100 prompts and average the results of 100 residual stream patching experiments with  $x_1$  and  $x_2$  chosen uniformly from the task dataset.

#### 4.2. Results of residual stream patching

Figure 3 shows the results of residual stream patching on the question-answering task with a uniform answer prefix for the Pythia-2.8b model. We observe that after residual stream patching on the layer before layer 13, the model is outputting  $R_2(C_2)$  with 100% normalized token probability. Our interpretation is that this intervention does not perturb the model processing of  $x_2$ . We further observe that residual stream patching after layer 27 causes the model to output  $R_1(C_1)$  with more than 80% normalized token probability. In effect, patching the residual stream after a certain layer is equivalent to hard-coding the model output on  $x_1$ .

Surprisingly, when patching between layers 15 and 16, we observe that the model outputs  $R_1(C_2)$  with 100% normalized accuracy, i.e. with the same accuracy level as the baseline task accuracy. The model is outputting the results of the request contained in the input  $x_1$  in the context of the input  $x_2$ . We call this phenomenon, *request-patching*, i.e. a residual stream patching experiment that leads to the  $R_1(C_2)$  label token being confidently outputted by the patched model. Such results demonstrate that the causal intervention coherently intervenes in the model's internal computation, causing it to modularly combine high-level information from two different prompts.

We observe a sudden jump in the normalized accuracy of

Residual stream patching accross layer on the QA (uniform prefix) task for pythia-2.8b



Figure 3: Normalized token probability and accuracy for the label tokens  $R_1(C_1)$ ,  $R_1(C_2)$  and  $R_2(C_2)$  after patching the residual stream across all layers. Patching early (before  $L_1 = 13$ ) and late (after  $L_3 = 27$ ) leads to the expected results, respectively no change in output and patching the output from  $x_1$ . However, intervening on the middle layer ( $L_2 = 16$ ) leads to the model confidently outputting the token  $R_1(C_2)$ , a modular combination of the request from  $x_1$  and the context from  $x_2$ .

request-patching from 0 to 1 between layers 14 and 15. However, it is likely that transforming the sequence of tokens representing the question into a representation of the request takes several layers. Thus, we hypothesize that a large part of the request processing happens at the previous token positions of the question. In this interpretation, the observed jump at layer 15 results from the intermediate representation of the request being propagated to the last position through attention modules.

**Defining limit layers.** From the results of the residual stream experiments, we define three layers  $-L_1, L_2$ , and  $L_3$  – delimiting the three different outcomes of residual stream patching as shown in Figure 3.

 $L_1$  is the maximal layer at which the normalized token probability of the label token  $R_1(C_1)$  is greater than 80%. It marks the end of the region where residual stream patching does not interfere with the model output.  $L_2$  is the layer where the normalized probability of the label  $R_1(C_2)$  is maximal. It is the place where the effect of request-patching is the strongest.  $L_3$  is the minimal layer where the normalized probability of the label  $R_2(C_2)$  is greater than 80%. It marks the start of the region where residual stream patching leads to a complete overwrite of the model output.

We choose the token probability as a continuous metric to measure the model prediction. The 80% threshold has been chosen arbitrarily as a criterion to consider that the model is mainly outputting a single label token.

267 **Request-patching is general across models and datasets.** 268 We expand our investigation of request-patching to include 269 every model and task from ORION. To ease the analysis, we 270 compute the maximal normalized probability of the  $R_1(C_2)$ 271 label token, i.e. the normalized probability after patching at 272  $L_2$ . We use this metric as our main performance indicator to 273 measure the strength of the request-patching phenomenon 274 on a given pair of model and task.

98 out of the 106 pairs of tasks and models studied demonstrate a similar profile as the one shown in Figure 3. Requestpatching leads to at least 70% normalized probability of the  $R_1(C_2)$  label token. Request-patching appears across variations in domain, task complexity, and low-level prompt structure. Moreover, it is present in every model studied, from GPT-2 small to Llama 2 70b, one of the largest available open-source LMs.

The results for the question-answering with mixed template task demonstrate that request-patching works even when patching the residual stream across different templates, e.g. taking the residual stream from a prompt where the question is *before* the story and patching it in a model execution where the question is *after* the story. This means that the representation stored in the patched activation is related to the semantic meaning of the question, and not surface-level textual features.

However, the phenomenon of request-patching seems not to be present in the abstract induction task on large models. We hypothesize that this is due to the increased wideness of large models and the simplicity of the task. We discuss further the results for induction and factual recall by comparing request-patching results to prior work in Appendix F.

To further our analysis, Figure 4 shows the values of the layer  $L_2$  on different models and datasets. We observe that the effect of request-patching for the induction tasks is the strongest at earlier layers compared to the other tasks. This observation is consistent with the simplicity of the request processing, which only involves copying previous tokens. The  $L_2$  layers for other tasks are concentrated in similar layers, suggesting a similar high-level organization of the internal computation that does not depend on the details of



Figure 4: Left: Layer of maximal request-patching performance  $L_2$  for different models and tasks. While the  $L_2$  layers for most tasks are concentrated at similar layers, the processing of the request in the induction task seems to happen at earlier layers. **Right:** results of residual stream patching on Llama 2 70b. Request-patching is most performant in a narrow range of layers centered around layer 42 and does not depend on the nature of the task.

the task being solved. However, for Llama 2 70b, the largest model studied, the  $L_2$  layers are concentrated in the same narrow range (39-43) for every task, including the simple induction tasks. It is unclear if this disparity is caused by its larger size or by the specifics of the architecture. We provide visualizations of request patching results and of layers  $L_1$ and  $L_3$  in Appendix D.

#### 5. Microscopic analysis: case study on Pythia-2.8b

291

292

293

294 295 296

297

298

299

300

301

302

303 304

305

306

307 To complement the high-level causal explanation described 308 in the previous section, we conduct a finer-grained case 309 study on Pythia-2.8b on the question-answering task. Our 310 motivation is twofold. First, we want to provide a comple-311 mentary level of analysis documenting how the model solves 312 the retrieval task at the scale of individual MLP and attention 313 heads. Second, we want to understand more precisely how 314 request-patching influences components at the later layer 315 to force them to execute a request that is not present in the 316 context. Appendix **B** describes in detail our methodology 317 and the results of the case study. In this section, we provide 318 an overview of our key results.

319 The components contributing directly to the logits de-320 pend on superficial changes in the input. We discover that 321 the set of components directly influencing the logits varies 322 from input to input. There is no single set of components 323 implementing the retrieval steps on every input. We find 324 that the components contributing to predicting the correct 325 token depend on superficial changes in the input sequence. As shown in Figure 5, we discover a family of attention 327 heads that retrieve the correct token from the context when 328 the question asks for the city of the story only when the city 329



Figure 5: City-specific heads attend to the city token and contribute directly to the logits when the question asks about the city of the story *only* if the city has a specific value, e.g. "Cusco" for the head L22H9.

has a particular value (e.g. "Cusco"). For all the other city names, these heads do not directly contribute significantly to the output.

**Request-patching preserves natural mechanism.** To compare the internal changes caused by residual stream patching  $\mathcal{M}(x_2|z_n^{L_2} \leftarrow z_n^{L_2}(x_1))$  to a natural mechanism, we construct a reference input  $x_3$  by concatenating the textual representation of the context  $C_2$  and the request  $R_1$ . On  $x_3$ , the model is naturally executing the request  $R_1$  on the con-

text  $C_2$ . This reference input acts as our control condition to compare the effect of request patching

to compare the effect of request-patching.

333 We find that request-patching globally preserves the mech-334 anism of the components at the late layers. We measure 335 the direct effect and attention pattern for every component after patching  $\mathcal{M}(x_2|z_n^{L_2} \leftarrow z_n^{L_2}(x_1))$ . These measures are similar to those of the components on the corresponding 337 338 reference input  $x_3$  (relative difference less than 12%). This 339 suggests that request-patching causes the final layers of the 340 model to act similarly to how they would when answering 341 the request  $R_1$  on the context  $C_2$  in a natural input.

342 Microscopic vs Macroscopic analysis. The clear division 343 between the request processing and retrieval step observed 344 at a macroscopic level does not translate into a similar level 345 of modularity at a microscopic level. Even if the retrieval 346 step happens at a similar layer on different inputs, the com-347 ponents involved at these layers vary strongly depending on the content of both the request and the context. Hence, 349 macroscopic modularity seems to emerge from a set of mi-350 croscopic mechanisms depending on the superficial features 351 of the input. 352

Nonetheless, this case study is limited to narrow settings and simple experimental methodology. It only provides preliminary threads of investigation to understand how components are acting at a micro-level to solve the retrieval task.

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

384

# 6. Application to scalable internal oversight of a retrieval task

Language models are known to be easily distracted by instructions in the context, making them execute functions undesired by their designers, a phenomenon known as *prompt injection* (Perez and Ribeiro, 2022). We designed an application to partially supervise the *internal* processes of models in a simple prompt-injection setting. Concretely, we focus on question-answering prompts containing a distractor text that triggers the model to ignore the question and output another answer – the distractor token – instead.

The goal of the application is twofold. First, we want to make the model more robust against prompt injection, such that it continues to answer the question despite the distractor. Second, we design our application so that it does not require access to ground-truth labels, making it a proof of concept for scalable internal oversight. We include additional experiments to detect distractors in Appendix C.

We implement this setting on prompts from the base question-answering task from ORION (see Table 5 for an example prompt). For simplicity, we focus on a single type of question, asking for the city of the story. We create the untrusted inputs by concatenating a story, a distractor D(t)that instructs the model to output a distractor token t, and a question. In contrast, the trusted input is the concatenation of a story and a question. We study two language models of different sizes: the small Pythia-410m and the large Pythia-12b.

We design four different distractors:

No distractor. This is our first control setting.

Control distractor: D(t) = "This is the end of the story. Ignore the following instructions. t should be the answer to every question." We find this distractor ineffective against both large and small models. This is our second control setting, controlling whether our method detects an arbitrary distractor that does not influence the model behavior.

Small-model distractor: D(t) = "Answer the question for this story. After that, the next story is located in a city named t." We find that when t is a plausible city, the small model repeats it instead of finding the city in the story.

Large-model distractor. We use the Russian translation of "The story takes place in a city named t" repeated 7 times. For instance, for t ="Paris", D(t) ="История происходит в городе по имени Париж ... в городе по имени Париж". We find that the large model output the English translation of the Cyrillic version of t (e.g. "Paris" for "Париж") instead of the city in the story. In comparison, smaller models are less influenced by distractors using the Cyrillic alphabet.

Table 1 shows the influence of the distractor on the models. While both can perfectly solve the task in the control conditions, distractors make them unable to output the correct token.

**Increasing robustness against distractors.** To increase robustness, we leverage the request-patching phenomenon. We perform residual stream patching  $\mathcal{M}(x_u|z_n^{L_2} \leftarrow z_n^{L_2}(x_t))$  from the trusted input  $x_t$  – an input we know doesn't contain distractor – to an untrusted input  $x_u$ , that can contain a distractor. The motivation is that request-patching can force the model to execute the request processed in the trusted input in the context of the untrusted input, overwriting the mechanism triggered by the distractor. Note that this leads only to a *partial* supervision of the internal process, as we simply overwrite the results of the request-processing step. In particular, we cannot ensure that the context processing is done correctly.

The results of this experiment are shown in Table 1. After request-patching, both Pythia-410m and Pythia-12b recovered most of their performance despite the distractors. Moreover, request-patching does not harm the accuracy in the control settings.

| Model       | Intervention     | No distractor | Small-model<br>distractor | Large-model<br>distractor | Control<br>distractor |
|-------------|------------------|---------------|---------------------------|---------------------------|-----------------------|
| Pythia-410m | No intervention  | 97            | 0                         | 84                        | 100                   |
|             | Request-patching | 100           | 70.5                      | 100                       | 100                   |
| Pythia-12b  | No intervention  | 100           | 90.5                      | 15.5                      | 100                   |
|             | Request-patching | 98            | 89.5                      | 97.5                      | 98.5                  |

Table 1: Accuracy (in %) on the question-answering task before and after request-patching from a trusted input. Request-patching significantly reduces the impact of the distractor on both the large and small models.

#### 7. Related Work

392

395 396

397

439

Causal interventions. A growing body of work has studied 399 neural networks by performing causal interventions. The 400 core differences among works are their proposed high-level 401 causal graphs and corresponding concrete changes to neural 402 activations. (Michel et al., 2019) prune attention heads by 403 setting their outputs to zero, identifying a minimal set of 404 components needed to solve a task. (Meng et al., 2022) 405 locate MLP blocks involved in factual recall in LMs by 406 performing interventions using activations corrupted with 407 Gaussian noise. A more precise understanding of the mecha-408 nisms implemented by components can be achieved through 409 interchange operations. Patching a fixed value from a for-410 ward pass into a new input has been used to investigate gen-411 der bias (Vig et al., 2020), variable binding (Davies et al., 412 2023), indirect object identification (Wang et al., 2022), or factual recall (Geva et al., 2023). Recent work proposes a 413 more fine-grained division of models by performing inter-414 change interventions on paths instead of variables (Wang 415 et al., 2022; Goldowsky-Dill et al., 2023), enabling a precise 416 characterization of indirect effects. 417

418 Causal interventions for high-level understanding of 419 LMs. As an alternative to zooming in on the role of individ-420 ual model components, recent work focuses on extracting 421 a high-level understanding of the computations at play in 422 LM internals. (Hendel et al., 2023) patch residual stream 423 vectors to transfer the representation of a simple task from 424 few-shot examples to zero-shot instances of a task. Similarly, (Todd et al., 2024) used causal analysis to identify 425 attention heads representing functions from few-shot exam-426 ples. (Feng and Steinhardt, 2023) intervene on the residual 427 stream at every layer for specific tokens to argue that models 428 generate IDs to bind entities to attributes. Representation 429 engineering (Zou et al., 2023) uses prompt stimuli to extract 430 reading vectors from the activations of language models. 431 These vectors can then be used to perform interventions 432 that stimulate or inhibit a specific concept in subsequent 433 forward passes. These interventions do not operate via spe-434 cific mechanisms, making their precise effects difficult to 435 predict. In this work, we introduce a causal intervention that 436 applies across a broad range of situations while still being 437 mechanistically grounded. 438

#### 8. Conclusion

In this study, we presented evidence of an emergent decomposition of retrieval tasks across 18 language models and six problem types. Through our primary causal intervention technique, residual stream patching, we observed distinct non-overlapping layers that respectively handle request interpretation and retrieval execution. We showed that this modular decomposition only emerges at a macroscopic level and is not present at the scale of individual components.

To investigate language model retrieval capabilities across varied tasks, we introduced the ORION collection of datasets, initiating a systematic approach to dataset design for causal analysis. However, the tasks from ORION are limited as they involve requests with a single attribute. Future works could apply high-level causal analysis to multiattribute requests and tasks beyond retrieval.

Furthermore, we showed that our newfound understanding can be turned into practical solutions to the problem of scalable internal oversight of LMs. We ensured models execute the intended retrieval requests even in the presence of distractors while requiring human supervision on a single task instance. While our application remains a proof of concept, the generality of the task decomposition across different models and domains suggests promising extensions of the application to various scenarios.

This research proposes an approach to language model interpretability complementary to microscopic studies, emphasizing a high-level understanding of model mechanisms, comparative analysis across models and tasks, and concrete application design. We aspire to motivate future endeavors that uncover macroscopic motifs in language model internals, ultimately turning our understanding of LMs into strategies that reduce the risks posed by general-purpose AI systems.

#### References

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Alshamsi, Alessandro Cappelli, Ruxandra Cojocaru, Merouane Debbah, Etienne Goffinet, Daniel Heslow, Julien Launay, Quentin Malartic, Badreddine Noune, Baptiste Pannier, and Guilherme Penedo. Falcon-40b: an open

- large language model with state-of-the-art performance,2023.
- Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. *arXiv preprint arXiv:1607.06450*, 2016.
- 446 Stella Biderman, Hailey Schoelkopf, Quentin Anthony, 447 Herbie Bradley, Kyle O'Brien, Eric Hallahan, Mo-448 hammad Aflah Khan, Shivanshu Purohit, USVSN Sai 449 Prashanth, Edward Raff, Aviya Skowron, Lintang 450 Sutawika, and Oskar van der Wal. Pythia: A suite for ana-451 lyzing large language models across training and scaling, 452 2023.
- 453
  454
  455
  455
  456
  456
  457
  458
  458
  Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence: Early experiments with gpt-4. *arXiv preprint arXiv:2303.12712*, 2023.
- Stephen Casper, Xander Davies, Claudia Shi, 459 Thomas Krendl Gilbert, Jérémy Scheurer, Javier 460 Rando, Rachel Freedman, Tomasz Korbak, David 461 Lindner, Pedro Freire, Tony Wang, Samuel Marks, 462 Charbel-Raphaël Segerie, Micah Carroll, Andi Peng, 463 Phillip Christoffersen, Mehul Damani, Stewart Slocum, 464 Usman Anwar, Anand Siththaranjan, Max Nadeau, 465 Eric J. Michaud, Jacob Pfau, Dmitrii Krasheninnikov, 466 Xin Chen, Lauro Langosco, Peter Hase, Erdem Bıyık, 467 Anca Dragan, David Krueger, Dorsa Sadigh, and Dylan 468 Hadfield-Menell. Open problems and fundamental 469 limitations of reinforcement learning from human 470 feedback, 2023. 471
- Paul Christiano. Mechanistic anomaly detection and elk,
  2022. URL https://www.alignmentforum.
  org/posts/vwt3wKXWaCvqZyF74/
  mechanistic-anomaly-detection-and-elk#
  Empirical\_research\_problems.
- Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark
  Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark
  Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert,
  Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training verifiers to
  solve math word problems, 2021.
- 482
  483
  484
  484
  485
  486
  486
  486
  487
  486
  486
  486
  486
  486
  486
- 487 Nelson Elhage, Neel Nanda, Catherine Olsson, Tom 488 Henighan, Nicholas Joseph, Ben Mann, Amanda Askell, 489 Yuntao Bai, Anna Chen, Tom Conerly, et al. A mathe-490 matical framework for transformer circuits. *Transformer* 491 *Circuits Thread*, 1, 2021.
- 492
  493
  493
  494
  494
  Jiahai Feng and Jacob Steinhardt. How do language models bind entities in context?, 2023.

