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A PROOFS OF THEOREM 2.1 AND THEOREM 2.2

A.1 PRELIMINARIES

FedTrans integrates two client utility estimation strategies: weight-based estimation and
performance-based estimation. We formulate a Bayesian framework shown in Figure 3, wherein
the parameters are estimated by employing the maximum likelihood estimate (MLE) approach. We
first briefly introduce MLE under latent variables settings, and from that derive the parameter esti-
mate rules for our framework. The general MLE problem is formulated as follows:

ϕ∗
MLE = argmax

ϕ∈Φ
p(O;ϕ), (17)

where ϕ are the parameters of the probabilistic model and O are a set of observations.

When it is infeasible to directly model the likelihood function p(O;ϕ) (as in our problem), we
introduce latent variables L to connect the observations to unknown parameters. In this way, the
likelihood function is transformed into

p(O;ϕ) =

∫
p(O,L;ϕ)dL. (18)

The expectation maximization (EM) algorithm is employed for MLE with latent variables. The algo-
rithm iteratively updates the elements in the likelihood function. Specifically, the E-step iteratively
optimizes the latent variables L, and the M-step iteratively optimizes the parameters ϕ.

For the problem in this paper, the observations refer to the round reputation matrix R conditioned
on the weight parameters of top-layer X; the latent variables are r and s; and the parameters are
{Wd, A,B}, hereafter denoted as P . A detailed expression of the likelihood function is as follows:

p(R|X;P) =
∏
i

∏
j

p(Ri,j |xj ;P)

=
∏
i

∏
j

∫
ri,sj

p(Ri,j , ri, sj |xj ;P)dri, sj

=

∫
p(R, r, s|X;Wd)dr, s.

(19)

We first decompose the likelihood function in Equation 6 into two terms as shown in Equation 7
of Section 2.2. We then employ variational EM to optimize variables in the Bayesian framework,
wherein the E-step and M-step are designed to iteratively update the variables related to both the
two modules. The reason for choosing the variational EM instead of the closed-form EM will also
be discussed in the following section.

After applying the logarithm on Equation 19, we get

log p(R|X;P) = log

∏
i

∏
j

∫
ri,sj

p(Ri,j , ri, sj |xj ;P)dri, sj


=
∑
i

∑
j

log

(∫
ri,sj

p(Ri,j , ri, sj |xj ;P)dri, sj

)

=
∑
i

∑
j

log

(∫
ri,sj

q(ri, sj)
p(Ri,j , ri, sj |xj ;P)

q(ri, sj)
dri, sj

)
,

(20)

where the approximation term q(ri, sj) can be any probability density function.
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According to Jensen’s Inequality, we have described the entire process of

log

(∫
ri,sj

q(ri, sj)
p(Ri,j , ri, sj |xj ;P)

q(ri, sj)
dri, sj

)

= log

(
E
[
p(Ri,j , ri, sj |xj ;P)

q(ri, sj)

])
≥ E

[
log

(
p(Ri,j , ri, sj |xj ;P)

q(ri, sj)

)]
=

∫
ri,sj

q(ri, sj) log

(
p(Ri,j , ri, sj |xj ;P)

q(ri, sj)

)
dri, sj .

(21)

Therefore, we have

log p(R|X;P) ≥
∑
i

∑
j

∫
ri,sj

q(ri, sj) log

(
p(Ri,j , ri, sj |xj ;P)

q(ri, sj)

)
dri, sj . (22)

The difference between the two sides of the inequality is

∆ = log p(R|X;P)−
∑
i

∑
j

∫
ri,sj

q(ri, sj) log

(
p(Ri,j , ri, sj |xj ;P)

q(ri, sj)

)
dri, sj

= log(
∏
i

∏
j

p(Ri,j |xj ;P))−
∑
i

∑
j

∫
ri,sj

q(ri, sj) log

(
p(Ri,j , ri, sj |xj ;P)

q(ri, sj)

)
dri, sj

=
∑
i

∑
j

log(p(Ri,j |xj ;P))−
∑
i

∑
j

∫
ri,sj

q(ri, sj) log

(
p(Ri,j , ri, sj |xj ;P)

q(ri, sj)

)
dri, sj

=
∑
i

∑
j

∫
ri,sj

[
q(ri, sj) log (p(Ri,j |xj ;P))− q(ri, sj) log

(
p(Ri,j , ri, sj |xj ;P)

q(ri, sj)

)]
dri, sj

=
∑
i

∑
j

∫
ri,sj

q(ri, sj) log

(
p(Ri,j |xj ;P)q(ri, sj)
p(Ri,j , ri, sj |xj ;P)

)
dri, sj

=
∑
i

∑
j

∫
ri,sj

q(ri, sj) log

(
p(Ri,j |xj ;P)q(ri, sj)

p(ri, sj |Ri,j , xj ;P)p(Ri,j |xj ;P))

)
dri, sj

=
∑
i

∑
j

∫
ri,sj

q(ri, sj) log

(
q(ri, sj)

p(ri, sj |Ri,j , xj ;P))

)
dri, sj

=
∑
i

∑
j

KL(q||p(ri, sj |Ri,j , xj ;P)). (23)

The gap ∆ refers to the first term in Equation 7, which we need to minimize in the E-step. However,
the closed-form EM updates do not work in the case of discrete-continuous variables. We develop
a mean field variational inference, following the idea of approximating the posterior distribution of
latent variables p(ri, sj |Ri,j , xj ;P) with the variational distribution q(r, s) =

∏
i

∏
j q(ri, sj).