- Atticus Geiger, Hanson Lu, Thomas Icard, and Christopher Potts. Causal abstractions of neural networks. *Ad*vances in Neural Information Processing Systems, 34: 9574–9586, 2021.
- Atticus Geiger, Chris Potts, and Thomas Icard. Causal abstraction for faithful model interpretation. *arXiv preprint arXiv:2301.04709*, 2023.
- Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir Globerson. Dissecting recall of factual associations in auto-regressive language models. *arXiv preprint arXiv:2304.14767*, 2023.
- Nicholas Goldowsky-Dill, Chris MacLeod, Lucas Sato, and Aryaman Arora. Localizing model behavior with path patching. *arXiv preprint arXiv:2304.05969*, 2023.
- Roee Hendel, Mor Geva, and Amir Globerson. In-context learning creates task vectors, 2023.
- Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415, 2016.
- Dmitrii Krasheninnikov, Egor Krasheninnikov, and David Krueger. Out-of-context meta-learning in large language models. In *ICLR 2023 Workshop on Mathematical and Empirical Understanding of Foundation Models*, 2023.
- Morgane Laouenan, Palaash Bhargava, Jean-Benoît Eyméoud, Olivier Gergaud, Guillaume Plique, and Etienne Wasmer. A cross-verified database of notable people, 3500bc-2018ad. *Scientific Data*, 9(1):290, 2022.
- Tom Lieberum, Matthew Rahtz, János Kramár, Geoffrey Irving, Rohin Shah, and Vladimir Mikulik. Does circuit analysis interpretability scale? evidence from multiple choice capabilities in chinchilla. arXiv preprint arXiv:2307.09458, 2023.
- Thomas McGrath, Matthew Rahtz, Janos Kramar, Vladimir Mikulik, and Shane Legg. The hydra effect: Emergent self-repair in language model computations. *arXiv preprint arXiv:2307.15771*, 2023.
- Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual associations in gpt. Advances in Neural Information Processing Systems, 35: 17359–17372, 2022.
- Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? *Advances in neural information processing systems*, 32, 2019.
- Neel Nanda, Lawrence Chan, Tom Liberum, Jess Smith, and Jacob Steinhardt. Progress measures for grokking via mechanistic interpretability. *arXiv preprint arXiv:2301.05217*, 2023.

- 495 Richard Ngo, Lawrence Chan, and Sören Mindermann.
  496 The alignment problem from a deep learning perspec497 tive, 2023.
- Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan, Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. Incontext learning and induction heads. *arXiv preprint arXiv:2209.11895*, 2022.
- 504 OpenAI. Gpt-4 technical report, 2023.
- Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with human feedback. *Advances in Neural Information Processing Systems*, 35:27730–27744, 2022.
- 512 Judea Pearl. *Causality*. Cambridge university press, 2009.
- 513 Ethan Perez, Sam Ringer, Kamilė Lukošiūtė, Karina 514 Nguyen, Edwin Chen, Scott Heiner, Craig Pettit, Cather-515 ine Olsson, Sandipan Kundu, Saurav Kadavath, Andy 516 Jones, Anna Chen, Ben Mann, Brian Israel, Bryan 517 Seethor, Cameron McKinnon, Christopher Olah, Da Yan, 518 Daniela Amodei, Dario Amodei, Dawn Drain, Dustin Li, 519 Eli Tran-Johnson, Guro Khundadze, Jackson Kernion, 520 James Landis, Jamie Kerr, Jared Mueller, Jeeyoon Hyun, 521 Joshua Landau, Kamal Ndousse, Landon Goldberg, Liane 522 Lovitt, Martin Lucas, Michael Sellitto, Miranda Zhang, 523 Neerav Kingsland, Nelson Elhage, Nicholas Joseph, 524 Noemí Mercado, Nova DasSarma, Oliver Rausch, Robin 525 Larson, Sam McCandlish, Scott Johnston, Shauna Kravec, 526 Sheer El Showk, Tamera Lanham, Timothy Telleen-527 Lawton, Tom Brown, Tom Henighan, Tristan Hume, Yuntao Bai, Zac Hatfield-Dodds, Jack Clark, Samuel R. Bow-528 man, Amanda Askell, Roger Grosse, Danny Hernandez, 529 Deep Ganguli, Evan Hubinger, Nicholas Schiefer, and 530 Jared Kaplan. Discovering language model behaviors 531 with model-written evaluations, 2022. 532
- 533
  534
  535
  Fábio Perez and Ian Ribeiro. Ignore previous prompt: Attack techniques for language models, 2022.
- Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario
  Amodei, Ilya Sutskever, et al. Language models are
  unsupervised multitask learners, 2019.
- Noam Shazeer. Glu variants improve transformer. *arXiv preprint arXiv:2002.05202*, 2020.
- 542 Eric Todd, Millicent L. Li, Arnab Sen Sharma, Aaron
  543 Mueller, Byron C. Wallace, and David Bau. Function
  544 vectors in large language models, 2024.
- Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen,

Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalvan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models, 2023.

- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing systems*, 30, 2017.
- Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, Sharon Qian, Daniel Nevo, Yaron Singer, and Stuart Shieber. Investigating gender bias in language models using causal mediation analysis. *Advances in neural information processing systems*, 33:12388–12401, 2020.
- Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Interpretability in the wild: a circuit for indirect object identification in gpt-2 small. *arXiv preprint arXiv:2211.00593*, 2022.
- Andy Zou, Long Phan, Sarah Chen, James Campbell, Phillip Guo, Richard Ren, Alexander Pan, Xuwang Yin, Mantas Mazeika, Ann-Kathrin Dombrowski, Shashwat Goel, Nathaniel Li, Michael J. Byun, Zifan Wang, Alex Mallen, Steven Basart, Sanmi Koyejo, Dawn Song, Matt Fredrikson, J. Zico Kolter, and Dan Hendrycks. Representation engineering: A top-down approach to ai transparency, 2023.

#### A. Detailed description of ORION

We present the performance of the 18 models studied on the ORION collection measured using the accuracy in Figure 6, logit difference, and the probability of the correct token in Figure 7. The value for the probability of the correct token is used as the normalization factor when computing normalized token probability.

# B. Case study on Pythia-2.8b solving a question-answering task

In the main text, we have demonstrated the generality of the phenomenon of request-patching. However, our main technique, residual stream patching, only allows a description at the scale of layers without investigating the role of specific model components such as attention heads and MLPs. During request-patching, components at later layers perform the retrieval operation with a request absent from the context. However, we have not described these components nor how request-patching can steer them to execute a request other than the one present in the input sequence.

In this Appendix, we zoom in on the Pythia-2.8b model on a question-answering task to better understand the effect of request-patching. We are interested in three questions:

- What is the mechanism used by Pythia-2.8b to perform the retrieval step?
- Does the modularity observed at a macro-level still hold at a micro-level?
- Does request-patching lead Pythia-2.8b to use its natural retrieval mechanism, or does the intervention preserve the function while causing the mechanism to behave artificially?

#### B.1. Methods

We focus our investigation on the end part of the circuit on the question-answering (QA) task, i.e. we study the components of Pythia-2.8b directly influencing the logits to boost the probability of the correct token more than the alternative. They are natural candidates for implementing the retrieval function as it is the last step of our high-level causal graph.

To find the components influencing the logits, we quantify 595 the *direct effect* of components, i.e. their effect through the 596 direct path that connects them to the logits via the residual 597 connections without intermediate nodes. We use path patch-598 ing (Goldowsky-Dill et al., 2023) to quantify this effect. 599 With path patching, the direct effect of a component c on 600 a target input x is measured by performing an interchange 601 intervention along the path  $c \to \pi$  by replacing the value 602 of c along this path with the value from a "corrupted" input 603  $x_{cor}$ . We then measure how this intervention changes a 604

metric quantifying the performance of the model on the x task instance. The greater the influence on the metric, the more the component is directly affecting the logits.

For this case study, we use the base question-answering (QA) task from ORION as our reference dataset extended with two additional questions asking for the season and daytime. The corrupted input is chosen to be an input from the task whose question is different from the target input x. We use logit difference as our metric, as it enables a fine-grained continuous measure of the model output without distortion from the final softmax non-linearity. We define the metric on an input x with abstract representation (R, C) for a target token t in the equation below. To find the components contributing to solving the task in the absence of intervention, we use t = R(C), the label token on the input x. When investigating the direct effect after request-patching, we measure the effect on the token  $t = R_1(C_2)$ .

$$Metric(x,t) = \mathbf{E}_{(R',C')\sim T, R\neq R'} \left[ \pi_t(x) - \pi_{R'(C)}(x) \right]$$

We then define DE(c, x, t), the direct effect of a component c on an input x on the logit of a target token t as follows:

The direct effect quantifies how the metric changes after corrupting the edge  $c \rightarrow \pi$ , i.e. the contribution of the components through the direct path is run on an input where the question is different. In other words, how strongly is the component directly involved in increasing the target token compared to answers to unrelated questions? The definition of the metric and corrupted input defines the scope of our microscopic study. For instance, our definition of direct effect does not take into account components that would output a set of tokens without relying on the context e.g. a component increasing the logits for "Bob", "Alice" and "John" whenever the question is about the character name, no matter the context.

We define the total effect TE(x, t) as the difference in metric after intervening simultaneously on all direct paths. The total effect is used to compute the normalized direct effect NDE(c, x) of a component on a given input and thus compare across different inputs. Given that intervening on all direct paths is equivalent to intervening on the logits  $\pi$ , we have:

$$\begin{split} \mathrm{TE}(x,t) &= \mathrm{Metric}(x,t) - E_{x_{cor} \sim T, R \neq R_{cor}} \left[ \mathrm{Metric}(x,t|\pi \leftarrow \pi(x_{cor}) \right] \\ \mathrm{NDE}(c,x,t) &= \frac{\mathrm{DE}(c,x,t)}{\mathrm{TE}(x,t)} \end{split}$$





Figure 6: Accuracy of 18 models on the ORION task collection. Models with more than 7 billion parameters are able to robustly solve every task. However, simple tasks such as the base question-answering can be solved by models as small as GPT-2 small (125 million parameters), enabling comparative studies across a wide range of model scales.

To compare the direct effect of a component c in a reference setting  $DE_1(c, x, t)$  with its direct effect in a second experimental setting  $DE_2(c, x, t)$ , we use the relative variation. The relative variation is defined as follows:

$$\frac{\mathsf{DE}_2(c,x,t) - \mathsf{DE}_1(c,x,T)}{\mathsf{TE}_1(c,x,t)}$$

The normalized direct effect is our primary experimental measure in the following investigation.

#### **B.2.** Notation for attention heads

We complement the description of the Transformer architecture in Section 2 for the finer-grained analysis of this section. The multi-headed attention module can be further decomposed into the contribution of H individual attention heads  $h_{i,l}$  as follows:

$$\begin{aligned} \operatorname{Attn}(z_{\leq k}^{l-1}) &= \operatorname{LN}\left(\sum_{i=1}^{H} h_{i,l}\right) \\ h_{i,l} &= \left(A_{i,l} \otimes W_{OV}^{i,l}\right) \cdot z_{\leq k}^{l-1} \\ A_{i,l} &= \operatorname{softmax}\left((z_{\leq k}^{l-1})^T W_{QK}^{i,l} z_{\leq k}^{l-1}\right) \end{aligned}$$

We used the parametrization introduced by Elhage et al. using the low-rank matrices  $W_{OV}^{i,l}$  and  $W_{QK}^{i,l}$  in  $\mathbb{R}^{d \times d}$  called the OV and QK-circuit, with d being the dimension of the model. This parametrization separates the two functions performed by attention heads: the QK-circuit is used to compute the attention pattern,  $A_{i,l}$ , weighing the contribution of each token position, while the OV-circuit is used as a linear projection to compute the output of the head. The matrices  $A_{i,l}$  and  $W_{OV}^{i,l}$  are combined using a tensor product noted  $\otimes$ .

The matrices  $W_{OV}^{i,l}$  and  $W_{QK}^{i,l}$  are computed from the usual parametrization of attention heads using  $W_Q^{i,l}$ ,  $W_K^{i,l}$ ,  $W_O^{i,l} \in \mathbb{R}^{d \times \frac{d}{H}}$  and  $W_V^{i,l} \in \mathbb{R}^{\frac{d}{H} \times d}$  respectively called the query, key, output and values.

$$W_{OV}^{i,l} = W_{O}^{i,l} W_{V}^{i,l}$$
$$W_{QK}^{i,l} = (W_{Q}^{i,l})^{T} W_{K}^{i,l}$$

## **B.3.** The components contributing directly to the logits depend on superficial changes in the input

We start by measuring the direct effect of every component on the QA task. Figure 8 shows the normalized direct effect for every component of Pythia-2.8b. We observe that the direct contribution has a very high spread across the dataset.

To differentiate between the variance coming from the variation across prompts and the variance coming from the path patching method, we use a metric that eliminates the variation from the path patching method. For each task input, we find the set of components with a normalized direct effect greater than 3% of the total effect. Then, we compute the

| 561<br>562                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                               |                                                                                                                             |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                 |                                                               |                                                                                                     |                                                                                                                                   |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       |                                                                                                                             |                                                                                                                                      |   |                                                       |                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---|-------------------------------------------------------|------------------|
| 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ρı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rob                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ab                                                                                  | ilitv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               | f co                                                                                                                        | orre                                                                                  | ect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | to                                                                              | ker                                                           | ו ס                                                                                                 | n C                                                                                                                               | DRI                                                                                                       | ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I                                                                     |                                                                                                                             |                                                                                                                                      |   |                                                       |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | OA (base)                                                                                                                 | 0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.96                                                                                | 0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.52                                                          | 0.66                                                                                                                        | 0.71                                                                                  | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.28                                                                            | 0.38                                                          | 0.68                                                                                                | 0 74                                                                                                                              | 0.72                                                                                                      | 0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.85                                                                  | 0.86                                                                                                                        | 0.78                                                                                                                                 |   |                                                       |                  |
| 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | QA (DUSC)                                                                                                                 | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.50                                                                                | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.52                                                          | 0.00                                                                                                                        | 0.71                                                                                  | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.20                                                                            | 0.50                                                          | 0.00                                                                                                | 0.71                                                                                                                              | 0.72                                                                                                      | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00                                                                  | 0.00                                                                                                                        | 0.70                                                                                                                                 |   |                                                       |                  |
| )64<br>. ( 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | QA (uniform prefix) -                                                                                                     | 0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.92                                                                                | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.17                                                          | 0.15                                                                                                                        | 0.22                                                                                  | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.03                                                                            | 0.09                                                          | 0.31                                                                                                | 0.42                                                                                                                              | 0.38                                                                                                      | 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.77                                                                  | 0.75                                                                                                                        | 0.65                                                                                                                                 |   |                                                       |                  |
| 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                               |                                                                                                                             |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                 |                                                               |                                                                                                     |                                                                                                                                   |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       |                                                                                                                             |                                                                                                                                      |   | -0.8                                                  |                  |
| 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | QA (question start) -                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.87                                                                                | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.10                                                          | 0.21                                                                                                                        | 0.31                                                                                  | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.03                                                                            | 0.12                                                          | 0.21                                                                                                | 0.34                                                                                                                              | 0.29                                                                                                      | 0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.69                                                                  | 0.66                                                                                                                        | 0.69                                                                                                                                 |   |                                                       | ₹                |
| 107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                               |                                                                                                                             |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                 |                                                               |                                                                                                     |                                                                                                                                   |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       |                                                                                                                             |                                                                                                                                      |   |                                                       | billi            |
| 560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | QA (mixed template) -                                                                                                     | 0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.90                                                                                | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.25                                                          | 0.32                                                                                                                        | 0.37                                                                                  | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.09                                                                            | 0.20                                                          | 0.35                                                                                                | 0.48                                                                                                                              | 0.40                                                                                                      | 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.73                                                                  | 0.73                                                                                                                        | 0.69                                                                                                                                 |   | -0.6                                                  | ba               |
| 570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×    | Induction -                                                                                                               | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.00                                                                                | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.98                                                          | 0.99                                                                                                                        | 1.00                                                                                  | 0.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.79                                                                            | 0.92                                                          | 0.97                                                                                                | 1.00                                                                                                                              | 1.00                                                                                                      | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00                                                                  | 1.00                                                                                                                        | 1.00                                                                                                                                 |   |                                                       | Dro              |
| 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ца   |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                               |                                                                                                                             |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                 |                                                               |                                                                                                     |                                                                                                                                   |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       |                                                                                                                             |                                                                                                                                      |   |                                                       | L<br>L           |
| 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | Factual recall -                                                                                                          | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.89                                                                                | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.35                                                          | 0.43                                                                                                                        | 0.56                                                                                  | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.04                                                                            | 0.28                                                          | 0.53                                                                                                | 0.60                                                                                                                              | 0.66                                                                                                      | 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.82                                                                  | 0.83                                                                                                                        | 0.83                                                                                                                                 |   | -0.4                                                  | oke              |
| 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                               |                                                                                                                             |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                 |                                                               |                                                                                                     |                                                                                                                                   |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       |                                                                                                                             |                                                                                                                                      |   |                                                       | F                |
| 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | Translation -                                                                                                             | 0.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.94                                                                                | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.07                                                          | 0.12                                                                                                                        | 0.12                                                                                  | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.11                                                                            | 0.24                                                          | 0.31                                                                                                | 0.37                                                                                                                              | 0.57                                                                                                      | 0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.90                                                                  | 0.94                                                                                                                        | 0.95                                                                                                                                 |   |                                                       |                  |
| 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | Variable binding                                                                                                          | 0.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 98                                                                                | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.08                                                          | 0 13                                                                                                                        | 0.17                                                                                  | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.02                                                                            | 0.11                                                          | 0 14                                                                                                | 0.50                                                                                                                              | 0 4 9                                                                                                     | 0 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 91                                                                  | 0.96                                                                                                                        | 0.86                                                                                                                                 |   | - 0.2                                                 |                  |
| 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | valiable billarity                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00                                                                                | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00                                                          | 0.110                                                                                                                       |                                                                                       | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.01                                                                            |                                                               |                                                                                                     | 0.00                                                                                                                              |                                                                                                           | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                       | 0.50                                                                                                                        | 0.00                                                                                                                                 |   |                                                       |                  |
| 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | Type hint -                                                                                                               | 0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.88                                                                                | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.27                                                          | 0.39                                                                                                                        | 0.37                                                                                  | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.10                                                                            | 0.38                                                          | 0.46                                                                                                | 0.85                                                                                                                              | 0.87                                                                                                      | 0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.94                                                                  | 0.93                                                                                                                        | 0.96                                                                                                                                 |   |                                                       |                  |
| 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | l l                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ģ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ļ                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ÷                                                             | ດ່                                                                                                                          | ÷                                                                                     | ċ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ÷                                                                               | ċ                                                             |                                                                                                     | ģ                                                                                                                                 | .0                                                                                                        | ģ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ģ                                                                     | -0                                                                                                                          |                                                                                                                                      |   |                                                       |                  |
| 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |                                                                                                                           | n-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | truc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | truc                                                                                | sma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | diun                                                          | arg                                                                                                                         | t2->                                                                                  | -70n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60n                                                                             | 10n                                                           | a-11                                                                                                | 2.81                                                                                                                              | 6.9                                                                                                       | -12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2-71                                                                  | -13                                                                                                                         | -70                                                                                                                                  |   |                                                       |                  |
| 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |                                                                                                                           | alco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -ins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -ins                                                                                | t2-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | me                                                            | ot2-I                                                                                                                       | дb                                                                                    | hia-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ia-1                                                                            | ia-4                                                          | ythi                                                                                                | hia-                                                                                                                              | hia-                                                                                                      | thia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ama                                                                   | na2                                                                                                                         | na2                                                                                                                                  |   |                                                       |                  |
| 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |                                                                                                                           | ψ <u>τ</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | d7-۱                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | fa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40b                                                                                 | <u>др</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | pt2-                                                          | 95                                                                                                                          |                                                                                       | pyt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | oyth                                                                            | yth                                                           | đ                                                                                                   | pyt                                                                                                                               | pyt                                                                                                       | ру                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                       | ar                                                                                                                          | llar                                                                                                                                 |   |                                                       |                  |
| 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | COL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -uo:                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D                                                             |                                                                                                                             |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                 | ш                                                             |                                                                                                     |                                                                                                                                   |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       |                                                                                                                             |                                                                                                                                      |   |                                                       |                  |
| 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | fa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | falo                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                               |                                                                                                                             |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                 |                                                               |                                                                                                     |                                                                                                                                   |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       |                                                                                                                             |                                                                                                                                      |   |                                                       |                  |
| 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                               |                                                                                                                             |                                                                                       | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lei                                                                             |                                                               |                                                                                                     |                                                                                                                                   |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       |                                                                                                                             |                                                                                                                                      |   |                                                       |                  |
| 685                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                     | Lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nait                                                          | t di                                                                                                                        | ffe                                                                                   | rer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nce                                                                             | or                                                            | 0                                                                                                   | RI                                                                                                                                | ЛС                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       |                                                                                                                             |                                                                                                                                      |   |                                                       |                  |
| 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . <u>J</u> .                                                  |                                                                                                                             |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                 |                                                               |                                                                                                     |                                                                                                                                   |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       |                                                                                                                             |                                                                                                                                      | I |                                                       |                  |
| 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | QA (base)                                                                                                                 | 12.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 10.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3 14.29                                                                             | 9 10.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.35                                                         | 11.25                                                                                                                       | 10.92                                                                                 | 7.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.76                                                                            | 10.06                                                         | 11.31                                                                                               | 11.05                                                                                                                             | 10.69                                                                                                     | 9 11.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.19                                                                 | ) 11.20                                                                                                                     | 10 10                                                                                                                                |   | -16                                                   |                  |
| 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | OA (uniform prefix)                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                               |                                                                                                                             |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                 |                                                               |                                                                                                     |                                                                                                                                   |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       |                                                                                                                             | J 10.49                                                                                                                              |   |                                                       |                  |
| 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |                                                                                                                           | 7.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3 7.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.51                                                                                | 3.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.63                                                          | 5.07                                                                                                                        | 5.89                                                                                  | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.60                                                                            | 3.81                                                          | 5.32                                                                                                | 5.95                                                                                                                              | 5.35                                                                                                      | 6.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7,40                                                                  | 6.81                                                                                                                        | 7.09                                                                                                                                 |   | -14                                                   |                  |