In the mean-field approach, we assume that

q(r, s) = q(r)q(s) =
∏
i

q(ri)
∏
j

q(si), (24)

where q(ri) = Beta(αi, βi) (i.e., Equation 9) and q(sj) = Ber(θj) (i.e., Equation 10).

Next, we will derive the update rule of q(s) and q(r) corresponding to Theorem 2.1 and Theorem 2.2

A.2 PROOF OF THEOREM 2.1

For q(s), we have
q(s) ∝ exp{Eq(ri)[log(p(r, s,R,X;P))]}. (25)
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For the j-th client, there is a set of rounds Ij involving the j-th client. In other words, Ri,j is not
blank for i ∈ Ij . Equation 25 is formulated as

q(sj) ∝ exp{Eq(ri)[log(
∏
i∈Ij

p(ri, sj ,Ri,j , xj ;P))]}

∝ exp{Eq(ri)[
∑
i∈Ij

log(p(ri, sj ,Ri,j , xj ;P))]}

∝ exp{
∑
i∈Ij

Eq(ri)[log(p(ri, sj ,Ri,j , xj ;P))]}

∝
∏
i∈Ij

exp{Eq(ri)[log(p(ri, sj ,Ri,j , xj ;P))]}.

(26)

After applying the chain rule on p(ri, sj ,Ri,j , xj ;P), we can get

p(ri, sj ,Ri,j , xj ;P) = p(ri|xj ;P)× p(sj |ri, xj ;P)× p(Ri,j |sj , ri, xj ;P)
= p(ri)× p(sj |xj ;P)× p(Ri,j |ri, sj).

(27)

This is because sj only depends on xj and P , and Ri,j does not depend on xj and P given sj and
ri.

Substituting Equation 27 into Equation 26, we have

q(sj) ∝
∏
i∈Ij

exp{Eq(ri)[log(p(ri)× p(sj |xj ;P)× p(Ri,j |ri, sj))]}

∝
∏
i∈Ij

exp{Eq(ri)[log(p(ri)] + Eq(ri)[log(p(sj |xj ;P))] + Eq(ri)[log(p(Ri,j |ri, sj))]}.

(28)

We remove the irrelevant term related to q(sj), i.e., Eq(ri)[log(p(ri)], then we get

q(sj) ∝
∏
i∈Ij

exp{Eq(ri)[log(p(sj |xj ;P))] + Eq(ri)[log(p(Ri,j |ri, sj))]}

∝
∏
i∈Ij

exp{Eq(ri)[log(p(sj |xj ;P))]} × exp{Eq(ri)[log(p(Ri,j |ri, sj))]}.
(29)

Since log(p(sj |xj ;P)) dose not contain the variable q(ri), we have

exp{Eq(ri)[log(p(sj |xj ;P))]} = exp{log(p(sj |xj ;P))} = p(sj |xj ;P). (30)

Substituting Equation 30 into Equation 29, we have

q(sj) ∝
∏
i∈Ij

p(sj |xj ;P)× exp{Eq(ri)[log(p(Ri,j |ri, sj))]}

∝ p(sj |xj ;P)
∏
i∈Ij

exp{Eq(ri)[log(p(Ri,j |ri, sj))]}.
(31)

Equation 31 is equivalent to Equation 11 of Section 2.2 when we define Eq(ri)[log(·)] = gq(ri)(·).

Based on Equation 31, we now derive the update rule of q(sj) given the variational parameters θj ,
αi, and βi from last iteration. We first show the proof for sj = 1; the proof for sj = 0 follows
similarly.

Equations 2 and 3 of Section 2.1 parameterize the latent variable sj with the utility θj : the selection
sj of j-th client follows a Bernoulli distribution parameterized by client utility θj that is the output
of a machine learning model fWd(·) with input topmost layer xj in the j-th local model. We have

p(sj = 1|xj ;P) = θj . (32)
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In Equation 5, we connect the round informativeness ri and client selection sj under the assumption
that rounds with higher informativeness have more entries Ri,j satisfying actual client utility, which
can be formulated to

p(Ri,j |ri, sj) = ri
(1−|sj−Ri,j |) × (1− ri)

|sj−Ri,j |. (33)

In the case when sj = 1, Equation 33 is equivalent to

p(Ri,j |ri, sj) =
{
1− ri (Ri,j = 0)

ri (Ri,j = 1).
(34)

After substituting the probabilities p(sj |xj ;P) and p(Ri,j |ri, sj) into Equation 31, we get

q(sj = 1) ∝
{
θj
∏

i∈Ij exp{gq(ri)(1− ri)} (Ri,j = 0)

θj
∏

i∈Ij exp{gq(ri)ri} (Ri,j = 1).
(35)

By computing the geometric mean of the beta distribution, we can evaluate the expectations gx(·) as
follows:

gq(ri)(1− ri) = Ψ(βi)−Ψ(αi + βi), (36)

gq(ri)ri = Ψ(αi)−Ψ(αi + βi). (37)

Substituting Equations 36 and 37 into Equation 35, we can obtain the update rule of q(sj = 1), as
given in Equation 13 of Section 2.2 as well as shown below:

q(sj = 1) ∝
{
θj
∏

i∈Ij exp{Ψ(βi)−Ψ(αi + βi)} (Ri,j = 0)

θj
∏

i∈Ij exp{Ψ(αi)−Ψ(αi + βi)} (Ri,j = 1).