| 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | £ · (                                                                                                                     | 7.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3 7.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.51                                                                                | 3.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.63                                                          | 5.07                                                                                                                        | 5.89                                                                                  | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.60                                                                            | 3.81                                                          | 5.32                                                                                                | 5.95                                                                                                                              | 5.35                                                                                                      | 6.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.40                                                                  | 6.81                                                                                                                        | 7.09                                                                                                                                 |   | -14                                                   |                  |
| 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | QA (question start)                                                                                                       | 7.07<br>4.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.88<br>6.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.51<br>6.07                                                                        | 3.47<br>1.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.63<br>2.56                                                  | 5.07<br>3.25                                                                                                                | 5.89<br>5.60                                                                          | 0.40<br>-0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.60<br>0.00                                                                    | 3.81<br>2.76                                                  | 5.32<br>2.94                                                                                        | 5.95<br>4.80                                                                                                                      | 5.35<br>4.77                                                                                              | 6.95<br>4.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.40<br>5.92                                                          | 6.81<br>5.37                                                                                                                | 7.09                                                                                                                                 |   | -14                                                   |                  |
| i90<br>i91<br>i92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | QA (question start)                                                                                                       | 4.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.88<br>6.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3 7.55<br>5.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.51<br>6.07                                                                        | 3.47<br>1.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.63<br>2.56                                                  | 5.07<br>3.25                                                                                                                | 5.89<br>5.60                                                                          | 0.40<br>-0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.60<br>0.00                                                                    | 3.81<br>2.76                                                  | 5.32<br>2.94                                                                                        | 5.95<br>4.80                                                                                                                      | 5.35<br>4.77                                                                                              | 6.95<br>4.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.40<br>5.92                                                          | 6.81<br>5.37                                                                                                                | 7.09                                                                                                                                 |   | -14<br>-12                                            | ce               |
| i91<br>i92<br>i93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | QA (question start)                                                                                                       | 4.33<br>9.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.88<br>6.68<br>12.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3 7.55<br>5.53<br>9.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.51<br>6.07<br>12.20                                                               | 3.47<br>1.52<br>7.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.63<br>2.56<br>7.37                                          | 5.07<br>3.25<br>8.36                                                                                                        | 5.89<br>5.60<br>8.56                                                                  | 0.40<br>-0.56<br>5.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.60<br>0.00<br>7.32                                                            | 3.81<br>2.76<br>7.72                                          | 5.32<br>2.94<br>8.40                                                                                | 5.95<br>4.80<br>9.09                                                                                                              | 5.35<br>4.77<br>8.58                                                                                      | 6.95<br>4.35<br>9.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.40<br>5.92<br>9.05                                                  | 6.81<br>5.37<br>8.23                                                                                                        | 7.09<br>5.78<br>8.26                                                                                                                 |   | -14<br>-12<br>-10                                     | ence             |
| 91<br>92<br>93<br>94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×    | QA (question start)<br>QA (mixed template)                                                                                | - 7.07<br>- 4.33<br>- 9.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.88<br>6.68<br>12.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3 7.55<br>5.53<br>9 9.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.51<br>6.07<br>12.20                                                               | 3.47<br>1.52<br>7.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.63<br>2.56<br>7.37                                          | 5.07<br>3.25<br>8.36                                                                                                        | 5.89<br>5.60<br>8.56                                                                  | 0.40<br>-0.56<br>5.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.60<br>0.00<br>7.32                                                            | 3.81<br>2.76<br>7.72                                          | 5.32<br>2.94<br>8.40                                                                                | 5.95<br>4.80<br>9.09                                                                                                              | 5.35<br>4.77<br>8.58                                                                                      | 6.95<br>4.35<br>9.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.40<br>5.92<br>9.05                                                  | 6.81<br>5.37<br>8.23                                                                                                        | 7.09<br>5.78<br>8.26                                                                                                                 |   | -14<br>-12<br>-10                                     | fference         |
| 91<br>92<br>93<br>94<br>95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lask | QA (question start)<br>QA (mixed template)<br>Induction                                                                   | - 7.07<br>- 4.33<br>- 9.53<br>- 14.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.88<br>6.68<br>12.90<br>11.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3 7.55<br>5.53<br>9 9.82<br>9 14.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.51<br>6.07<br>12.20<br>5 15.03                                                    | 3.47<br>1.52<br>7.11<br>3 13.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.63<br>2.56<br>7.37<br>13.55                                 | 5.07<br>3.25<br>8.36<br>17.00                                                                                               | 5.89<br>5.60<br>8.56<br>15.34                                                         | 0.40<br>-0.56<br>5.36<br>8.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.60<br>0.00<br>7.32<br>9.40                                                    | 3.81<br>2.76<br>7.72<br>10.10                                 | 5.32<br>2.94<br>8.40<br>10.30                                                                       | 5.95<br>4.80<br>9.09<br>13.07                                                                                                     | 5.35<br>4.77<br>8.58<br>12.67                                                                             | 6.95<br>4.35<br>9.39<br>11.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.40<br>5.92<br>9.05                                                  | 6.81<br>5.37<br>8.23                                                                                                        | 7.09<br>5.78<br>8.26<br>0 13.39                                                                                                      |   | -14<br>-12<br>-10<br>-8                               | : difference     |
| 91<br>92<br>93<br>94<br>95<br>96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Task | QA (question start)<br>QA (mixed template)<br>Induction<br>Factual recall                                                 | 7.07<br>4.33<br>9.53<br>14.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.88<br>6.68<br>12.90<br>11.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3 7.55<br>5.53<br>9 9.82<br>9 14.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.51<br>6.07<br>12.20<br>5 15.03<br>11.68                                           | 3.47<br>1.52<br>7.11<br>13.06<br>3 2.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.63<br>2.56<br>7.37<br>13.55<br>6.90                         | 5.07<br>3.25<br>8.36<br>17.00<br>7.23                                                                                       | 5.89<br>5.60<br>8.56<br>15.34<br>9.55                                                 | 0.40<br>-0.56<br>5.36<br>8.08<br>0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.60<br>0.00<br>7.32<br>9.40<br>2.20                                            | 3.81<br>2.76<br>7.72<br>10.10<br>6.32                         | 5.32<br>2.94<br>8.40<br>10.30<br>8.90                                                               | 5.95<br>4.80<br>9.09<br>13.07<br>9.35                                                                                             | 5.35<br>4.77<br>8.58<br>12.67<br>9.36                                                                     | 6.95<br>4.35<br>9.39<br>11.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.40<br>5.92<br>9.05<br>14.61                                         | 6.81<br>5.37<br>8.23<br>12.90<br>9.61                                                                                       | 7.09<br>5.78<br>8.26<br>13.39<br>9.50                                                                                                |   | -14<br>-12<br>-10<br>-8                               | ogit difference  |
| 91<br>92<br>93<br>94<br>95<br>96<br>97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Task | QA (question start)<br>QA (mixed template)<br>Induction<br>Factual recall                                                 | - 7.07<br>- 4.33<br>- 9.53<br>- 14.68<br>- 9.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.88<br>6.68<br>12.90<br>3 11.99<br>11.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3 7.55<br>5.53<br>9.82<br>9.82<br>14.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.51<br>6.07<br>12.20<br>5 15.03<br>11.68                                           | <ul> <li>3.47</li> <li>1.52</li> <li>7.11</li> <li>13.06</li> <li>2.41</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.63<br>2.56<br>7.37<br>13.55<br>6.90                         | 5.07<br>3.25<br>8.36<br>17.00<br>7.23                                                                                       | 5.89<br>5.60<br>8.56<br>15.34<br>9.55                                                 | 0.40<br>-0.56<br>5.36<br>8.08<br>0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.60<br>0.00<br>7.32<br>9.40<br>2.20                                            | 3.81<br>2.76<br>7.72<br>10.10<br>6.32                         | 5.32<br>2.94<br>8.40<br>10.30<br>8.90                                                               | 5.95<br>4.80<br>9.09<br>13.07<br>9.35                                                                                             | 5.35<br>4.77<br>8.58<br>12.67<br>9.36                                                                     | 6.95<br>4.35<br>9.39<br>11.61<br>10.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.40<br>5.92<br>9.05<br>14.61                                         | 6.81<br>5.37<br>8.23<br>12.90<br>9.61                                                                                       | 7.09<br>5.78<br>8.26<br>13.39<br>9.50                                                                                                |   | -14<br>-12<br>-10<br>-8<br>-6                         | Logit difference |
| 91<br>92<br>93<br>94<br>95<br>96<br>97<br>98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Task | QA (question start)<br>QA (mixed template)<br>Induction<br>Factual recall                                                 | <ul> <li>7.07</li> <li>4.33</li> <li>9.53</li> <li>14.68</li> <li>9.40</li> <li>6.63</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.88<br>6.68<br>12.90<br>11.99<br>11.41<br>4.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>7.55</li> <li>5.53</li> <li>9.82</li> <li>14.83</li> <li>8.52</li> <li>8.25</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.51<br>6.07<br>12.20<br>5 15.03<br>5 11.68<br>8.75                                 | <ul> <li>3.47</li> <li>1.52</li> <li>7.11</li> <li>13.06</li> <li>2.41</li> <li>0.08</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.63<br>2.56<br>7.37<br>13.55<br>6.90<br>0.05                 | 5.07<br>3.25<br>8.36<br>17.00<br>7.23<br>0.12                                                                               | 5.89<br>5.60<br>8.56<br>15.34<br>9.55<br>0.62                                         | 0.40<br>-0.56<br>5.36<br>8.08<br>0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.60<br>0.00<br>7.32<br>9.40<br>2.20                                            | 3.81<br>2.76<br>7.72<br>10.10<br>6.32<br>1.29                 | 5.32<br>2.94<br>8.40<br>10.30<br>8.90<br>2.03                                                       | 5.95<br>4.80<br>9.09<br>13.07<br>9.35<br>3.30                                                                                     | 5.35<br>4.77<br>8.58<br>12.67<br>9.36<br>5.05                                                             | 6.95<br>4.35<br>9.39<br>11.61<br>10.27<br>4.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.40<br>5.92<br>9.05<br>14.61<br>9.95                                 | 6.81<br>5.37<br>8.23<br>12.90<br>9.61<br>7.83                                                                               | 7.09<br>7.09<br>5.78<br>8.26<br>0 13.39<br>9.50<br>8.21                                                                              |   | -14<br>-12<br>-10<br>-8<br>-6<br>-4                   | Logit difference |
| i90<br>i91<br>i92<br>i93<br>i94<br>i95<br>i96<br>i97<br>i98<br>i99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Task | QA (question start)<br>QA (mixed template)<br>Induction<br>Factual recall<br>Translation                                  | <ul> <li>7.07</li> <li>4.33</li> <li>9.53</li> <li>14.68</li> <li>9.40</li> <li>6.63</li> <li>2.70</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.88<br>6.68<br>12.90<br>11.99<br>11.41<br>4.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3     7.55       5.53       9.82       9     14.83       1     8.52       8.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.51<br>6.07<br>12.20<br>15.03<br>11.68<br>8.75                                     | 3.47<br>1.52<br>7.11<br>13.06<br>2.41<br>0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.63<br>2.56<br>7.37<br>13.55<br>6.90<br>0.05                 | 5.07<br>3.25<br>8.36<br>17.00<br>7.23<br>0.12                                                                               | 5.89<br>5.60<br>8.56<br>15.34<br>9.55<br>0.62                                         | 0.40<br>-0.56<br>5.36<br>8.08<br>0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.60<br>0.00<br>7.32<br>9.40<br>2.20                                            | 3.81<br>2.76<br>7.72<br>10.10<br>6.32<br>1.29                 | <ul> <li>5.32</li> <li>2.94</li> <li>8.40</li> <li>10.30</li> <li>8.90</li> <li>2.03</li> </ul>     | 5.95<br>4.80<br>9.09<br>13.07<br>9.35<br>3.30                                                                                     | 5.35<br>4.77<br>8.58<br>12.67<br>9.36<br>5.05                                                             | 6.95<br>4.35<br>9.39<br>11.61<br>10.27<br>4.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.40<br>5.92<br>9.05<br>14.61<br>7.97                                 | 6.81<br>5.37<br>8.23<br>9.61<br>7.83                                                                                        | <ul> <li>7.09</li> <li>5.78</li> <li>8.26</li> <li>13.39</li> <li>9.50</li> <li>8.21</li> </ul>                                      |   | -14<br>-12<br>-10<br>-8<br>-6<br>-4                   | Logit difference |
| 990<br>991<br>992<br>993<br>994<br>995<br>996<br>997<br>998<br>999<br>999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Task | QA (question start)<br>QA (mixed template)<br>Induction<br>Factual recall<br>Translation<br>Variable binding              | <ul> <li>7.07</li> <li>4.33</li> <li>9.53</li> <li>14.68</li> <li>9.40</li> <li>6.63</li> <li>3.79</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.88<br>6.68<br>12.90<br>11.99<br>11.41<br>4.55<br>2.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>3 7.55</li> <li>5.53</li> <li>5.53</li> <li>9 9.82</li> <li>14.83</li> <li>14.83</li> <li>8.52</li> <li>8.25</li> <li>6.43</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.51<br>6.07<br>12.20<br>5 15.03<br>11.68<br>8.75<br>7.41                           | <ul> <li>3.47</li> <li>1.52</li> <li>7.11</li> <li>13.06</li> <li>2.41</li> <li>0.08</li> <li>-0.10</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.63<br>2.56<br>7.37<br>13.55<br>6.90<br>0.05<br>0.23         | 5.07<br>3.25<br>8.36<br>17.00<br>7.23<br>0.12<br>0.26                                                                       | 5.89<br>5.60<br>8.56<br>15.34<br>9.55<br>0.62<br>0.92                                 | 0.40<br>-0.56<br>5.36<br>8.08<br>0.88<br>0.03<br>-0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.60<br>0.00<br>7.32<br>9.40<br>2.20<br>-0.05<br>0.27                           | 3.81<br>2.76<br>7.72<br>10.10<br>6.32<br>1.29<br>0.55         | 5.32<br>2.94<br>8.40<br>10.30<br>8.90<br>2.03<br>0.87                                               | 5.95<br>4.80<br>9.09<br>13.07<br>9.35<br>3.30<br>3.25                                                                             | 5.35<br>4.77<br>8.58<br>12.67<br>9.36<br>5.05<br>3.15                                                     | 6.95<br>4.35<br>9.39<br>9.39<br>11.61<br>10.27<br>4.69<br>2.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.40<br>5.92<br>9.05<br>14.61<br>9.95<br>7.97<br>4.67                 | 6.81<br>5.37<br>8.23<br>8.23<br>9.61<br>7.83<br>5.69                                                                        | <ul> <li>7.09</li> <li>5.78</li> <li>8.26</li> <li>13.39</li> <li>9.50</li> <li>8.21</li> <li>5.32</li> </ul>                        |   | -14<br>-12<br>-10<br>-8<br>-6<br>-4<br>-2             | Logit difference |
| 90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>00<br>00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Task | QA (question start)<br>QA (mixed template)<br>Induction<br>Factual recall<br>Translation<br>Variable binding              | <ul> <li>7.07</li> <li>4.33</li> <li>9.53</li> <li>14.68</li> <li>9.40</li> <li>6.63</li> <li>3.79</li> <li>2.43</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.88<br>6.68<br>12.90<br>3 11.99<br>4.55<br>2.92<br>1.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>3 7.55</li> <li>5.53</li> <li>5.53</li> <li>9.82</li> <li>9.82</li> <li>14.83</li> <li>14.83</li> <li>8.52</li> <li>8.25</li> <li>6.43</li> <li>4.00</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.51<br>6.07<br>12.20<br>5 15.03<br>11.68<br>8.75<br>7.41<br>4.48                   | 3.47<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52 | 4.63<br>2.56<br>7.37<br>13.55<br>6.90<br>0.05<br>0.23<br>0.14 | <ul> <li>5.07</li> <li>3.25</li> <li>8.36</li> <li>17.00</li> <li>7.23</li> <li>0.12</li> <li>0.26</li> <li>0.54</li> </ul> | 5.89<br>5.60<br>8.56<br>15.34<br>9.55<br>0.62<br>0.92<br>0.67                         | 0.40<br>-0.56<br>5.36<br>8.08<br>0.88<br>0.03<br>-0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.60<br>0.00<br>7.32<br>9.40<br>2.20<br>-0.05<br>0.27<br>-0.07                  | 3.81<br>2.76<br>7.72<br>10.10<br>6.32<br>1.29<br>0.55<br>0.58 | 5.32<br>2.94<br>8.40<br>10.30<br>8.90<br>2.03<br>0.87<br>1.20                                       | 5.95<br>4.80<br>9.09<br>13.07<br>9.35<br>3.30<br>3.25<br>3.87                                                                     | 5.35<br>4.77<br>8.58<br>12.67<br>9.36<br>5.05<br>3.15<br>4.52                                             | 6.95<br>4.35<br>9.39<br>11.61<br>10.27<br>4.69<br>2.86<br>4.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.40<br>5.92<br>9.05<br>14.61<br>7.97<br>4.67<br>5.37                 | 6.81<br>5.37<br>8.23<br>8.24<br>12.90<br>9.61<br>7.83<br>5.69<br>4.39                                                       | 7.09<br>7.09<br>8.26<br>9.50<br>9.50<br>8.21<br>9.50<br>8.21<br>9.532                                                                |   | -14<br>-12<br>-10<br>-8<br>-6<br>-4<br>-2             | Logit difference |
| 990<br>991<br>992<br>993<br>994<br>995<br>996<br>997<br>998<br>999<br>000<br>001<br>002<br>002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Task | QA (question start)<br>QA (mixed template)<br>Induction<br>Factual recall<br>Translation<br>Variable binding<br>Type hint | <ul> <li>7.07</li> <li>4.33</li> <li>9.53</li> <li>14.66</li> <li>9.40</li> <li>6.63</li> <li>3.79</li> <li>2.43</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.88         10.88         6.68         12.90         11.99         11.41         11.41         1.77         1.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>3 7.55</li> <li>5.53</li> <li>5.53</li> <li>9.82</li> <li>9.82</li> <li>14.83</li> <li>8.52</li> <li>8.25</li> <li>6.43</li> <li>4.00</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.51<br>6.07<br>12.20<br>5 15.03<br>8.75<br>7.41<br>4.48                            | 3.47<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.52<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55<br>1.55 | 4.63<br>2.56<br>7.37<br>13.55<br>6.90<br>0.05<br>0.23<br>0.14 | 5.07<br>3.25<br>8.36<br>17.00<br>7.23<br>0.12<br>0.26<br>0.54                                                               | 5.89<br>5.60<br>8.56<br>15.34<br>9.55<br>0.62<br>0.92<br>0.67                         | 0.40<br>-0.56<br>5.36<br>0.88<br>0.03<br>-0.16<br>-0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.60<br>0.00<br>7.32<br>9.40<br>2.20<br>0.27<br>-0.05                           | 3.81<br>2.76<br>7.72<br>10.10<br>6.32<br>1.29<br>0.55<br>0.58 | 5.32<br>2.94<br>8.40<br>10.30<br>8.90<br>2.03<br>0.87<br>1.20                                       | 5.95<br>4.80<br>9.09<br>13.07<br>9.35<br>3.30<br>3.25<br>3.87                                                                     | 5.35<br>4.77<br>8.58<br>12.67<br>9.36<br>5.05<br>3.15<br>4.52                                             | 6.95<br>4.35<br>9.39<br>7<br>11.61<br>10.27<br>4.69<br>2.86<br>4.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.40<br>5.92<br>9.05<br>14.61<br>7.97<br>4.67<br>5.37                 | 6.81<br>5.37<br>8.23<br>9.61<br>7.83<br>5.69<br>4.39                                                                        | 7.09<br>7.09<br>8.26<br>9.50<br>9.50<br>8.21<br>9.50<br>8.21<br>9.532                                                                |   | -14<br>-12<br>-10<br>-8<br>-6<br>-4<br>-2<br>-2       | Logit difference |
| 91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>00<br>01<br>02<br>03<br>04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Task | QA (question start)<br>QA (mixed template)<br>Induction<br>Factual recall<br>Translation<br>Variable binding<br>Type hint | <ul> <li>7.07</li> <li>4.33</li> <li>9.53</li> <li>14.68</li> <li>9.40</li> <li>6.63</li> <li>3.79</li> <li>2.43</li> <li>42-4</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.88         10.88         6.68         12.90         3         11.41         4.55         2.92         1.777         1.777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3       7.555         4       5.533         5       5.533         5       9         9       9.822         14.83       8.522         1       8.523         6       6.433         4.000       9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.51<br>6.07<br>12.20<br>5 15.03<br>11.66<br>8.75<br>7.41<br>4.48                   | 3.47<br>1.52<br>1.52<br>1.52<br>1.52<br>2.11<br>2.41<br>0.08<br>0.19<br><u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.63<br>2.56<br>7.37<br>13.55<br>6.90<br>0.05<br>0.23<br>0.14 | 5.07<br>3.25<br>8.36<br>17.00<br>7.23<br>0.12<br>0.26<br>0.54                                                               | 5.89<br>5.60<br>8.56<br>9.55<br>0.62<br>0.62<br>0.67                                  | 0.40<br>-0.56<br>5.36<br>0.88<br>0.03<br>-0.16<br>-0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.60<br>0.00<br>7.32<br>9.40<br>2.20<br>0.27<br>-0.05                           | 3.81<br>2.76<br>7.72<br>10.10<br>6.32<br>1.29<br>0.55<br>0.58 | 5.32<br>2.94<br>8.40<br>10.30<br>8.90<br>2.03<br>0.87<br>1.20                                       | 5.95<br>4.80<br>9.09<br>13.07<br>9.35<br>3.30<br>3.25<br>3.87<br>88<br>80                                                         | 5.35<br>4.77<br>8.58<br>9.36<br>5.05<br>3.15<br>4.52                                                      | <ul> <li>6.95</li> <li>4.35</li> <li>9.39</li> <li>9.39</li> <li>10.27</li> <li>4.69</li> <li>2.86</li> <li>4.74</li> <li>97</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.40<br>5.92<br>9.05<br>14.61<br>7.97<br>4.67<br>5.37                 | 6.81<br>5.37<br>8.23<br>9.61<br>7.83<br>5.69<br>4.39                                                                        | 7.09<br>7.09<br>5.78<br>8.26<br>9.50<br>9.50<br>8.21<br>5.32<br>5.32                                                                 |   | -14<br>-12<br>-10<br>-8<br>-6<br>-4<br>-2<br>-2<br>-0 | Logit difference |
| 90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>00<br>01<br>02<br>03<br>04<br>05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Task | QA (question start)<br>QA (mixed template)<br>Induction<br>Factual recall<br>Translation<br>Variable binding<br>Type hint | <ul> <li>7.07</li> <li>4.33</li> <li>9.53</li> <li>14.68</li> <li>9.40</li> <li>6.63</li> <li>3.79</li> <li>2.43</li> <li>4.40</li> <li>4.60</li> <li>4.60</li> <li>4.60</li> <li>4.60</li> <li>4.60</li> <li>5.61</li> <li>4.61</li> <li>4.61</li> <li>5.61</li> <li>4.61</li> <li>5.61</li> <l< td=""><td>10.88<br/>6.68<br/>12.90<br/>3 11.99<br/>4.55<br/>2.92<br/>2.92<br/>1.777</td><td>3       7.555         4       5.533         5       5.533         5       9.822         5       14.83         6       8.523         6       6.433         4       0.000         -000       -000         -000       -000         -000       -000         -000       -000         -000       -000         -000       -000         -000       -000         -000       -000         -000       -000         -000       -000         -000       -000         -000       -000         -000       -000         -000       -000         -000       -000         -000       -000         -000       -000         -000       -000         -000       -000         -000       -000         -000       -000         -000       -000         -000       -000         -000       -000         -000       -000         -000       -000         -000       -000&lt;</td><td>9.51<br/>6.07<br/>12.20<br/>5 15.03<br/>11.66<br/>8.75<br/>7.41<br/>4.48</td><td>3.47<br/>1.52<br/>7.11<br/>3.13.06<br/>3.2.41<br/>0.08<br/>0.08<br/>0.09<br/>0.19<br/>0.19</td><td>4.63<br/>2.56<br/>7.37<br/>13.55<br/>6.90<br/>0.05<br/>0.23<br/>0.14</td><td>5.07<br/>3.25<br/>8.36<br/>17.00<br/>7.23<br/>0.12<br/>0.26<br/>0.54</td><td>5.89<br/>5.60<br/>8.56<br/>9.55<br/>0.62<br/>0.62<br/>0.67<br/></td><td>0.40<br/>-0.56<br/>5.36<br/>8.08<br/>0.03<br/>-0.16<br/>-0.27</td><td>2.60<br/>0.00<br/>7.32<br/>9.40<br/>2.20<br/>0.27<br/>-0.05<br/>-0.07<br/>-0.07</td><td>3.81<br/>2.76<br/>7.72<br/>10.10<br/>6.32<br/>1.29<br/>0.55<br/>0.58</td><td>5.32<br/>2.94<br/>8.40<br/>8.90<br/>2.03<br/>0.87<br/>1.20<br/>•<br/><b>q</b>I-eiųt</td><td>5.95<br/>4.80<br/>9.09<br/>13.07<br/>9.35<br/>3.30<br/>3.25<br/>3.87<br/>- er</td><td>5.35<br/>4.77<br/>8.58<br/>9.36<br/>5.05<br/>3.15<br/>4.52<br/>4.52</td><td><ul> <li>6.95</li> <li>4.35</li> <li>9.39</li> <li>9.39</li> <li>10.27</li> <li>4.69</li> <li>2.86</li> <li>4.74</li> <li>477</li> </ul></td><td>7.40<br/>5.92<br/>9.05<br/>14.61<br/>7.97<br/>4.67<br/>5.37<br/>- q2-2em</td><td>6.81<br/>5.37<br/>8.23<br/>8.23<br/>9.61<br/>7.83<br/>5.69<br/>4.39<br/>- 4.39<br/>- 4.39</td><td>7.09<br/>7.09<br/>8.26<br/>9.50<br/>9.50<br/>9.50<br/>9.50<br/>5.32<br/>5.77<br/>402-22</td><td></td><td>-14<br/>-12<br/>-10<br/>-8<br/>-6<br/>-4<br/>-2<br/>-0</td><td>Logit difference</td></l<></ul> | 10.88<br>6.68<br>12.90<br>3 11.99<br>4.55<br>2.92<br>2.92<br>1.777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3       7.555         4       5.533         5       5.533         5       9.822         5       14.83         6       8.523         6       6.433         4       0.000         -000       -000         -000       -000         -000       -000         -000       -000         -000       -000         -000       -000         -000       -000         -000       -000         -000       -000         -000       -000         -000       -000         -000       -000         -000       -000         -000       -000         -000       -000         -000       -000         -000       -000         -000       -000         -000       -000         -000       -000         -000       -000         -000       -000         -000       -000         -000       -000         -000       -000         -000       -000         -000       -000< | 9.51<br>6.07<br>12.20<br>5 15.03<br>11.66<br>8.75<br>7.41<br>4.48                   | 3.47<br>1.52<br>7.11<br>3.13.06<br>3.2.41<br>0.08<br>0.08<br>0.09<br>0.19<br>0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.63<br>2.56<br>7.37<br>13.55<br>6.90<br>0.05<br>0.23<br>0.14 | 5.07<br>3.25<br>8.36<br>17.00<br>7.23<br>0.12<br>0.26<br>0.54                                                               | 5.89<br>5.60<br>8.56<br>9.55<br>0.62<br>0.62<br>0.67<br>                              | 0.40<br>-0.56<br>5.36<br>8.08<br>0.03<br>-0.16<br>-0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.60<br>0.00<br>7.32<br>9.40<br>2.20<br>0.27<br>-0.05<br>-0.07<br>-0.07         | 3.81<br>2.76<br>7.72<br>10.10<br>6.32<br>1.29<br>0.55<br>0.58 | 5.32<br>2.94<br>8.40<br>8.90<br>2.03<br>0.87<br>1.20<br>•<br><b>q</b> I-eiųt                        | 5.95<br>4.80<br>9.09<br>13.07<br>9.35<br>3.30<br>3.25<br>3.87<br>- er                                                             | 5.35<br>4.77<br>8.58<br>9.36<br>5.05<br>3.15<br>4.52<br>4.52                                              | <ul> <li>6.95</li> <li>4.35</li> <li>9.39</li> <li>9.39</li> <li>10.27</li> <li>4.69</li> <li>2.86</li> <li>4.74</li> <li>477</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.40<br>5.92<br>9.05<br>14.61<br>7.97<br>4.67<br>5.37<br>- q2-2em     | 6.81<br>5.37<br>8.23<br>8.23<br>9.61<br>7.83<br>5.69<br>4.39<br>- 4.39<br>- 4.39                                            | 7.09<br>7.09<br>8.26<br>9.50<br>9.50<br>9.50<br>9.50<br>5.32<br>5.77<br>402-22                                                       |   | -14<br>-12<br>-10<br>-8<br>-6<br>-4<br>-2<br>-0       | Logit difference |
| 90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>00<br>01<br>02<br>03<br>04<br>05<br>06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Task | QA (question start)<br>QA (mixed template)<br>Induction<br>Factual recall<br>Translation<br>Variable binding<br>Type hint | <ul> <li>7.07</li> <li>4.33</li> <li>9.53</li> <li>14.68</li> <li>9.40</li> <li>6.63</li> <li>3.79</li> <li>2.43</li> <li>42-uopleging</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.88<br>6.68<br>12.90<br>11.91<br>11.41<br>4.55<br>2.92<br>1.77<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3       7.55         4       5.53         5       5.53         5       9.82         6       14.83         6       8.52         6       6.43         4       0.00         9       14.00         9       14.00         10       14.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.51<br>6.07<br>12.20<br>5 15.03<br>11.68<br>8.75<br>7.41<br>4.48<br>4.48           | 3.47<br>1.52<br>7.11<br>3.13.06<br>3.2.41<br>0.08<br>0.08<br>0.09<br>0.19<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.63<br>2.56<br>7.37<br>13.55<br>6.90<br>0.05<br>0.23<br>0.14 | 5.07<br>3.25<br>8.36<br>7.23<br>0.12<br>0.26<br>0.54<br>0.54                                                                | 5.89<br>5.60<br>8.56<br>9.55<br>0.62<br>0.92<br>0.67                                  | 0.40<br>-0.56<br>5.36<br>0.88<br>0.03<br>-0.16<br>-0.27<br>-0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.60<br>0.00<br>7.32<br>9.40<br>2.20<br>-0.05<br>0.27<br>-0.07<br>-0.07         | 3.81<br>2.76<br>7.72<br>10.10<br>6.32<br>0.55<br>0.58         | 5.32<br>2.94<br>8.40<br>10.30<br>8.90<br>2.03<br>0.87<br>1.20<br>                                   | 5.95<br>4.80<br>9.09<br>13.07<br>3.30<br>3.25<br>3.87<br>- 9<br>8<br>- 9<br>8<br>- 9<br>8<br>- 9<br>8<br>- 9<br>9<br>1<br>3.25    | 5.35<br>4.77<br>8.58<br>9.36<br>5.05<br>3.15<br>4.52<br>- q6;9-piqtAd                                     | 6.95<br>4.35<br>9.39<br>10.27<br>4.69<br>2.86<br>4.74<br>4.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.40<br>5.92<br>9.05<br>14.61<br>7.97<br>4.67<br>5.37<br>-q2-2emell   | 6.81<br>5.37<br>8.23<br>9.61<br>7.83<br>5.69<br>4.39<br>6.13<br>7.83<br>7.83<br>7.83<br>7.83<br>7.83<br>7.83<br>7.83<br>7.8 | 7.09<br>7.09<br>5.78<br>8.26<br>9.50<br>8.21<br>9.50<br>8.21<br>5.32<br>5.32<br>5.77<br>9.577                                        |   | -14<br>-12<br>-10<br>-8<br>-6<br>-4<br>-2<br>-0       | Logit difference |
| 91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>00<br>01<br>02<br>03<br>04<br>05<br>06<br>07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Task | QA (question start)<br>QA (mixed template)<br>Induction<br>Factual recall<br>Translation<br>Variable binding<br>Type hint | <ul> <li>7.07</li> <li>4.33</li> <li>9.53</li> <li>14.68</li> <li>9.40</li> <li>6.63</li> <li>3.79</li> <li>2.43</li> <li>- 2.43</li> <li>- 4.243</li> <li>- 4.243</li> <li>- 4.243</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.86<br>6.68<br>12.90<br>3 11.99<br>4.55<br>2.92<br>1.777<br>-<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3       7.55         4       5.53         5       5.53         5       5.53         6       6.43         4       4.000         9       9         9       9         9       9         9       9         9       9         9       9         9       9         9       9         9       9         9       9         9       9         9       9         9       9         9       9         9       9         9       9         9       9         9       9         9       9         9       9         9       9         9       9         9       9         9       9         9       9         9       9         9       9         9       9         9       9         9       9         9       9         9       9  <                                                                                                                        | 9.51<br>6.07<br>12.20<br>5 15.03<br>7.41<br>4.48<br>4.48<br>5 7.41                  | 3.47<br>1.52<br>7.11<br>3.13.06<br>3.2.41<br>0.08<br>0.09<br>0.19<br><br><br><br><br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.63<br>2.56<br>7.37<br>13.55<br>0.05<br>0.23<br>0.14<br>     | 5.07<br>3.25<br>8.36<br>17.00<br>7.23<br>0.12<br>0.26<br>0.54<br>                                                           | 5.89<br>5.60<br>8.56<br>9.55<br>0.62<br>0.62<br>0.62<br>0.67<br>x<br>z<br>z<br>d<br>6 | b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia-70mm<br>b/thia | 2.60<br>0.00<br>7.32<br>9.40<br>-0.05<br>0.27<br>-0.07<br>-0.07                 | 3.81<br>2.76<br>7.72<br>10.10<br>6.32<br>0.55<br>0.58<br>0.58 | 5.32<br>2.94<br>8.40<br>10.30<br>8.90<br>2.03<br>0.87<br>1.20<br>•<br>qT-eiut/d                     | 5.95<br>4.80<br>9.09<br>13.07<br>3.30<br>3.25<br>3.87<br>-08<br>-78<br>-78<br>-78<br>-78<br>-78<br>-78<br>-78<br>-78<br>-78<br>-7 | 5.35<br>4.77<br>8.58<br>12.67<br>9.36<br>5.05<br>3.15<br>4.52<br>-9,69-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9- | 6.95<br>4.35<br>9.39<br>9.39<br>10.27<br>4.69<br>2.86<br>4.74<br>4.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.40<br>5.92<br>9.05<br>14.61<br>7.97<br>4.67<br>5.37<br>4.67<br>5.37 | 6.81<br>5.37<br>8.23<br>9.61<br>7.83<br>5.69<br>4.39<br>4.39<br>-QCI-2ewel                                                  | 7.09<br>7.09<br>8.26<br>9.50<br>8.21<br>9.50<br>8.21<br>5.32<br>5.32<br>9.50<br>8.21                                                 |   | -14<br>-12<br>-10<br>-8<br>-6<br>-4<br>-2<br>-0       | Logit difference |
| <ul> <li>(9)</li> <li>(9)</li></ul> | Task | QA (question start)<br>QA (mixed template)<br>Induction<br>Factual recall<br>Translation<br>Variable binding<br>Type hint | <ul> <li>7.07</li> <li>4.33</li> <li>9.53</li> <li>14.68</li> <li>9.40</li> <li>6.63</li> <li>3.79</li> <li>2.43</li> <li>- 2.43</li> <li>- 2.43</li> <li>- 42-uooleg</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.86<br>6,68<br>12.90<br>3 11.99<br>4.55<br>2.92<br>1.777<br>1.777<br>-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC-unzturt-qC | 3       7.555         4       5.533         5       5.533         5       9.822         6       8.525         6.433       4.000         -000       -000         -000       -000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.51<br>6.07<br>12.20<br>5 15.03<br>5 15.03<br>7.41<br>4.48<br>8.75<br>7.41<br>4.48 | 3.47<br>1.52<br>7.11<br>3.13.06<br>3.241<br>0.08<br>-0.10<br>0.19<br>-0.19<br>-0.19<br>-0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.63<br>2.56<br>7.37<br>13.55<br>0.05<br>0.23<br>0.14<br>     | 5.07<br>3.25<br>8.36<br>7.23<br>0.12<br>0.26<br>0.24<br>0.54                                                                | 5.89<br>5.60<br>8.56<br>9.55<br>0.62<br>0.62<br>0.67<br>\$<br>2.4d                    | 0.40<br>-0.56<br>5.36<br>0.88<br>0.03<br>-0.16<br>-0.27<br>-0.27<br>-0.27<br>-0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.60<br>0.00<br>7.32<br>9.40<br>2.20<br>0.27<br>-0.05<br>0.27<br>-0.07<br>-0.07 | 3.81<br>2.76<br>10.10<br>6.32<br>0.55<br>0.58<br>             | 5.32<br>2.94<br>8.40<br>10.30<br>2.03<br>0.87<br>1.20<br><b>1</b> .20<br><b>-q</b> I-ei <b>ų</b> Ad | 5.95<br>4.80<br>9.09<br>13.07<br>3.30<br>3.25<br>3.87<br>-q87-eiuthd                                                              | 5.35<br>4.77<br>8.58<br>12.67<br>9.36<br>5.05<br>3.15<br>4.52<br>4.52                                     | Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia-<br>Arthia | 7.40<br>5.92<br>9.05<br>14.61<br>7.97<br>4.67<br>5.37<br>-q2-2ewell   | 6.81<br>5.37<br>8.23<br>9.61<br>7.83<br>5.69<br>4.39<br>-q£1-2emell                                                         | 7.09<br>7.09<br>8.26<br>9.50<br>8.21<br>9.50<br>8.21<br>9.50<br>8.21<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50<br>9.50 |   | -14<br>-12<br>-10<br>-8<br>-6<br>-4<br>-2<br>-0       | Logit difference |