Similarly, for sj = 0, we have
p(sj = 0|xj ;P) = 1− θj , (38)

and

p(Ri,j |ri, sj) =
{
ri (Ri,j = 0)

1− ri (Ri,j = 1).
(39)

Equation 31 is then equivalent to

q(sj = 0) ∝
{
(1− θj)

∏
i∈Ij exp{gq(ri)ri} (Ri,j = 0)

(1− θj)
∏

i∈Ij exp{gq(ri)(1− ri)} (Ri,j = 1).
(40)

Again, substituting Equation 36 and 37 into Equation 40, we can obtain the update rule of q(sj = 0)
as Equation 14 of Section 2.2:

q(sj = 0) ∝
{
(1− θj)

∏
i∈Ij exp{Ψ(αi)−Ψ(αi + βi)} (Ri,j = 0)

(1− θj)
∏

i∈Ij exp{Ψ(βi)−Ψ(αi + βi)} (Ri,j = 1).

We now conclude the proof of Theorem 2.1.

A.3 PROOF OF THEOREM 2.2

For q(r), we have
q(r) ∝ exp{Eq(sj)[log (p(r, s,R,X;P))]}. (41)

In the i-th round, there is a set of participating clients J i corresponding to entries in the i-th row of
matrix R. Equation 41 is formulated as

q(ri) ∝ exp{Eq(sj)[log(
∏
j∈J i

p(ri, sj ,Ri,j , xj ;P))]}. (42)
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Following the transformation of q(sj), we can also get a simplified version of Equation 42, similar
to Equation 31:

q(ri) ∝ p(ri)
∏
j∈J i

exp{Eq(sj)[log(p(Ri,j |ri, sj))]} (43)

Since q(sj) = Ber(θj), we have

Eq(sj)[log(p(Ri,j |ri, sj))] =
∑
sj

q(sj) log(p(Ri,j |ri, sj))

= q(sj = 0)× log(p(Ri,j |ri, sj)) + q(sj = 1)× log(p(Ri,j |ri, sj))
= (1− θj)× log(p(Ri,j |ri, sj)) + θj × log(p(Ri,j |ri, sj))
def
= Eθj [log(p(Ri,j |ri, sj))].

(44)

Therefore, Equation 43 is finally transformed into

q(ri) ∝ p(ri)
∏
j∈J i

exp{Eθj [log(p(Ri,j |ri, sj))]}. (45)

Equation 45 is equivalent to Equation 12 of Section 2.2 when we define Eθj [log(·)] = gθ′ (·).
Based on Equation 45, we now derive the update rule of q(ri) given the variational parameters θj ,
αi, and βi from last iteration.

We replace the probability p(ri) in Equation 45 by the Beta distribution with parameters αi and βi

from the previous iteration:

q(ri) ∝ Beta(αi, βi)
∏
j∈J i

exp{Eθj [log(p(Ri,j |ri, sj))]}. (46)

According to Equation 33, the exp{Eθj [log(p(Ri,j |ri, sj))]} in Equation 46 can be reformulated to

exp{Eθj [log(p(Ri,j |ri, sj))]}
= exp{Eθj [log(ri

(1−|sj−Ri,j |) × (1− ri)
|sj−Ri,j |)]}

= exp{(1− θj)× log(ri
(1−|Ri,j |) × (1− ri)

|Ri,j |) + θj × log(ri
(1−|1−Ri,j |) × (1− ri)

|1−Ri,j |)}
= exp{(1− θj)× log(ri

(1−Ri,j) × (1− ri)
Ri,j ) + θj × log(ri

(Ri,j) × (1− ri)
(1−Ri,j))}

= exp{(1− θj)× log(ri
(1−Ri,j) × (1− ri)

Ri,j )} × exp{θj × log(ri
(Ri,j) × (1− ri)

(1−Ri,j))}
= (ri

(1−Ri,j) × (1− ri)
Ri,j )(1−θj) × (ri

Ri,j × (1− ri)
(1−Ri,j))θj

= ri
(1+2Ri,jθj−θj−Ri,j)(1− ri)

(Ri,j−2Ri,jθj+θj).
(47)

Therefore, the expectation term in Equation 46 can be evaluated as follows:

exp{Eθj [log(p(Ri,j |ri, sj))]} =

{
ri

(1−θj)(1− ri)
θj (Ri,j = 0)

ri
θj (1− ri)

(1−θj) (Ri,j = 1).
(48)

In the case when Ri,j = 1, Equation 46 is equivalent to :

q(ri) ∝ Beta(αi, βi)
∏
j∈J i

ri
θj(1−ri)

(1−θj)

. (49)

The probability density function of ri’s distribution is given by:

Beta(αi, βi) ∝ ri
(αi−1)(1− ri)

(βi−1)
. (50)
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Substituting Equation 50 into Equation 49, we get

q(ri) ∝ ri
(αi−1)(1− ri)

(βi−1)
∏
j∈J i

ri
θj (1− ri)

(1−θj)

∝
∏
j∈J i

ri
(αi−1)(1− ri)

(βi−1)
ri

θj (1− ri)
(1−θj)

∝
∏
j∈J i

ri
(αi+θj−1)(1− ri)

(βi+(1−θj)−1)

∝ ri
(αi+

∑
j∈J i θj−1)(1− ri)

(βi+
∑

j∈J i (1−θj)−1)

∝ Beta

αi +
∑
j∈J i

θj , βi +
∑
j∈J i

(1− θj)

 .