Figure 7: Logit difference and probability of correct token for 18 language models on the tasks from the ORION collection. 710 A logit difference of zero means that the correct logit has on average the same value as the logit corresponding to the answer to a random request in the same context.



Figure 8: Normalized direct effect for all the Pythia-2.8b components on the QA task. The main contributions are concentrated in MLPs at later layers. The direct effect per component has a high variance. Attention heads are labeled "#layer #head".

average overlap between the set of top contributing components across prompts.

On average, only 18% of the top contributors are shared
across inputs. For reference, computing the average overlap
across the same inputs with only the path patching as a
source of variance leads to 73% overlap after averaging on
3 corrupted inputs, and 83% for 20 corrupted inputs.

745 Grouping the input by the question type increases the aver-746 age overlap, but its absolute value stays below 50% for most 747 of the questions, as shown in Table 2. This suggests that 748 which components activate at the last step of the retrieval 749 mechanism depends on the question asked. However, group-750 ing by question type does not explain all the variance: even 751 for the same question, surface-level changes in the prompt 752 will trigger some components but not others.

#### **B.3.1.** CITY-SPECIFIC ATTENTION HEADS

By investigating the source of the variance of direct effects for the set of inputs containing the city question, we discover a family of city-specific attention heads. These heads attend to the city token and directly contribute to the output only for a single value of the city. Figure 9 shows three such heads. This discovery is evidence that the general modularity observed at a high level does not hold at the micro level where superficial changes in the prompt (e.g. the value of the city) drastically alter the role of certain components.

# B.4. Request-patching preserves attention head mechanisms

To investigate the effect of request-patching, we study request-patching from a dataset  $D_1$  containing only questions about the *character name* to a dataset  $D_2$  containing only questions about the *season*.

On both datasets, Pythia-2.8b can correctly answer the question. It performs with 100% accuracy on both datasets and outputs on average 0.85 and 0.51 probability for the correct token on  $D_1$  and  $D_2$ , respectively. After request-patching  $D_2 \leftarrow D_1$ , the model predicts the character name with 0.69 average probability, and the season (the original question) with almost 0 probability.

Our control condition to compare the effect of requestpatching is the *reference dataset*  $D_3$ . Every input  $x_3 \in D_3$ is created by concatenating the context  $C_2$  from an input  $x_2 \in D_2$  and the question  $R_1$  from an input  $x_1 \in D_1$  such that  $C_3 = C_2$  and  $R_3 = R_1$ . On  $D_3$ , the model is naturally answering the request  $R_1$  in the context  $C_1$ . We use  $D_3$ as a control experimental condition to compare the mechanism of the model after the request-patching operation  $\mathcal{M}(x_2|z^{L_2} \leftarrow z^{L_2}(x_1))$  with  $L_2 = 16$  for Pythia-2.8b.

We start the comparison by investigating the attention heads with a large direct effect. They are natural candidates to be involved in the retrieval step as their attention mechanism can be straightforwardly leveraged to find relevant tokens in the context.

Figure 10 shows a three-way comparison of attention head behavior in three different settings: on the dataset  $D_2$  before request-patching, after request-patching, and on the refer-

733

734

735 736 737

738

739

768



Figure 9: City-specific heads contribute directly to the logits when the question asks about the city of the story *and* the city has a specific value, e.g. "Valencia" for the head L20H3. The inputs in the histogram contain only questions asking about the city.

Look Before You Leap

| Questions            | Average overlap between components |
|----------------------|------------------------------------|
| All                  | $0.18 \pm 0.16$                    |
| Character Name       | $0.33 \pm 0.20$                    |
| City                 | $0.23 \pm 0.24$                    |
| Character Occupation | $0.28\pm0.21$                      |
| Day Time             | $0.56 \pm 0.10$                    |
| Season               | $0.43 \pm 0.12$                    |

Table 2: Average overlap between components responsible for more than 3% of the total effect. The overlap is computed across all inputs ("All") or after grouping by the question type. We average over 20 values of corrupted inputs. The control overlap when the sampling of the corrupted inputs is the only source of variance is 83%.

838 ence dataset  $D_3$ . First, we compare the variation in direct ef-839 fect and the attention probability to the token  $R_2(C_2)$  before 840 and after request-patching (top left). The  $R_2(C_2)$  token cor-841 responds to the question of the  $D_2$  dataset (the season of the 842 story). We observe a set of heads going from attending and 843 contributing strongly to  $R_2(C_2)$  to very low attention prob-844 ability and direct effect on this token after request-patching. 845 We observe the opposite for the token  $R_1(C_2)$  (top right). A 846 set of heads is activated by the request-patching operation, 847 attending and contributing directly to  $R_1(C_2)$ . These two 848 observations are coherent with the intuition that request-849 patching is overwriting the representation of the question 850 from  $R_1$  to  $R_2$ . The attention heads downstream of layer  $L_2$ react accordingly by stopping the retrieval of  $R_2(C_2)$  and 851 copying  $R_1(C_2)$  instead. 852

837

863

864

879

853 Finally, we compare the attention probability and direct 854 effect of the attention heads after request-patching to our 855 control condition on the  $D_3$  dataset (bottom). We find that 856 attention heads have a slightly lower attention probability 857 and direct effect on average (relative variation of -7% for 858 the attention, -11% for the direct effect). This suggests that 859 the attention heads in charge of copying the correct token 860 (attending and directly contributing to the logit) are working 861 similarly on the reference dataset and after request-patching, 862 although slightly weaker.

#### B.5. Request-patching is influencing late MLPs

In the previous section, we showed that attention heads seem to act as *mover heads*. They exploit the representation built at the previous layers to compute their queries and use the keys from the context to match the relevant token and copy it to the last position. This pattern has been previously documented in the literature (Wang et al., 2022; Lieberum et al., 2023).

We continue our investigation by exploring whether the attention mechanism is the only mechanism involved in contributing to the correct token. To this end, we perform *attention patching*. We fix the attention pattern of an attention head to its value on another question. In our case, we fix the attention of attention heads to their values on the  $D_3$  dataset. Formally, for the head i at layer l, an input  $x_2 \in D_2$  and  $x_3 \in D_3$  we perform the interchange intervention  $\mathcal{M}(x_2|A_{i,l} \leftarrow A_{i,l}(x_3))$ . We only intervene on the attention to the context and normalize the attention probabilities such that they always sum to 1.

Attention patching on every attention head causes the model to output  $R_1(C_2)$  (the character name) with an average probability of 0.14 while predicting  $R_2(C_2)$  (the season) with a probability of 0.06. Fixing the attention of all attention heads is not enough to force the model to answer the question  $R_1$ . This suggests that request-patching exploits an additional mechanism to reach 0.69 probability of  $R_1(C_2)$ .

The direct contributions of the most important components after request-patching and attention patching are shown in Figure 11. Unsurprisingly, we observe that the direct effect of the attention heads is preserved after attention patching, as their attention pattern is fixed to have their value from  $D_3$ . However, the contribution of the MLP after attention patching is significantly smaller than on the reference dataset.

Table 3 summarizes the relative variation in direct effect grouped by component type after the two kinds of intervention. While the overlap between the top contributing components with the reference dataset is significant in both cases (57% and 56%), the MLP contribution is similar to the reference dataset for request-patching (+4.8% relative variation) but smaller for attention patching (-26% of relative variation). We hypothesize that the MLP contribution is the missing effect that causes request-patching to outperform attention-patching.

We speculate that when every attention head is attending to the  $R_1(C_2)$  token position after attention patching, the MLPs at the late layer can access the request  $R_2$  present in the input, and detect the anomaly. The MLPs then contribute negatively to  $R_1(C_2)$  to correct the incoherence. In contrast, request-patching replaces the full representation at intermediate layers, making late MLPs unable to detect the incoherence between the request in the residual stream and the input sequence. Such self-correcting functions of MLPs have previously been demonstrated (McGrath et al.,



Look Before You Leap

Figure 10: Three-way comparison of the effect of request-patching on the attention heads. Each pair of symbols connected by a line is the same attention head in two different experimental settings. Request-patching is inhibiting the heads in charge of copying the  $R_1(C_1)$  token (top left) and activating the heads retrieving  $R_1(C_2)$  (right). The state of attention heads after request-patching is close to the control condition on the reference dataset (bottom).

2023). Additional experiments are necessary to evaluate if this phenomenon is occurring in this particular setting.

# C. Additional results for internal scalable oversight

In this appendix, we provide additional results for internal scalable oversight.

In the main text we presented an application to prevent prompt-injection, illustrated in Figure 12. Here, we want to detect when the model is not answering the question but relies on another mechanism to produce the next token, a problem known as mechanistic anomaly detection (Christiano, 2022).

#### C.1. Problem definition

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

Abstract problem setting. We define a special case of the 952 general problem of scalable oversight. First, we are given 953 a *trusted* input  $x_t$ , i.e. a prompt that human supervisors 954 can inspect and certify that it does not contain any prompt 955 injection. Moreover, the human supervisors can solve the 956 problem set up in the prompt and verify that the model is 957 answering correctly. Second, we are given a large set of 958 *untrusted* inputs D that is either too big to be supervised 959 by humans or contains task instances that humans cannot 960 answer. The trusted and untrusted inputs are part of the 961 same task. The goal is to improve the performance of the 962 model on the untrusted inputs and detect when the model is 963 failing to solve the tasks on the untrusted inputs. 964

965 In general, it is hard to design metrics for this problem as we
966 do not have access to ground truth labels on the untrusted
967 dataset. In practice, we only apply this technique to a simple
968 task, so we are able to measure the accuracy of our technique
969 on the untrusted dataset. However, having access to ground970 truth labels is not required for our technique.

971 We create two types of datasets using this input template. In 972 the base dataset  $D_b$ , the distractor token is chosen to be a 973 city that is different from the correct answer to the question. In the collision dataset  $D_c$ , the distractor token is chosen to 974 be the same as the answer to the question, i.e. the distractor 975 and the correct question-answering mechanism lead to the 976 same answer. In this case, only internal inspection can 977 differentiate between the two mechanisms. 978

The distractors are the ones described in the main text. In
the creation of the datasets, we verify that the models are
outputting the correct answer on the trusted input. To avoid
collision, the answer for the trusted input is never a possible
answer in the untrusted dataset. For all experiments, we use
the same single trusted input.

#### 985 986

- 987
- 988
- 989

#### C.2. Detecting anomalous mechanism.

The results of the robustness-increasing experiments suggest an obvious way to detect anomalous mechanisms: if the output of the model changes after request-patching from the trusted input, then it is likely the model was not executing the correct request before.

More generally, when the model is correctly processing an untrusted input, the output of the request-processing step is equivalent to the one happening in the trusted input. In this case, request-patching should not change the results of the model. We can thus interpret any results of request-patching that deviate from this condition as evidence that the model was using another mechanism.

Concretely, for a given untrusted input  $x_u$ , we define two predicates for anomaly detection:

$$A(x_u) \stackrel{\text{def}}{=} [M(x_u | z_n^{L_2} \leftarrow z_n^{L_2}(x_t)) \neq M(x_u)]$$
$$B(x_u) \stackrel{\text{def}}{=} [M(x_t | z_n^{L_2} \leftarrow z_n^{L_2}(x_u)) \neq M(x_t)]$$

 $A(x_u)$  is true if and only if request-patching from the trusted to the untrusted input changes the output of the model on untrusted input, while  $B(x_u)$  is true if and only if requestpatching from the untrusted to the trusted input changes the output of the model on trusted input.

To evaluate the usefulness of these predicate as anomaly detectors, Table 4 presents the rate at which the A, B, and A or B predicates hold true on different settings.

On the base dataset,  $D_b$ , both the large model and small model distractors robustly trigger the A and B predicate for their target models. Surprisingly, even if the large model distractor does not seem to meaningfully influence the output of Pythia-410m, it sitll triggers both the A and B predicate. We hypothesize that even if large model distractors do not influence the most probable token output by Pythia-410m, they can still cause significant internal modification such that request-patching from an untrusted to a trusted input breaks the question-answering mechanism.

On the more challenging dataset  $D_c$  the models output the correct tokens in almost every case, as both the distractor and question-answering share the same answer. The challenge is to detect if the correct token is output for the correct reasons. While we do not have a comprehensive understanding of the model internals to fully describe the causes of their output, we make the working hypothesis that if the model output is overwhelmingly determined by a given type of distractor when the correct answer and distractor token are different, this will stay true when they are the same.

On  $D_c$ , the predicate A becomes almost useless. Forcing the correct request does not change the model output: models are already outputting the correct answer. Thus, only predicate B can be robustly used to differentiate between





a string of text crafted to make the model output an arbitrary city (red) instead of answering the question. We patch the residual stream at layer  $L_2$  from an input inspected by a human (blue) to a model processing an untrusted input (green). A single trusted input is used throughout all experiments.

Table 3: Relative variation in direct effect from the reference dataset to the request-patching and attention patching. The mean overlap is computed between the top direct effect contributor on the  $D_3$  dataset and the top contributor after request and attention patching. The overlap is computed in an aligned manner, i.e. components on  $x_3 \in D_3$  correspond to the component after  $\mathcal{M}(x_2|z^{L_2} \leftarrow z^{L_2}(x_1))$  such that  $R_1 = R_3$  and  $C_2 = C_3$ .

| Patching Type      | <b>Component Type</b> | Mean   | Std Dev |
|--------------------|-----------------------|--------|---------|
| Paguast Databing   | Attention Head        | -0.114 | 0.098   |
| Request ratching   | MLP                   | 0.048  | 0.116   |
| Mean Overlap       |                       | 0.57   | 0.07    |
| A., 1.             | Attention Head        | 0.092  | 0.142   |
| Attention patching | MLP                   | -0.260 | 0.111   |
| Mean Overlap       |                       | 0.56   | 0.08    |
|                    |                       |        |         |

1049

1051

1054

1056

1059

1075

1060 mechanisms caused by the question-answering task and 1061 mechanisms triggered by the distractor.

1062 From Table 4, only the large model distractors are recog-1063 nized as anomalous for both the large and small models. 1064 The predicates are unable to recognize that small model 1065 distractors are causing anomalous mechanisms in the small 1066 model. Moreover, the triggering rate of the B predicate on 1067 the large model distractor on Pythia-12b is smaller on  $D_c$ 1068 (with collision) than on the dataset  $D_b$  (without collision): 1069 81.5% vs 29%. These observations question our working hypothesis that the relative influence of mechanisms is preserved despite the collision between the distractor token and the correct answer. More work is needed to better understand the interference of conflicting mechanisms in the case 1074 where their results are the same.

#### 1076 C.3. Limitations

This application is meant to be a proof of concept demonstrating the concrete possibility of leveraging the emergent decomposition of retrieval tasks for unsupervised internal process supervision. We only study a simple task of question-answering on two models. Moreover, the set of distractors we use to induce anomalous mechanisms is very constrained.

1085 While providing promising results on  $D_b$ , mechanistic anomaly detection fails to reliably detect distractors on  $D_c$ , the dataset with collision. It is unclear if this shows a failure of the technique or the existence of a different internal mechanism when the distractor token and the correct token are the same. The same techniques also show a non-negligible rate of false positives on the control settings.

1092 Furthermore, a more thorough evaluation should include 1093 a comparison with other methods from the literature. For 1094 instance, linear probes could be trained on a dataset of in-1095 termediate activations labeled with genuine or anomalous 1096 behavior. Nonetheless, our technique presents several ad-1097 vantages over linear probes. First, request-patching has the 1098 advantage of requiring a single trusted input instead of a 1099 labeled dataset. Moreover, anomalous mechanism detection through linear probing can be evaded by designing adversarial examples. Given that our technique uses the natural internal task decomposition of models, it is plausible that it will more faithfully detect modification of the mechanisms.

Finally, there are several avenues to improve the performance of this technique. Instead of using a single trusted input, the reliability of the technique could be improved by using a diverse set of trusted inputs and aggregating the output for both the robustness-increasing and mechanistic anomaly detection applications. Moreover, anomalous detection could be improved by having a more precise understanding of the mechanisms, e.g. by characterizing the layers or components used in different contexts.

#### D. Additional residual stream results

Figure ?? shows the maximal normalized probability of the  $R_1(C_2)$  label token after residual stream patching. Request patching is robustly working for all model and tasks, except for the induction task. We discuss further the results for induction in Appendix F.

Figure 14 shows side-by-side the results of residual stream patching on the question-answering task. For all models, there exists a span of intermediate layers (40-80% of the model depth) where residual stream patching leads the model to output  $R_1(C_2)$  with a high probability (>80% normalized probability). This span of layers seems to be the same for the base and fine-tuned Falcon models. This is coherent with the intuition that fine-tuning is only superficially affecting the model internals.

Figure 15 shows the layers  $L_1$  and  $L_3$  for every model and task studied. We observe a similar motif as in the layer  $L_2$  in Figure 4. The processing for the induction task seems to happen earlier than the other tasks such that all three limit layers are shifted toward the early layers.

However, this trend does not hold for Llama 2 70b. All the limit layers for this model seem to be concentrated over a

Look Before You Leap

| Model        | Detection<br>Predicate | No distractor | Small-model<br>distractor | Large-model<br>distractor | Control<br>distractor |
|--------------|------------------------|---------------|---------------------------|---------------------------|-----------------------|
| Duthia 410m  | A                      | 3             | 70.5                      | 16                        | 0                     |
| Pytnia-410m  | B                      | 13            | 39                        | 76                        | 12.5                  |
| base dataset | $A 	ext{ or } B$       | 16            | 80                        | 77                        | 12.5                  |
| Dethie 10h   | Α                      | 2             | 17.5                      | 85.5                      | 1.5                   |
| Pythia-12b   | B                      | 4             | 0                         | 81.5                      | 3.5                   |
| base aataset | $A 	ext{ or } B$       | 6             | 17.5                      | 94                        | 5                     |
| D (1) 410    | Α                      | 3             | 0                         | 8                         | 0                     |
| Pytnia-410m  | B                      | 13            | 6                         | 72                        | 7                     |
| w/ collision | $A 	ext{ or } B$       | 16            | 6                         | 72                        | 7                     |
| Duthia 10h   | A                      | 2             | 2                         | 14                        | 0                     |
| ryuna-120    | В                      | 4             | 9                         | 29                        | 21                    |
| w/ counsion  | $A 	ext{ or } B$       | 6             | 11                        | 36                        | 21                    |

1117 Table 4: Frequency (in %) of the anomalous mechanism detection predicate A and B. The predicate A detects changes in 1118 output after request-patching from the trusted to untrusted input, while B is the opposite. The combination of both predicates 1119 robustly recognizes the distractors in the base dataset but fails on the more challenging dataset where the distractor token 1120 and the question answer are the same.

1123 very narrow span of layers in the middle of the network. 1124 To further explore this surprising observation, Figure 16 1125 shows the results of residual stream patching on Llama 2 1126 70b for the factual recall, induction, and translation tasks. 1127 The normalized token probability seems to peak in a narrow 1128 range of layers (40-43) for all three tasks, including the 1129 simple induction task. It is unclear why only Llama 2 70b 1130 exhibits this pattern, contrasting with models of similar sizes 1131 (e.g. Falcon 40b) that demonstrate spread-out limit layers. This phenomenon could be caused by the larger scale of the 1132 model or peculiarities of the architecture. 1133

#### 1135 **E.** Causal abstraction 1136

1121 1122

1134

Validating the high-level causal graph using the frame-1137 work of causal abstraction. In this Appendix, we ex-1138 press the implications of request-patching on the high-level 1139 structure of the computation happening in language mod-1140 els solving retrieval tasks using the framework of causal 1141 abstraction (Geiger et al., 2023). We define a high-level 1142 causal graph operating on the abstract input representation 1143 and an alignment mapping each intermediate variable in the 1144 high-level causal graph to a set of model components. The 1145 input-output alignment is defined by the ORION abstract 1146 input and output representation. The alignment is illustrated 1147 in Figure 17.

Our causal graph is a simple two-step symbolic algorithm 1149 that treats the request and context separately before combin-1150 ing them to algorithmically solve the retrieval task. 1151

1152 We validate the alignment using interchange intervention ac-1153 curacy (IIA). IIA is defined in (Geiger et al., 2023) as an av-1154

erage over every possible multi-input interchange intervention. However, this average introduces statistical distortion in the case of the alignment we are considering. Because of the shape of our causal graph, interchanging a variable late in the graph screens off the effect of the interchange happening earlier in the graph. Thus, intervening simultaneously on early and late variables is equivalent to interchanging the late variable alone. To remove this statistical distortion, we average the results of the interchange interventions such that each unique experiment gets the same weight.

Moreover, given that residual stream patching is a kind of interchange intervention, we reuse the experimental data from the exploratory causal analysis to compute the IIA. Given the simplicity of our alignment, we can write the IIA for a task T from ORION in terms of three interchange operations as follows:

$$\begin{aligned} \text{IIA}_{T} &= \frac{1}{3} E_{x_{1}, x_{2} \in T} \left[ \left[ \mathcal{M}(x_{2} | z_{n}^{L_{1}} \leftarrow z_{n}^{L_{1}}(x_{1})) = R_{1}(C_{1}) \right] \\ &+ \left[ \mathcal{M}(x_{2} | z_{n}^{L_{2}} \leftarrow z_{n}^{L_{2}}(x_{1})) = R_{1}(C_{2}) \right] \\ &+ \left[ \mathcal{M}(x_{2} | z_{n}^{L_{3}} \leftarrow z_{n}^{L_{3}}(x_{1})) = R_{2}(C_{2}) \right] \end{aligned}$$

We do not include the results of interchange intervention on the context variable. Given the model architecture, the two interchange operations  $\mathcal{M}(x_2|z_n^L \leftarrow z_n^L(x_1))$  and  $\mathcal{M}(x_1|z_{< n}^L \leftarrow z_{< n}^L(x_2))$  are equivalent. The first one cor-



Look Before You Leap

Figure 14: Normalized probability of the label tokens after residual stream patching across all layers on the questionanswering task with uniform prefix. To enable comparison across models, we use the relative layer with 0 as the first and 1 as the last layer. Request-patching is general across models: mid-layer residual stream patching causes the model to output  $R_1(C_2)$  with more than 80% normalized token probability.

1208





Figure 16: Result of residual stream patching of Llama 2 70b on three retrieval tasks. The maximal effect of residual stream patching, i.e. maximal probability of the label token  $R_1(C_2)$ , is located at the exact same layer (layer 42) for every task. 1317



Figure 17: Alignment between a high-level causal graph that uses abstract representations of inputs, and a language model running on the textual representation of the inputs for a retrieval task. The alignment bounds the position where request processing (in red) and context processing (in green) are located in the intermediate layers of the model. The Nil node is isolated in the high-level causal graph. It does not influence the output of the causal graph and thus can be interchanged freely.

1375 responds to the intervention on the request in the high-level

1376 causal graph, and the second corresponds to the interven-1377 tion on the context. Moreover, our task datasets are defined

1378 by independently sampling R and C. This means that by

definition, the average output of  $\mathcal{M}(x_2|z_n^L \leftarrow z_n^L(x_1))$  and  $\mathcal{M}(x_1|z_{\leq n}^L \leftarrow z_{\leq n}^L(x_2))$  are the same. We thus remove the 1379

1380

results of the intervention on the context from the average 1381

to avoid artificial duplication of experimental results. 1382

1383 To facilitate the comparison across tasks, we normalize the 1384 IIA such that 0 corresponds to random guesses and 1 is the 1385 baseline accuracy on the task. Note that the normalized IIA 1386 could be greater than 1 if the causal graph also explains the 1387

mistakes of the model. However, we consider a simple high-1388 level causal graph that always answers the correct token 1389 such that the baseline model accuracy is a natural upper 1390 bound for the IIA.

1391 Finally, it is worth noting that the first and last terms of the expression of  $IIA_T$  are dependent on the arbitrary threshold 1393 we use to define  $L_1$  and  $L_3$ . Choosing a higher threshold 1394 would be an artificial way to increase the IIA. However, 1395 this would also make the alignment less expressive as  $L_1$ 1396 would tend to be 0, and  $L_3$  would tend to be the last layer, 1397 effectively making these parts of the alignment trivial. The 1398 thresholds thus represent a tradeoff between the strictness 1399 of the hypothesis and the ease of validating it.

1400 The normalized IIA scores for each model and task studied 1401 are shown in Figure 18. We observe that the majority of 1402 settings studied lead to high IIA scores (91 out of the 106 1403 pairs of models and tasks have scores greater than 85%), 1404 showing that the high-level casual model faithfully describes 1405 the internal processes of language models on the ORION 1406 tasks. 1407

#### 1408 F. Comparison with prior work 1409

1410 Factual recall The factual recall and abstract induction 1411 tasks from ORION have been previously studied in the 1412 mechanistic interpretability literature. In this section, we 1413 show that the mechanisms described in previous works are 1414 compatible with the results of request-patching.

1415 Previous works studied the factual recall abilities of lan-1416 guage models on prompts represented by a triplet (s, r, a)1417 where s is a subject, r is a relation being queried, and a is 1418 the corresponding attribute, i.e. the value of the relation on 1419 the subject. A prompt would contain the subject and relation 1420 while the attribute would define the label token, e.g. "Beat 1421 music is owned by"  $\rightarrow$  "Apple". Geva et al. show 1422 that early attention layers at the last token position are used 1423 for relation propagation, propagating information from the 1424 relation token to the last position, e.g. the information about 1425 the relation "owned" to the "by" token in the example. 1426 Later layers are in charge of attribute extraction. They 1427 recover the correct attribute from the last subject token, ac-1428 cording to the relation propagated to the last position by the 1429

earlier layers.