(51)

Similarly, for Ri,j = 0, we have

q(ri) ∝ Beta(αi, βi)
∏
j∈J i

ri
(1−θj)(1− ri)

θj . (52)

Again, substituting Equation 50 into Equation 52, we complete the proof of Theorem 2.2 as follows:

q(ri) ∝ ri
(αi−1)(1− ri)

(βi−1)
∏
j∈J i

ri
(1−θj)(1− ri)

θj

∝
∏
j∈J i

ri
(αi−1)(1− ri)

(βi−1)
ri

(1−θj)(1− ri)
θj

∝
∏
j∈J i

ri
(αi+(1−θj)−1)(1− ri)

(βi+θj−1)

∝ ri
(αi+

∑
j∈J i (1−θj)−1)(1− ri)

(βi+
∑

j∈J i θj−1)

∝ Beta

αi +
∑
j∈J i

(1− θj), βi +
∑
j∈J i

θj

 .

(53)

B CONVERGENCE ANALYSIS

B.1 PRELIMINARIES

Before the convergence analysis on FedTrans, we first provide a detailed formulation of the local
training and global aggregation in FedTrans with selective client participation.

In the i-th communication round, the cloud server randomly selects a set of participating clients J i.
Each client j ∈ J i performs the stochastic gradient descent (SGD) on the local data instances:

L(fWτ,j

j , ξjτ ) =
1

|ξjτ |

∑
x∈ξjτ

l(f
Wτ,j

j ;x), (54)

Ŵτ+1,j =Wτ,j − ητ∇L(f
Wτ,j

j , ξjτ ), (55)

where τ indexes the local SGD step on the objective L(·) regarding the loss function l(·) (e.g.,
cross-entropy loss). ξjτ is a batch of samples randomly selected from local data Dj at step τ . Client

updates local model to f
Ŵτ+1,j

j after one-step gradient descent with the learning rate ητ . Suppose
that client reports the model updates every E ∈ Z+ steps, and we have the update rule

Wτ+1,j =

{
Ŵτ+1,j , τ + 1 ̸= iE∑

j∈J i pjŴτ+1,j , τ + 1 = iE.
(56)
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We define the local updates of client j offloading to the cloud server in round i as

W∗
i,j ≜ ŴiE,j . (57)

Under the guidance of client utility estimated by FedTrans, the server aggregates a subset of updates
from clients Ĵ i ⊆ J i for the global model

W̄∗
i ≜

∑
j∈Ĵ i

p̂jW∗
i,j =

∑
j∈Ĵ i

p̂jŴiE,j . (58)

In the following section, we simplify the objective function as Lj(W, ξ) = L(fW
j , ξ) and gradients

as gj(W, ξ) = ∇Lj(W, ξ) for a more concise expression. Specifically, Lj(W) = L(fW
j ,Dj) and

gj(W) = ∇Lj(W).

B.2 CONVERGENCE GUARANTEE

A rigorous convergence analysis of FedTrans is non-trivial since the tendentious selection of clients
with high utility compared with random client selection (e.g., FedAvg). Borrowing from the theo-
retical analysis in (Cho et al., 2022) that considers the effect of biased client participation on con-
vergence, we can provide the convergence guarantee of FedTrans under assumptions

Assumption 1 L1, · · · ,L|J | are all L-smooth, i.e., for allW andW ′,

Lj(W) ≤ Lj(W ′) + ⟨∇Lj(W ′),W −W ′⟩+ L

2
∥W −W ′∥22. (59)

Assumption 2 LD1
, · · · ,LD|J | are all µ-strongly convex, i.e., for allW andW ′,

Lj(W) ≥ Lj(W ′) + ⟨∇Lj(W ′),W −W ′⟩+ µ

2
∥W −W ′∥22. (60)

Assumption 3 For mini-batch ξjτ uniformly sampled at random from local data of j-th clientDj , the
resulting stochastic gradient is unbiased, that is, E[gj(Wτ,j , ξ

j
τ )] = gj(Wτ,j). Also, the variance of

the stochastic gradient is bounded, i.e., for all j = 1, · · · , |J | and ∀τ ,

E[∥gj(Wτ,j , ξ
j
τ )− gj(Wτ,j)∥2] ≤ σ2. (61)

Assumption 4 The stochastic gradient’s expected squared norm is uniformly bounded, i.e., for all
j = 1, · · · , |J | and ∀τ ,

E[∥gj(Wτ,j , ξ
j
τ )∥2] ≤ G2. (62)

In line with (Cho et al., 2022), we then define two metrics: local-global objective gap and selection
skew. The local-global objective gap is formulated as

Γ ≜
|J |∑
j

pj(Lj(W̄∗)− Lj(W∗
j )), (63)

where pj refers to the fraction of data at j-th client to the overall data volume. The W̄∗ andW∗
j are

the optimal weight parameters of the global objective L(·) and local objective Lj(·) respectively. To
be more specific,

W∗
j = argmin

W
Lj(W), (64)

W̄∗ = argmin
W

L(W) = argmin
W

|J |∑
j

pjLj(W). (65)

Further, we denote L∗
j = Lj(W∗

j ) and L∗ = L(W̄∗).
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The selection skew is formulated as

ρ(S(π,W),W ′) =
ES(π,W)[

1
m

∑
j∈S(π,W)(Lj(W ′)− L∗

j )]

L(W ′)−
∑|J |

j pjL∗
j

(66)

where S(π,W) is a set of selected m clients given selection strategy π according to weight param-
eters W , and W ′ is the observing point where we evaluate the local objective Lj(W ′) and global
objective L(W ′).

We then define two related metrics

ρ̄ ≜ min
W,W′

ρ(S(π,W),W ′), (67)

ρ̃ ≜ max
W

ρ(S(π,W),W∗). (68)

Under the above-mentioned three assumptions, for learning rate ηt =
1

µ(t+γ) and γ = 4L
µ , we have

the convergence with any selection strategy π after T local steps as

E[L(W̄∗
T )]−L∗ ⩽

1

T + Γ
[
4L(32τ2G2 + σ2/m)

3µ2ρ̄
+
8L2Γ

µ2
+
Lγ∥W̄∗

0 − W̄∗∥2

2
]+

8LΓ

3µ
(
ρ̃

ρ̄
−1) (69)

where T is the local SGD interactions, and G is the upper bound of the stochastic gradient’s expected
squared norm in assumption (3).

Similarly, for a fixed learning rate η ⩽ min{ 1
2µB , 1

4L} where is B = 1 + 3ρ̄
8 , we have the conver-

gence with any selection strategy π as

E[L(W̄∗
T )]− L∗ ⩽

4Lη(32τ2G2 + σ2

m ) + 6ρ̄LΓ)

µ(8 + 3ρ̄)
+

8LΓ(ρ̃− ρ̄)

µ(8 + 3ρ̄)

+
L

µ

(
1− ηµ(1 +

3ρ̄

8
)

)T
L(W̄∗

0 )− L∗ −
4
(
η(32τ2G2 + σ2

m + 6ρ̄LΓ) + 2Γ(ρ̃− ρ̄)
)

8 + 3ρ̄

 .

(70)

For a small η, both fixed-learning rate case and decaying-learning rate case have the same upper
bound by 8LΓ

3µ ( ρ̃ρ̄ − 1).

In FedTrans, the selection strategy πutil chooses clients Ĵ i ⊆ J i from the participating clients
based on the estimated utilities. Therefore, in Equation 66, S(π,W) = Ĵ i and m = |Ĵ i|,∀i ∈ I.
According to the analysis in (Cho et al., 2022), a larger selection skew ρ results in faster convergence.
We provide the lower bound of convergence rate at O( 1

T ρ̄ ) where T denotes the accumulated local
SGD steps, since ρ̄ calculates the minimum of the selection skew, as shown in Equation 67. In
practice, the varying weights parameters of the global model W̄∗

i and the local modelW∗
i,j cause the

selection skew ρ(S(π, W̄∗
i ),W∗

i,j) to change with the FL proceeding while maintaining convergence
rate of at least of ρ̄.

C MORE EXPERIMENTAL DETAILS

Implementation Details. The parameters of variational utility inference and those for discriminator
fWd training are empirically set. We adopt fWd with Multi-Layer Perception (MLP) having 2
hidden layers of 128 and 64 dimensions respectively. In discriminator training, we select the learning
rate as 1e− 3, and we set the priors A and B by sampling from a uniform distribution ∼ [0, 10] and
update them in E-step according to Theorem 2.1 and Theorem 2.2.
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Comparison Methods. We implement all the comparison methods in Python and the neural net-
works with PyTorch, running on an NVIDIA 2080Ti GPU. In local training, local epochs are set to
5 and the learning rate is 1e− 2. We use SGD with momentum factor = 0.9 as the local optimizer.

To evaluate the resilience of FedTrans to data noise, we compare it with SOTA baselines.
RHFL (Fang & Ye, 2022) considers symmetrically using cross-entropy loss and reverse cross-
entropy loss to ameliorate the negative effect of internal local model noise. Robust-FL (Yang et al.,
2022b) copes with the noisy federated setting by interchanging additional information called class-
wise centroids. FLDebugger (Li et al., 2021) utilizes the 2-norm distance between local weight
parameters and global weight parameters to distinguish noisy clients. FedCorr (Xu et al., 2022)
calculates the average Local Intrinsic Dimension (LID) of local prediction vectors for each client.
The server applies a Gaussian Mixture Model on received LID scores to partition involved clients
into two subsets: noisy clients and clean clients. As a client selection method, Oort (Lai et al., 2021)
achieves enhanced time-to-accuracy by constructing both statistical utility and system utility for
clients. DivFL (Balakrishnan et al., 2022) selects a subset of clients whose weight updates closely
mimic the information gained from aggregating updates across all clients, to improve learning ef-
ficiency. Note that FLDebugger and FedCorr are sample-wise noisy correction methods where we
partially compare two baselines with regard to the identification of noisy clients. We implement the
component about data utility in Oort for comparison.

Observation details. Figure 1 illustrates the negative impact of noisy clients under two different
local data distributions, emphasizing more severe degradation in global model performance when
local data is non-IID across clients. For the completeness of experiments, we also explore the per-
formance of the global model varying with learning rates other than 10−2 in Figure 1. Compared
with results in Figure 9, under both IID and non-IID settings, the global model achieves the best
performance when the learning rate is 10−2 as used in Figure 1. Furthermore, we observe a more
pronounced degradation of the model performance introduced by data noise in non-IID data com-
pared to IID data across all learning rates ranging from 10−1 to 10−4, which necessitates inferring
client utility in more realistic non-IID scenarios.

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

iid w/o noise
iid w/ noise

non-iid w/o noise
non-iid w/ noise

Gl
ob

al
 M

od
el

 L
os

s

0 25 50 75 100 125 150 175 200
Round

(a) Learning rate = 10−1

0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

iid w/o noise
iid w/ noise

non-iid w/o noise
non-iid w/ noise

Gl
ob

al
 M

od
el

 L
os

s

0 25 50 75 100 125 150 175 200
Round

(b) Learning rate = 10−3

0 25 50 75 100 125 150 175 200
Round

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

Gl
ob

al
 M

od
el

 L
os

s

iid w/o noise
iid w/ noise

non-iid w/o noise
non-iid w/ noise

(c) Learning rate = 10−4

Figure 9: Global model performance of FL with noisy clients (in Hybrid (across-) local noise). We
consider two data distributions and three different learning rates.