Using the ORION input representation, the relation is part of the request, while the subject is in the context. When performing residual stream patching at intermediate layers, we observe request-patching: the information from the relation in  $x_1$  is transferred but the subject stays the same. Our observation is coherent with the finding from Geva et al. that relation propagation and attribute extraction happen at non-overlapping layers.

Note that contrary to Geva et al. we do not use the dataset Counterfact. This dataset cannot be incorporated into ORION because of the "Decomposable" desiderata for task constellations. Most of the relations in the Counterfact dataset cannot be applied to arbitrary subjects, e.g. a famous person does not have an attribute for the relation "capital city". To circumvent this limitation, we create two datasets that fit the "Decomposable" desiderata, enabling the design of systematic causal experiments. We document this process in more detail in Appendix H.6.

**Induction** The induction task consists in completing patterns of the form [A] [B] ... [A]. For instance, such patterns occur naturally when completing a name that appeared before in the context, e.g. "Harry Potter ... Harry Pot"  $\rightarrow$  "ter". The mechanisms for induction tasks were first characterized in small two-layer Transformers in (Elhage et al., 2021). The mechanisms involve two steps: the first step consists in previous token heads acting at the [B] position copying the preceding token [A]. The second step involves induction heads acting at the [A] position. In a follow-up paper, Olsson et al. hypothesize that induction heads are also present in large models and recognize more complex patterns with a similar structure such [A\*] (Olsson et al., 2022). In this as [A] [B] ... case, [A] and [A\*] can be composed of several tokens and be recognized using fuzzy matching instead of exact token matching. They propose a similar high-level structure as the simple mechanism: the representation at the position [B] is contextualized by incorporating information about the preceding prefix [A], using a more advanced mechanism than the previous token heads. Similarly, the representation of the last token incorporates information about the tokens from [A\*]. At later layers, induction heads leverage their attention mechanisms to recognize the similarity between the representations of  $[A \star]$  at the [B] token position and the representation of [A] at the last token position. Finally, their OV circuit copies the [B] token.

The induction task we designed involves multi-token prefixes with exact matches. We study patterns of the form [A] [X] [B] .... [A] [X], where [X] is a separator token, a column in our case. According to the extended mechanism for induction, the residual stream at early layers at the last token contains the information propagated from the second [A] occurrence, while the later layer contains induction heads in charge of finding the [B] token in the



Figure 18: Normalized interchange intervention accuracy for all models and tasks studied for the high-level retrieval symbolic algorithm. The normalized IIA is greater than 85% in 91 out of the 106 settings studied. This demonstrates that our high-level causal graph faithfully describes the internal model computation across different models and tasks.

1456 broader context. If the [A] propagation and the induction 1457 heads occur at non-overlapping layers, patching the early 1458 residual stream should only modify the representation of 1459 the token [A] at the last token position without impacting 1460 the retrieval abilities of the induction heads. In the ORION 1461 abstract representation, [A] is the request in the induction 1462 task. Hence the proposed mechanism for induction heads is 1463 coherent with the results of request-patching. 1464

Propagating the [A] token to the final residual stream and 1465 the operation of the induction heads are both simple oper-1466 ations, each of these operations can theoretically be per-1467 formed in a single layer. We hypothesize that these two 1468 operations are performed redundantly by two sets of compo-1469 nents acting in tandem, a first set to propagate information 1470 from [A] to the last token, and a second set of induction 1471 heads. We hypothesize that these two sets of components 1472 are situated at overlapping layers in large models as part 1473 of pre-processing happening in early layers. Large mod-1474 els have the capacity for redundant parallel computation 1475 because of their large number of attention heads per layer. 1476 This hypothesis would explain the lower performance of 1477 request-patching on induction tasks in large models. No 1478 layer separates the request and its processing: due to the 1479 simplicity of the task, they both happen in parallel. 1480

- 1481
- 1482
- 1/02
- 1400
- 1484

#### **G.** Transformer architecture

In this appendix, we provide a complete description of the Transformer architecture. The pre-softmax values  $\pi_n$  are the logits at the *n*-th token position. For the GPT-2 Transformer architecture (Radford et al., 2019) with *L* layers, the function  $\mathcal{M}_{\theta}$  can be further broken down as follows:

$$\begin{aligned} \pi_n &= \mathrm{LN}(z_n^L) W_U \\ z_k^l &= z_k^{l-1} + a_k^l + m_k^l \\ m_k^l &= \mathrm{MLP}(z_k^{l-1} + a_k^l) \\ &= \mathrm{LN} \left( W_{out} \left( \mathrm{GELU}(W_{in}(z_k^{l-1} + a_k^l) + b_{in}) \right) + b_{out} \right) \\ a_k^l &= \mathrm{Attn}(z_{\leq k}^{l-1}) \\ z_k^0 &= W_E t + W_P \end{aligned}$$

The final logits  $\pi_l$  are constructed by iteratively building a series of intermediate activations  $z_k^l$  we call the *residual stream*, following (Elhage et al., 2021). The residual stream  $z_k^l$  at token position k and layer l is computed from the residual stream at previous token positions at the previous layer  $z_{\leq k}^{l-1}$  by adding the results of Attn, a multi-headed attention module, and MLP, a two-layer perceptron module.

The MLP module depends on the residual stream  $z_k^{l-1}$  at position k and layer l-1 while the attention module can

- 1485 aggregate information from the previous layer across ev-
- 1486 ery previous token position. The residual stream is initial-1487 ized with the embeddings computed from the token and
- positional embedding matrices  $W_E$ ,  $W_P$ , and the one-hot
- 1489 encoding of the input tokens t. Finally,  $W_U$  is the unembed-
- 1490 ding matrix, GELU the Gaussian error linear unit activation
- 1491 function (Hendrycks and Gimpel, 2016), and LN is a layer
- 1492 normalization function (Ba et al., 2016) applied to the final
- residual stream and the output of each module.

1494 In practice, the models we study have slight deviations from 1495 the GPT-2 architecture. The Pythia (Biderman et al., 2023), 1496 Falcon (Almazrouei et al., 2023) and Llama 2 (Touvron 1497 et al., 2023) models use parallelized attention and MLP. In the formulae above, this translates as  $m_k^l = \text{MLP}(z_k^{l-1})$ . 1498 1499 Moreover, Falcon contains additional layer normalization at the input of modules. LLama 2 uses the SwiGLU activation 1500 function (Shazeer, 2020) and layer normalization only at 1501 the input of modules.

#### 1503

1508

1515

### 1504 **H. ORION prompts**

Table 5 provides a succinct overview of the task included in ORION.

#### 1509 H.1. Detailed description of the dataset desideratas

- 1510
  1. Structured. Every textual input in ORION accepts an abstract representation using the context and request representation defined above. *Motivation: Providing a unified structure to define and interpret causal interventions without the need for setting-specific labor.*
- 2. Decomposable. For every dataset D in ORION, for 1516 every abstract representations  $(C_1, R_1), (C_2, R_2)$  in 1517  $D, R_2(C_1)$  and  $R_1(C_2)$  are well-defined. This means 1518 that an arbitrary request can be applied to an arbitrary 1519 context from the same task. Abstract representations of 1520 requests and contexts can be freely interchanged across 1521 a task. Motivation: Enabling the design of interchange 1522 interventions. 1523
- 1524 3. Single token. For every dataset D in ORION, for 1525 every abstract representations  $(C_1, R_1), (C_2, R_2)$  in 1526  $D, R_1 = R_2 \Leftrightarrow R_1(C_1) = R_2(C_1)$ . In other words, 1527 in a given context, the output of each request gives 1528 a unique answer. It ensures that measuring the next-1529 token prediction is enough to know which request has 1530 been answered. Motivation: Making experiments easy to measure and computationally efficient. 1531
- 4. **Monotasking.** For every dataset D in ORION, for every abstract representation (C, R) in D, there is a unique line in C such that  $ATTR_f = v_f$ . This condition ensures that requests are answerable with unambiguous answers. *Motivation: Making analysis tractable. It is easier to understand models solving a single problem than solving multiple problems in*

#### parallel.

5. Flexible. ORION contains diverse tasks spanning multiple domains and levels of complexity. In practice, we demonstrate the flexibility of the ORION structure by creating 15 different tasks spanning six different language model abilities. *Motivation: Enabling rich comparative analysis across models and domains*.

In the code implementation, we designed automatic tests to ensure that conditions "Decomposable", "Single token", and "Monotasking" are respected for every task in ORION.

#### H.2. Dataset creation

To create the ORION task datasets, we use a semi-automatic process illustrated in Figure 19, leveraging the creative writing ability of ChatGPT<sup>2</sup>. Concretely, we use the following workflow:

- 1. Find a problem that can be formulated as a retrieval task, e.g. question-answering.
- 2. Use ChatGPT to create a template with placeholders, e.g. a story with placeholders for narrative variables such as the city, the name of the character, and the question being asked.
- 3. Use ChatGPT to create a set of placeholders.
- 4. Procedurally generate a set of abstract representations for the contexts and requests.
- 5. Generate the textual inputs from the abstract representation using format strings or ChatGPT when more flexibility is required.

We applied this workflow to create 15 tasks spanning six problem domains requiring different abilities: question answering, translation, factual recall, variable binding, abstract pattern matching (induction pattern) and coding. For each domain, we created variation of surface-level parameters of the task (e.g. changing language of the translation). We give an example input-output pair for each in Table 5. We provide a detailed discussion about task choices as well as a precise description of each dataset in the rest of this Appendix.

#### H.3. Discussion about task choice

For a given problem type, we generate several templates, enabling the creation of several task variations. We use this procedure to generate 15 unique tasks spanning six different abilities.

We use several criteria in choosing the problem types. First, we choose tasks that have already been studied in the literature to act as reference points for our analysis. This includes

<sup>&</sup>lt;sup>2</sup>https://chat.openai.com/

| Look Before | You | Leap |
|-------------|-----|------|
|-------------|-----|------|

| 1 | 5 | 4 | 0 |
|---|---|---|---|
| 1 | 5 | 4 | 1 |

| + | ~ |   | Τ. |
|---|---|---|----|
| 1 | 5 | 4 | 2  |
| 1 | J | 4 |    |

| Task name                                      | Example Prompt                                                                                                                                                                  | Label token  | Variations |
|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------|
| Question-<br>answering<br>(base)               | Story: In the lively city of Valencia, spring mornings<br>[] as a skilled veterinarian [] "I'm Christopher"<br>he replied, [].                                                  | _Christopher | 1          |
| (0400)                                         | Question: What is the name of the main character?<br>Answer: The main character is named                                                                                        |              |            |
| Question-<br>answering<br>(uniform prefix)     | Story: In the lively city of Valencia, spring mornings<br>[] as a skilled veterinarian [] "I'm Christopher"<br>he replied, [].                                                  | Christopher  | 1          |
|                                                | Question: What is the name of the main character?<br>Answer: The answer is "                                                                                                    |              |            |
| Question-                                      | Question: What is the name of the main character?                                                                                                                               | Christopher  | 1          |
| answering<br>(question first)                  | Story: In the lively city of Valencia, spring mornings<br>[] as a skilled veterinarian [] "I'm Christopher"<br>he replied, [].                                                  |              |            |
|                                                | Answer: The answer is "                                                                                                                                                         |              |            |
| Question-<br>answering<br>(mixed<br>templates) | Uniform distribution of prompts from three variations of question-answering above.                                                                                              |              | 1          |
| Translation                                    | English:<br>In an era defined by increasing global temperatures []<br>At the forefront is M. Smith, a marine biologist []<br>Next, we turn to M. Miller, a climate economist [] | _Miller      | 3          |
|                                                | French:<br>[]<br>Nous nous tournons ensuite vers M.                                                                                                                             |              |            |
| Factual recall                                 | Question: On which continent did Muhammad Ali live?<br>Answer:                                                                                                                  | _America     | 2          |
| Variable<br>binding                            | Anthony has a collection of pencils. 50 pencils are blue, 10 pencils are red, and 20 pencils are green.                                                                         | 20)_         | 3          |
|                                                | How many pencils in total are either blue or green?<br>We'll add the number of green pencils (                                                                                  |              |            |
| Induction pattern-<br>matching                 | xnGWu:nJIbF<br>etmNX:TzgIS<br>ZvcIf:Gcqvs<br>[]<br>AjvlA:pXMgi<br>etmNX:                                                                                                        | Т            | 1          |
| Type hint<br>understanding                     | <pre>def calculate_circumference(circle: Circle) -&gt; float: [] W = Rectangle(Point(2, 3), Point(6, 5)) D = Circle(Point(0, 0), 5) print(calculate_circumference(</pre>        | D            | 3          |

Table 5: Tasks from the ORION collection contain varied problem type and prompt format. For readability, we use "[...]" to shorten the prompts. The rest of the text is part of the textual input. In particular, "[...]" is part of the prompt for the translation task. We use "\_" to indicate a space in the label token.



1613 Figure 19: The semi-automatic task generation process used to create ORION. We use ChatGPT to create a template and 1614 values for the placeholders given a problem type. To generate an instance from the task, we start by randomly selecting 1615 placeholder values to create an abstract input representation. Then, we use a format string to fill the template. When we

1616 need more flexibility, we use GPT-4 to incorporate the placeholder values into the template. 1617

1618

1641

1644

1645

1646

1647

1648

1649

1619 factual recall and the induction task. Then, to allow analysis 1620 across model scales, we design a simple question-answering task that can be solved by both small and large models. We 1621 also create more challenging tasks to explore diverse skills 1622 such as coding abilities, tracking the association between an 1623 object and its quantity, and tasks involving translation from 1624 English to three different languages. 1625

1626 In addition to diversifying the content of the tasks, we create 1627 structural modifications to the task template. To that end, 1628 we create question-answering templates where the question 1629 is before the story in the dataset and templates where the 1630 final token of the prompt does not depend on the request. 1631 We also create a mixed question-answering task containing 1632 prompts from the three variations.<sup>3</sup>

1633 In this rest of this Appendix, we describe in more detail the 1634 process we used to create each task of the ORION collection. 1635 We also provide complete example prompts for each task. 1636

#### 1637 H.4. Ouestion-answering 1638

1639 H.4.1. GENERATING THE STORIES

1640 We created a set of 100 stories we used in the four variations of the question-answering task. Each story was created by 1642 defining:

- The name of the main character
- · The occupation of the main character

- The time of day
- The season of the year
- The city of the story
- The action of the story
- · An order in which the above elements should be introduced in the story
- An example story called a "master story", used as a template to incorporate the new narrative elements

The value of each of the narrative elements was uniformly sampled from lists of 3 to 5 different possible values for each field. The lists were generated using manual interaction with ChatGPT.

The 8 narrative elements were combined in a prompt shown in 20 and completed by GPT-4. The goal of this process was to reduce as much as possible the variations introduced by GPT-4, such that the variables in the generation prompt characterized the generated story as comprehensively as possible.

#### H.4.2. GENERATING THE QUESTIONS

We manually generated questions and answer prefixes about three different narrative variables: character occupation, city, and name of the main character. For each narrative variable, we created three different phrasings.

The answer prefixes were either uniform, as shown in Figures 21 and 22 for the task variation with uniform prefix and

<sup>&</sup>lt;sup>3</sup>Given that the mixed-template task is an aggregation of other task variations, we do not include it in the count of 15 unique tasks.

question at the start, or depended on the variable queried
in the question, as shown in Figure 23 for the base task
variation. The base task variation can be solved by smaller
models, while only larger models can handle uniform answer prefixes.

#### 1656 H.5. Type hint understanding

Using ChatGPT, we generated three Python code snippets
introducing new classes and functions using these classes,
as shown in Figure 24. The context is a set of variables with
a given type. The request asks for a variable name with a
particular type. The function definitions do not vary across
prompts and are only used to formulate the request.

# 1664 **H.6. Factual recall**

1655

1663

Existing open-source datasets created to study factual recall 1666 in language models, such as the one introduced in (Meng 1667 et al., 2022), contain relations (e.g. the sport of an athlete) 1668 that can only be applied to a subset of the subjects (e.g. only 1669 athletes, since asking the sport played by a country does 1670 not make sense). This makes it impossible to use causal 1671 intervention such as the type required for request-patching 1672 (the desiderata "Decomposable" is not fulfilled). Thus, we 1673 created two variations of factual recall tasks such that any 1674 pair of subject and relation exists. Contrary to the other task 1675 from ORION, the retrieval tasks do not involve copying an 1676 attribute present in the context, the task requires the model 1677 to know the attribute. 1678

Geography dataset We used an open-source database<sup>4</sup> of countries. We extracted the name, capital city, and continent of each country.

1685 Geography dataset Following the process used in 1686 (Krasheninnikov et al., 2023), we used a Cross-Verified 1687 database (CVDB) of notable people 3500BC-2018AD 1688 (Laouenan et al., 2022). Each individual was ranked by 1689 popularity (measured with the "wiki\_readers\_2015\_2018 1690 feature"), and 4000 of the most popular individuals were taken (2000 men and women each). We selected the fields 1692 related to the gender, continent, and nationality of each 1693 notable person.

1679

1684

1695

1696 Filtering For both datasets, we queried the relation about
1697 the entity using a few shot setting, as shown in Figure 25.
1698 From the raw data extracted from the dataset, we further
1699 filtered the list of entities to keep only the ones where GPT-2
1700 was able to answer all the questions related to the entity. The
1701 final dataset contains 243 notable people (i.e. 729 questions)
1702 and 94 countries (i.e. 282 questions).