0 25 50 75 100 125 150
Round

0.6

0.7

0.8

0.9

1.0

Re
ca

ll

(a) Recall

0 25 50 75 100 125 150
Round

0.60

0.70

0.80

0.90

No
isy

 c
lie

nt
 d

et
ec

tin
g 

ra
te

(b) Noisy client detecting rate

0 25 50 75 100 125 150
Round

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

(c) Accuracy

Figure 10: The client selection performance in the presence of ϵ = 30% noisy clients.

Client selection performance. In the experiments, we adopt a threshold-based selection strategy,
excluding the updates of the clients with the utility θ below 0.5 from the global model aggregation.
As shown in Figure 10, we evaluate the client selection performance in the setting where ϵ = 30%
clients corrupted by Hybrid (across-) noise. We observe the high recall performance, stabilizing at
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approximately 99% after 50 communication rounds. It indicates FedTrans’s effective recognition of
clean (positive) clients on the server side. The success rate of detecting noisy clients (true negative
rate) reaches an average of 85% as the rounds progress. Furthermore, the overall accuracy of client
selection according to the utilities estimated by FedTrans is around 95%, given that the clean clients
are the majority participants (at approximately 70%) in each communication round.
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Figure 11: The correlation be-
tween estimated client utility and
its actual local noise rate varies
with the communication rounds.

Correlation between utility and noise rate. As inferring
client utility is the main focus of this paper, we investigate the
performance of utility estimation by FedTrans across commu-
nication rounds. In contrast to evaluating the success rate of
detecting noisy clients, our assessment measures the strength
of the monotonic relationship between estimated utility and
actual local noise. Disregarding the specific selection strat-
egy (e.g., the threshold-based method) according to client util-
ities, we employ Spearman’s rank-order correlation coefficient
(PROCC) to quantify the statistical dependence between two
variables (i.e., θj and local noise rate). As shown in Figure 11,
the utility exhibits a negative relationship with local noise,
and this relationship becomes more significant along with FL
progress. This observation indicates that utility estimation be-
comes more accurate and aligned with the client noise degree,
primarily attributed to the incremental updates on the discriminator fWd across communication
rounds.

D TRANSPARENT CLIENT UTILITY ESTIMATION IN FEDERATED LEARNING

Here, we provide the pseudo-code of the overall FL process with FedTrans as a general algorithmic
framework (see Algorithm 2). In each round, local models in participating clients are first updated as
in standard FL settings (rows 3-6). The server then updates the round-reputation matrix and infers
client utility (row 8-11) by calling the variational utility inference algorithm (see Algorithm 1). After
that, it can perform an arbitrary client selection strategy guided by estimated client utility (row 12-
14). It finally obtains the global model by aggregating the weight parameters from selected clients
(row 15). FedTrans, as a module that does not require any additional information from the client,
can be coupled to any existing aggregation and local training schemes.

Algorithm 2 Federated Learning with FedTrans
1: Require: A set of clients with self-contained data: C; Server auxiliary dataset: Da; Client

selection rate: γ.
2: for each round i = 1, 2, · · · , N do
3: J i ← randomly select max(|C| × γ, 1) clients from C
4: for j ∈ J i in parallel do ▷ Local Training
5: W∗

i,j ←ClientUpdate (Cj , W̄∗
i−1)

6: end for
7: Server Executes FedTrans:
8: Ri ←MatrixUpdate ({W∗

i,j}j∈J i ,Ri−1,Da)
9: Wd ←VariationalInference ({W∗

i,j}j∈J i , W̄∗
i−1,Ri) ▷ Utility Estimation

10: {xj}j∈J i ← top-layer of {W∗
i,j}j∈J i

11: {θj}j∈J i ← fWd({xj}j∈J i)

12: for j ∈ J i do
13: sj ← client selection guided by θj ▷ Client Selection
14: end for
15: W̄∗

i ←Aggregation ({W∗
i,j}j∈J i , {sj}j∈J i ) ▷ Server Aggregation

16: end for
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E TIME CONSUMPTION

Although the FedTrans is running on the server with relatively rich computing resources, this in-
evitably incurs extra training time overheads. We present a detailed time consumption analysis un-
der noisy clients (i.e., Hybrid (cross-)) on the CIFAR10 dataset with distribution Dir(0.5), as shown
in Table 2. Note that FedCorr Xu et al. (2022) requires involving all clients to estimate a set of
noisy clients before Federated Learning (FL) training starts. Therefore, we do not investigate the
per-round time consumption of FedCorr in this context.

Table 2: Time consumption per round or when achieving the target accuracy for each method.

CIFAR-10, MobileNetV2, Dir(0.5)
FedAvg FLDebugger Oort Robust-FL RHFL DivFL FedTrans

Per round (seconds) 113 ± 3 115 ± 2 114 ± 3 129 ± 8 115 ± 3 114 ± 3 173 ± 5
Target accuracy (minutes) 118.7 ± 3.2 280.8 ± 4.9 385.8 ± 10.2 60.9 ± 3.3 63.3 ± 1.7 49.4 ± 0.9 21.7 ± 0.4

In Table 2, we provide the maximum time consumption for a single round of FedTrans and other
baselines across 300 communication rounds of Federated Learning (FL) communication. Addition-
ally, it includes cumulative time consumption when reaching the target accuracy of 63% (i.e., the
maximum accuracy achievable by all methods). The results reveal that, although FedTrans requires
more time for each round compared to the baselines, the overall time consumption to reach the target
accuracy with our proposed FedTrans is the shortest, showing an impressive speedup of more than
56%. This is primarily because FedTrans requires fewer rounds to attain the targeted accuracy.
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Figure 12: The varying optimization overhead in FedTrans across communication round. From left
to right: total optimization time, total EM iterations, and the Discriminator iteration required in
variational inference.

Furthermore, we also explore the optimization overhead of the variational EM algorithm that
changes as FL proceeds. Figure 12 shows the EM optimization time, EM iterations, and Discrim-
inator (i.e., M-step) iterations varying with communication rounds. The overall optimization time
significantly decreases as FL progresses, attributed to the diminishing trend observed in both EM
iterations and discriminator iterations. Moreover, the time cost of training the discriminator takes
a larger proportion of the total optimization time. As a result, the overall optimization time across
communication rounds exhibits a similar trend as the discriminator iterations.

F EVALUATION ON PRACTICAL RESOURCE-CONSTRAINED TESTBED

We also build a testbed consisting of 21 Raspberry Pi 4B embedded devices, as shown in Fig-
ure 13(a), to evaluate the performance of FedTrans in practical resource-constrained scenarios.

HAR Dataset. We conduct the experiments on the Human Activity Recognition (HAR) dataset col-
lected from onboard inertial sensors (accelerometer and gyroscope) for distinguishing six activities
of daily living: walking, walking upstairs/downstairs, sitting, standing, and laying. HAR dataset
shows inherent suitability for the FL scenarios since the data is naturally split by different partici-
pants. To be more specific, HAR contains data collected from 30 different users, and we take 21
users as the training data and augment the number of clients from 21 to 42 by assigning the data
of each user to two clients. We run the FedTrans on a testbed and each Raspberry Pi simulates
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Figure 13: Evaluation of FedTrans on the HAR dataset implemented on resource-constrained de-
vices, across three settings of client flip rate (ϵc = 0.2, 0.3, 0.5). Our built testbed: 21 Raspberry
Pi 4B embedded devices connect to an FL server wirelessly via a TP-Link WiFi Router.

two clients and connects to the laptop wirelessly through a TP-Link WiFi Router. Here, we em-
ploy a shallow CNN with two convolutional layers for the HAR task and only consider the Random
Flipping noise with three different proportions of corrupted clients ranging from 30% to 50%.

Results in Figure 13 show FedTrans can already outperform FedAvg by a margin from the beginning.
We notice that the gap becomes larger when the number of corrupted clients increases. While
FedAvg performance increases when the training proceeds to later rounds, it remains lower than
FedTrans. This shows the advantage of selecting clean clients even though the number of much
fewer than the clients selected by FedAvg.

Energy-to-accuracy. We report the energy consumption (measured by the power meter) when
the global model achieves the same performance (i.e., the best accuracy of FedAvg) utilizing the
CIFAR10 dataset on our testbed shown in Figure 9(a). FedTrans is more energy-efficient even
with the extra overhead at the server: it reduces the energy consumption by up to 66.1%. This is
mainly due to the fewer training rounds required when FL is training with FedTrans: it requires only
52.2%, 79.2%, and 74.1% rounds to reach FedAvg’s best performance for three client noise ratios,
respectively.

G PERFORMANCE ON OTHER DATA DISTRIBUTIONS

IID setting. We conduct experiments under the IID setting using the CIFAR10 and FMNIST dataset,
evaluating the performance of baselines in mixed noise scenarios, The results are presented in Ta-
ble 3 and Table 4. The data reported in the tables is based on five trials.

Table 3: Global model accuracy under six types of noise configurations using CIFAR10 dataset.
Distribution of the local data is followed by IID setting, and ϵ = 30% of participating 100 clients
are corrupted.

CIFAR-10, MobileNetV2, IID
Hybrid (across-) Hybrid (intra-) Label (across-) Label (intra-) Image (across-) Image (intra-)

FedAvg (McMahan et al., 2017) 82.2% ± 0.1% 80.2% ± 0.2% 81.6% ± 0.1% 81.3% ± 0.0% 82.5% ± 0.0% 81.6% ± 0.1%
FLDebugger (Li et al., 2021) 82.1% ± 0.0% 81.5% ± 0.3% 82.0% ± 0.2% 81.4% ± 0.4% 81.9% ± 0.1% 82.2% ± 0.2%
Oort (Lai et al., 2021) 66.7% ± 0.4% 63.4% ± 0.5% 64.7% ± 0.7% 64.8% ± 0.0% 70.2% ± 0.3% 69.2% ± 0.5%
Robust-FL (Yang et al., 2022b) 78.4% ± 0.0% 77.5% ± 0.6% 77.9% ± 0.1% 78.2% ± 0.4% 78.0% ± 0.0% 76.9% ± 0.2%
RHFL (Fang & Ye, 2022) 83.1% ± 0.2% 82.3% ± 0.1% 83.4% ± 0.1% 83.4% ± 0.2% 82.9% ± 0.5% 82.1% ± 0.1%
DivFL (Balakrishnan et al., 2022) 79.4% ± 0.1% 78.4% ± 0.2% 77.5% ± 0.2% 77.6% ± 0.0% 80.1% ± 0.0% 78.7% ± 0.2%
FedCorr (Xu et al., 2022) 79.1% ± 0.0% 79.6% ± 0.1% 78.7% ± 0.1% 78.3% ± 0.1% 79.8% ± 0.3% 78.9% ± 0.2%
FedTrans 83.9% ± 0.3% 83.8% ± 0.1% 84.2% ± 0.2% 84.0% ± 0.0% 84.1% ± 0.1% 83.8% ± 0.2%

Table 4: Global model accuracy under IID setting with varying ratios of the corrupted clients using
FMNIST dataset.