#### H.7. Variable binding

We were inspired by the shape of grade school math problems from the GSM8K dataset (Cobbe et al., 2021). The goal was to create retrieval tasks that would naturally occur in a chain of thought generated by a model solving a math puzzle. The context contains objects with different quantities. The request asks for the quantity of an object type.

To create the dataset, we picked one sample from the GSM8K dataset and generated variations using ChatGPT. An example prompt can be found in Figure 26.

#### H.8. Translation

We used ChatGPT-3.5 (referred to as ChatGPT in the main text and the rest of the Appendix) to generate news articles using placeholders instead of real names. We instructed it to add as many names as possible and to prefix each name with a common title, such as "M.". Then, we asked ChatGPT to translate the text into a non-English language. From the translated text we extracted excerpts that preceded each of the names but did not include any names. These excerpts formed the request. When creating the dataset, the placeholders are replaced by distinct family names from a list generated by ChatGPT.

Using this process, we created three variations with different subjects, target languages, and name prefixes.

- Title: "Climate Change: The Unsung Heroes", Prefix: "M.", Target language: French.
- Title: "Hidden Wonders Revealed: New Species Discovered in Unexplored Amazon Rainforest", Prefix: "Dr.", Target language: Spanish.
- Title: "From Pirates to Naval Heroes: Captains who Shaped Maritime History", Prefix: "Capt.", Target language: German.

The entities in the context are the named characters, and their attribute is the sentence in which they appear. The request is asking for a name that appears in a given sentence.

#### H.9. Induction

We generated 10 pairs of random strings made from upper and lower-case letters separated by a column. The context contains five enumerations of the pairs. Each enumeration is in a random order. The request is the first half of one of the pairs. An example prompt is shown in Figure 28.

1703 1704

<sup>4</sup>https://github.com/annexare/Countries

<sup>1694</sup> 

|   | You have to generate a short story that fits in a single paragraph of less than 150 words. It has to respect a list of precise constraints. |
|---|---------------------------------------------------------------------------------------------------------------------------------------------|
|   | ### Narrative elements                                                                                                                      |
|   | The main character is named {character_name}. Their occupation is {                                                                         |
|   | character_occupation}. The story takes place in {city}. The time of the day is                                                              |
|   | the {day_time}, and the season is {season}. The time of the day should stay                                                                 |
|   | constant in the story. The action periormed by the main character is {action}.                                                              |
|   | It's crucial that all the elements appear in the story.                                                                                     |
|   | ### Order of the narrative elements                                                                                                         |
|   | The ender is which to introduce the seconding elements is impressed. The main                                                               |
|   | priority is to respect the order of apparition I impose. Here is the imposed                                                                |
|   | order in which to introduce the narrative elements. This order is already prese                                                             |
|   | in the template story.                                                                                                                      |
|   | {variable_order}                                                                                                                            |
|   |                                                                                                                                             |
|   | ### Template story                                                                                                                          |
|   | You have to generate a story that matches as closely as possible a template sto:                                                            |
|   | . Your goal is to modify the template story such that all the narrative element                                                             |
|   | are present, but the general structure (e.g. order in which the narrative element                                                           |
|   | are introduced etc.) is as close as possible to the template story.                                                                         |
|   | Here is the template story you have to stick to:                                                                                            |
|   |                                                                                                                                             |
|   | "{master_story_text}"                                                                                                                       |
|   | Generate a short story that matches the template story while incorporating the                                                              |
|   | new narrative elements.                                                                                                                     |
| _ |                                                                                                                                             |

#### Context

#### <|endoftext|>

Here is a short story. Read it carefully and answer the questions below with a keyword from the text. Here is the format of the answer: 'The answer is "xxx".'

The morning sun bathed the streets of Cusco in a warm, golden light, casting long shadows that danced along with the gentle summer breeze. Amidst the bustling city, a tall, slender figure stood on the rooftop of an unfinished building, their eyes surveying the urban landscape below. As the skyline slowly transformed under their careful guidance, it became apparent that the person was no mere observer, but an architect, orchestrating the symphony of steel and concrete. The sound of birdsong filled the air, but it was soon joined by another melody -the architect's voice, soaring with joy and passion, a song of creation and ambition. And as the last notes faded away, the wind carried a whispered name, the signature of the artist who painted the city with their dreams: Michael.

Answer the questions below.

#### Request

Question: What job does the main character have?

Answer: The answer is "

Figure 21: Example prompt for the QA (uniform prefix) task.

#### Request

<|endoftext|>

Read the question below, then answer it after reading the story using a keyword from the text. Here is the format of the answer: 'The answer is "xxx".'

Question: What job does the main character have?

#### Context

Story: The morning sun bathed the streets of Cusco in a warm, golden light, casting long shadows that danced along with the gentle summer breeze. Amidst the bustling city, a tall, slender figure stood on the rooftop of an unfinished building, their eyes surveying the urban landscape below. As the skyline slowly transformed under their careful guidance, it became apparent that the person was no mere observer, but an architect, orchestrating the symphony of steel and concrete. The sound of birdsong filled the air, but it was soon joined by another melody -- the architect's voice, soaring with joy and passion, a song of creation and ambition. And as the last notes faded away, the wind carried a whispered name, the signature of the artist who painted the city with their dreams: Michael.

Answer: The answer is "

Figure 22: Example prompt for the QA (question first) task.

#### Context

<|endoftext|>

Here is a short story. Read it carefully and answer the questions below.

The morning sun bathed the streets of Cusco in a warm, golden light, casting long shadows that danced along with the gentle summer breeze. Amidst the bustling city, a tall, slender figure stood on the rooftop of an unfinished building, their eyes surveying the urban landscape below. As the skyline slowly transformed under their careful guidance, it became apparent that the person was no mere observer, but an architect, orchestrating the symphony of steel and concrete. The sound of birdsong filled the air, but it was soon joined by another melody -the architect's voice, soaring with joy and passion, a song of creation and ambition. And as the last notes faded away, the wind carried a whispered name, the signature of the artist who painted the city with their dreams: Michael.

Answer the questions below, The answers should be concise and to the point.

#### Request

Question: What job does the main character have?

Answer: The main character is a professional

Figure 23: Example prompt for the QA (base) task.

#### Context

| 1077 |                                                                                                                                                          |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 18// | < endoftext >                                                                                                                                            |
| 1878 | from typing import List<br>from math import pi                                                                                                           |
| 1879 |                                                                                                                                                          |
| 1880 | class Point:<br>definit(self, x: float, y: float) -> None:                                                                                               |
| 1881 | self.x = x                                                                                                                                               |
| 1882 | seir.y = y                                                                                                                                               |
| 1883 | class Rectangle:<br>definit(self, bottom_left, Point, top_right, Point) -> None,                                                                         |
| 1884 | <pre>self.bottom_left = bottom_left</pre>                                                                                                                |
| 1885 | self.top_right = top_right                                                                                                                               |
| 1886 | class Circle:                                                                                                                                            |
| 1000 | <pre>definit(self, center: Point, radius: float) -&gt; None:<br/>self.center = center</pre>                                                              |
| 1007 | self.radius = radius                                                                                                                                     |
| 1000 | class Polygon:                                                                                                                                           |
| 1889 | <pre>definit(self, points: List[Point]) -&gt; None:     self.points = points</pre>                                                                       |
| 1890 | def esteviste ever (meteoriste Desternist) > flaste                                                                                                      |
| 1891 | height = rectangle.top_right.y - rectangle.bottom_left.y                                                                                                 |
| 1892 | width = rectangle.top_right.x - rectangle.bottom_left.x<br>return beight + width                                                                         |
| 1893 | I Courr noight " Witch                                                                                                                                   |
| 1894 | <pre>def calculate_center(rectangle: Rectangle) -&gt; Point:<br/>center x = (rectangle.bottom left.x + rectangle.top right.x) / 2</pre>                  |
| 1895 | <pre>center_y = (rectangle.bottom_left.y + rectangle.top_right.y) / 2</pre>                                                                              |
| 1896 | return Point(Center_x, Center_y)                                                                                                                         |
| 1897 | <pre>def calculate_distance(point1: Point, point2: Point) -&gt; float:<br/>return ((point2.x - point1.x) ** 2 + (point2.y - point1.y) ** 2) ** 0.5</pre> |
| 1898 | <br> def calculate_circumference(circle: Circle) -> float:                                                                                               |
| 1899 | return 2 * pi * circle.radius                                                                                                                            |
| 1900 | <pre>def calculate_circle_area(circle: Circle) -&gt; float:</pre>                                                                                        |
| 1901 | return pi * (circle.radius ** 2)                                                                                                                         |
| 1902 | <pre>def calculate_perimeter(polygon: Polygon) -&gt; float:</pre>                                                                                        |
| 1903 | perimeter = 0<br>points = polygon.points + [polygon.points[0]]  # Add the first point at the end for a closed shape                                      |
| 1904 | <pre>for i in range(len(points) - 1):     perimeter += calculate distance(points[i], points[i + 1])</pre>                                                |
| 1905 | return perimeter                                                                                                                                         |
| 1906 | # Create a polygon                                                                                                                                       |
| 1907 | Y = Polygon([Point(0, 0), Point(1, 0), Point(0, 1)])                                                                                                     |
| 1908 | <pre># Create a rectangle K = Rectangle(Point(2, 3), Point(6, 5))</pre>                                                                                  |
| 1909 | # Create a givele                                                                                                                                        |
| 1910 | P = Circle(Point(0, 0), 5)                                                                                                                               |

#### Request

| # Calculate area      |
|-----------------------|
| print(calculate_area( |

Figure 24: Example prompt for the type hint understanding task.

#### CVDB prompt

```
<!endoftext|>Question: What was the country of Freddie Mercury?
Answer: UK
Question: On which continent did Muhammad Ali live?
Answer: America
Question: What was the country of Fela Kuti?
Answer:
```

#### Geography prompt

```
1942 </endoftext/>Question: What is the capital of France?
1943 Answer: Paris
1944 Question: What is the language spoken in Malaysia?
1945 Answer:
```

Figure 25: Example prompt for the factual recall task on the CVDB and geography datasets. There is no clear division between context and request in the prompt. In full rigor, the context is composed of a single entity, e.g. 'Fela Kuti' in the first prompt, while the request is asking about an attribute, e.g. the country, without filtering as there is a single entity in the context.

#### Context

<!endoftext|>John is baking cookies. The recipe calls for 4 cups of flour, 2 cups
of sugar, and 6 cups of chocolate chips. How many cups of ingredients in total
are needed for the cookies?

#### Request

We'll add the number of cups of flour (

Figure 26: Example prompt for the variable binding task.

| Context |
|---------|
|---------|

| 1987         |                                                                                                                                                                                                                                                                   |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1988         | < endoftext >                                                                                                                                                                                                                                                     |
| 1989         | Here is a new article in English. Below, you can find a partial translation in French. Please complete the translation.                                                                                                                                           |
| 1990         |                                                                                                                                                                                                                                                                   |
| 1991         | English:                                                                                                                                                                                                                                                          |
| 1992         | Title: "Climate Change: The Unsung Heroes"                                                                                                                                                                                                                        |
| 1993         | In an era defined by increasing global temperatures and extreme weather events, the fight against                                                                                                                                                                 |
| 1994         | climate change continues on many fronts. While prominent environmentalists and politicians often cla<br>the limelight, behind the scenes, countless unsung heroes have dedicated their lives to combating                                                         |
| 1995         | climate change. This article aims to spotlight the work of these individuals.                                                                                                                                                                                     |
| 1996         | At the forefront is M. Jones, a marine biologist who has developed an innovative method for promoting                                                                                                                                                             |
| 1997<br>1998 | coral reef growth. Given that coral reefs act as carbon sinks, absorbing and storing CO2 from the atmosphere, M. Jones's work has significant implications for climate mitigation. Despite facing numerous                                                        |
| 1999         | hurdles, M. Jones has consistently pushed forward, driven by an unwavering commitment to oceanic health.                                                                                                                                                          |
| 2000         |                                                                                                                                                                                                                                                                   |
| 2001         | Next, we turn to M. Martinez, a climate economist from a small town who has successfully devised a market-based solution to curb industrial carbon emissions. By developing a novel carbon pricing model. M                                                       |
| 2002         | Martinez has enabled a tangible shift toward greener industrial practices. The model has been adopted                                                                                                                                                             |
| 2003         | in several countries, resulting in significant reductions in CO2 emissions. Yet, despite these successes,<br>M. Martinez's work often flies under the mainstream media radar.                                                                                     |
| 2004         |                                                                                                                                                                                                                                                                   |
| 2005         | Another unsung hero in the climate change battle is M. Perez, a young agricultural scientist pioneering<br>a line of genetically modified crops that can thrive in drought conditions. With changing rainfall                                                     |
| 2006         | patterns threatening food security worldwide, M. Perez's work is of immense global relevance. However,                                                                                                                                                            |
| 2007         | due to controversy surrounding genetically modified organisms, the contributions of scientists like M. Perez often go unnoticed.                                                                                                                                  |
| 2008         |                                                                                                                                                                                                                                                                   |
| 2009         | Additionally, the story of M. Thomas is worth mentioning. An urban planner by profession, M. Thomas has<br>been instrumental in designing green cities with a minimal carbon footprint. By integrating renewable                                                  |
| 2010<br>2011 | energy sources, promoting public transportation, and creating more green spaces, M. Thomas has redefined<br>urban living. While the aesthetics of these cities often capture public attention, the visionary behind<br>them M. Thomas, remains relatively unknown |
| 2012         | chem, h. inomao, femarno fefacivery unknown.                                                                                                                                                                                                                      |
| 2013         | Lastly, we have M. Harris, a grassroots activist working tirelessly to protect and restore the forests                                                                                                                                                            |
| 2014         | extensive tree-planting initiatives. While large-scale afforestation projects often get global                                                                                                                                                                    |
| 2015         | recognition, the efforts of community-level heroes like M. Harris remain largely unsung.                                                                                                                                                                          |
| 2016         | The fight against climate change is not a single battle, but a war waged on multiple fronts. Every                                                                                                                                                                |
| 2017         | victory counts, no matter how small. So, as we continue this struggle, let's not forget to appreciate<br>and honor the unsung heroes like M. Jones, M. Martinez, M. Perez, M. Thomas, and M. Harris who, away                                                     |
| 2018         | from the spotlight, are making a world of difference.                                                                                                                                                                                                             |
| 2019         | L                                                                                                                                                                                                                                                                 |
| 2020         | Dequest                                                                                                                                                                                                                                                           |
| 2021         | κτιμτοι                                                                                                                                                                                                                                                           |
| 2022         | French:                                                                                                                                                                                                                                                           |
| 2023         | []                                                                                                                                                                                                                                                                |
| 2024         | En integrant des sources d'énergie renouvelables, en favorisant les transports publics et en créant plus d'espaces verts. M.                                                                                                                                      |
| 2025         |                                                                                                                                                                                                                                                                   |

Figure 27: Example prompt for the translation task.

| 2035 |                            |
|------|----------------------------|
| 2036 |                            |
| 2037 |                            |
| 2038 |                            |
| 2039 |                            |
| 2040 | Contoxt                    |
| 2041 | Context                    |
| 2042 | < endoftext >wFCJI:CCwti   |
| 2043 | axRPX:ISNak<br>JaVZO:jiVAE |
| 2044 | vGuLv:aqCuW                |
| 2045 | gLbzR:URzLs                |
| 2046 | XPUgR:QDKMS                |
| 2047 | GpqLd:YRodj                |
| 2048 | fhVqk:jjVAE<br>axRPX:ISNak |
| 2049 | gLbzR:URzLs                |
| 2049 | GpqLd:YRodj                |
| 2050 | fhVqk:jjVAE                |
| 2051 | XPUgR:QDKMS                |
| 2052 | peaXt:uqIWZ<br>ThKIs:YBodi |
| 2053 | JaVZO:jjVAE                |
| 2054 | axRPX:ISNak<br>XPUgR:QDKMS |
| 2055 | wFCJI:CCwti                |
| 2056 | gLbzR:URzLs                |
| 2057 | peaXt:uqIWZ                |
| 2058 | JaVZO:jjVAE                |
| 2059 | GpqLd:YRodj<br>fhVqk:jjVAE |
| 2060 | wFCJI:CCwti<br>GpgLd:YRodi |
| 2061 | peaXt:uqIWZ                |
| 2062 | XPUgR:QDKMS                |
| 2063 | axRPX:ISNak<br>JaVZO:jjVAE |
| 2064 | IbKIs:YRodj                |
| 2065 | vGuLv:aqCuW                |
| 2066 | peaXt:uqIWZ<br>XPUgR:ODKMS |
| 2067 | wFCJI:CCwti                |
| 2068 | IbKIs:YRodj                |
| 2069 | fhVqk:jjVAE<br>qLbzR:URzLs |
| 2070 | axRPX:ISNak                |
| 2071 | vGuLv:aqCuW                |
| 2072 | gLbzR:URzLs                |
| 2073 | GpqLd:YRodj                |
| 2073 | GpqLd:YRodj                |
| 2074 | fhVqk:jjVAE<br>GpgLd:YRodj |
| 2075 | XPUgR:QDKMS                |
| 2070 | peaxt:uqiwz                |
| 2077 |                            |
| 2078 | Doguost                    |

#### Request

wFCJI:

Figure 28: Example prompt for the induction task.