The Ratio of Corrupted Clients
30% 40% 50% 60% 70%

FedAvg w/o noise (McMahan et al., 2017) 91.2% ± 0.0% 91.2% ± 0.0% 91.2% ± 0.0% 91.2% ± 0.0% 91.2% ± 0.0%
FedAvg w/ noise (McMahan et al., 2017) 90.4% ± 0.2% 90.3% ± 0.1% 90.0% ± 0.1% 89.7% ± 0.1% 87.6% ± 0.0%
FedTrans 90.5% ± 0.0% 90.9% ± 0.1% 90.3% ± 0.1% 90.4% ± 0.7% 90.2% ± 0.0%
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Results in these two tables demonstrate that the negative of unreliable clients could be exacerbated
by the complexity of the task. Even with mixed noise, a significant accuracy drop only becomes dis-
cernible when the ratio of corrupted clients surpasses 60% in the relatively straightforward task (i.e.,
FMNIST dataset). FedAvg suffers from significant performance degradation under mixed noise on
the complex task (i.e., CIFAR10 dataset), while FedTrans outperforms other baselines in effectively
mitigating the effects of such complex noise.

H2C setting. We also explored a more severe non-IID experimental setting where each client holds
only two classes of data, denoted as H2C. Table 5 reports the results of the compared methods in
different noise configurations under 30% corrupted clients.

Table 5: Global model accuracy under six types of noise configurations. Distribution of the local
data is followed by H2C setting, and ϵ = 30% of participating 100 clients are corrupted.

CIFAR-10, MobileNetV2, H2C
Hybrid (across-) Hybrid (intra-) Label (across-) Label (intra-) Image (across-) Image (intra-)

FedAvg (McMahan et al., 2017) 43.6% ± 0.1% 37.9% ± 0.3% 43.1% ± 0.3% 40.3% ± 0.5% 43.5% ± 0.2% 44.9% ± 0.5%
FLDebugger (Li et al., 2021) 37.7% ± 0.1% 40.7% ± 0.7% 37.1% ± 0.7% 37.7% ± 0.2% 38.2% ± 0.9% 40.2% ± 1.0%
Oort (Lai et al., 2021) 33.2% ± 0.2% 18.7% ± 0.7% 34.9% ± 0.4% 28.3% ± 0.7% 44.6% ± 0.8% 41.1% ± 0.1%
Robust-FL (Yang et al., 2022b) 44.4% ± 0.4% 36.1% ± 0.3% 44.3% ± 0.3% 43.1% ± 0.4% 46.3% ± 0.5% 43.9% ± 1.0%
RHFL (Fang & Ye, 2022) 43.8% ± 0.5% 36.0% ± 0.8% 46.6% ± 1.1% 43.7% ± 0.8% 44.9% ± 0.8% 43.2% ± 0.3%
DivFL (Balakrishnan et al., 2022) 45.1% ± 0.9% 40.4% ± 0.4% 42.64% ± 0.2% 41.3% ± 0.0% 44.1% ± 0.1% 45.4% ± 0.2%
FedCorr (Xu et al., 2022) 48.0% ± 0.5% 32.1% ± 0.1% 47.7% ± 0.3% 45.0% ± 0.3% 40.1% ± 1.1% 40.4% ± 0.3%
FedTrans 50.0% ± 0.7% 48.4% ± 0.6% 45.3% ± 0.9% 48.8% ± 0.7% 46.6% ± 0.6% 46.4% ± 0.8%

FMNIST, LeNet-5, H2C

FedAvg (McMahan et al., 2017) 76.1% ± 0.1% 75.7% ± 0.1% 76.0% ± 0.5% 75.7% ± 0.6% 76.7% ± 0.2% 76.9% ± 0.2%
FLDebugger (Li et al., 2021) 68.2% ± 0.2% 69.3% ± 0.2% 72.1% ± 0.1% 69.0% ± 0.3% 57.9% ± 0.2% 56.8% ± 0.2%
Oort (Lai et al., 2021) 72.3% ± 0.3% 48.0% ± 0.7% 66.2% ± 0.9% 45.7% ± 0.8% 78.9% ± 0.1% 78.1% ± 0.8%
Robust-FL (Yang et al., 2022b) 79.8% ± 0.2% 79.9% ± 0.0% 79.8% ± 0.8% 78.3% ± 0.2% 79.3% ± 0.3% 80.3% ± 0.4%
RHFL (Fang & Ye, 2022) 80.7% ± 0.1% 81.2% ± 0.2% 80.6% ± 0.2% 80.0% ± 0.3% 80.8% ± 0.2% 80.9% ± 0.2%
DivFL (Balakrishnan et al., 2022) 76.8% ± 0.7% 76.4% ± 0.9% 75.1% ± 0.4% 75.2% ± 0.2% 76.0% ± 0.3% 77.3% ± 0.5%
FedCorr (Xu et al., 2022) 82.1% ± 0.1% 81.7% ± 0.1% 82.2% ± 0.4% 81.3% ± 0.1% 79.3% ± 0.2% 79.3% ± 0.2%
FedTrans 82.4% ± 0.2% 84.2% ± 0.6% 84.3% ± 0.1% 84.7% ± 0.3% 83.5% ± 0.2% 83.2% ± 0.2%
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