473
474
475

476

477
478

479

481
482
483

484
485

486

487
488
489

This document contains supplementary material for the CoRL 2024 submission 393 ”SoloParkour:
Constrained Reinforcement Learning for Visual Locomotion from Privileged Experience”. The code
used in the paper will be released upon publication.

A Experiment Videos

o 1o Bl T

Figure 6: Solo-12 performing agile locomotion skills in diverse indoor and outdoor environments
such as climbing high steps, leaping over gaps, and crawling under obstacles.

The supplementary video contains both indoor and outdoor experiments of the system. Figure 6
illustrates these experiments.

B Implementation Details

B.1 Rewards and Constraints

We use the reward function 3 from [13] that measures progress toward a specific direction. To
always have positive rewards, we add a survival bonus of 0.5 at each time step, and, following [5],
we clip total rewards below 0.0.

To enforce the constraints, we follow CaT [20] and reformulate the constrained RL problem 1 into
the following RL problem:

max B [Z((1 = 0(ser, at’))) (st at)]) ®)
0

t=0 \t'=

with termination probabilities J(s;, a;). Following CaT, we define the termination probabilities as:

a C,
6= Ml 0,1 6
r?eaIX b ¢ lp(szax » Yy)a ()

where ¢;” = max(0, ¢; (s, a)) is the violation of constraint i, ¢ is an exponential moving average

of the maximum constraint violation over the last batch of experience collected in the environment,
and p"* a hyperparameter that controls the maximum termination probability for the constraint i.

14

490
491
492

494
495
496

497

498

499

500
501
502
503
504

505
506

508
509
510
511
512
513
514
515
516

Table 2 lists all the constraints used. Following [20], we separate constraints between hard con-
straints, where pi"™* = 1.0, and soft constraints, where p;"® increases throughout the course of
training, allowing the RL agent to discover agile locomotion during the early stage of training while
enforcing more the constraints later on to ensure safe behaviors. To encourage the emergence of a
specific locomotion style, some constraints are activated only in specific settings. For instance, the
Stand still constraints cgj; are only active when no velocity command is provided, whereas the Sase
orientation and Number of foot contacts are only active on flat terrains and on early terrain levels.

We found that rescaling the constraint violations by the square root function ¢; < y/c; helps CaT
be less sensitive to extreme values of constraint violations.

Type | Expression | Hard | Cond.
Knee or base collision Ckneefbase contact = lknee/base contact v X
Foot contact force Choot contact; = || f©]2 — fim v X
foot foot ;
Foot stumble Cotumble; = || fxy *|l2 — 4|fz 7| X X
. lim

Heading Cheading = |angley,,, — angle,, 4| — angle X X
Torque Ctorque,, = |Tk| — rlim X X

. . . .1‘
Joint velocity Cioint velocity,, = |Gk| — ¢ X X
Joint acceleration Cioint acceleration,, = |G| — ™ X X

. Aqdes- _Aqdej . .
Action rate Caction rate, = W _ quS lim % X
R . Ldu
Joint limits min Coinyin = jOint; ™" — joint; X X
Joint limits max Cjoinmes = joint; — joint;‘-“"lx X X
. . _ d

Foot air time Cair time; = Lgip time — Lair ti?}ej X X
Base orientation (x-axis) Cori = |base orix| — base," X X
Base orientation Cori = ||base oriyy ||, — base"™ X v

_ d
Number of fOOt. contacts Cn foot contacts — ‘nfoot contact — nf:;t comact| X v
Stand still Cgiill = ||q — q*||2 — €gill X v

Table 2: List of constraints, where Hard indicates whether each row corresponds to a hard constraint
and Cond. indicates whether a constraint is active only under certain conditions.

B.2 Policy Learning

We built our RL algorithm with the CleanRL implementations of PPO and DDPG. During privileged
policy learning, we linearly increase the damping parameter (Kd) of the PD controller from 0.05 to
0.2 but keep it fixed at 0.2 during visual policy learning. Indeed, we empirically observed that RL
discovers agile skills more easily with lower Kd but policies with higher Kd transfer better to the
real Solo-12.

Privileged Policy Learning An MLP parametrizes the privileged policy with hidden dimensions
[512, 256, 128] and elu activations. We use PPO [48] with 4096 actors in parallel in simulation. The
training procedure is very similar to [5, 13, 20].

Visual Policy Learning The actor processes depth images using a vision neural network consist-
ing of three blocks of a convolution with leaky ReLU activations, followed by max pooling and a
linear layer to produce the depth embeddings. Random translation, random noise, and random cutout
are applied to the depth images during training. The actor then processes the history of propriocep-
tive information, actions, and depth embeddings with a one-layer Gated Recurrent Unit [75] (GRU)
of hidden size 256. This GRU is followed by a MLP with hidden dimensions [512, 256, 128] and
elu activations. The output of the final layer is processed by a tanh activation function and rescaled
to produce the 12-dimensional action vector. We used the action bounds observed in the privileged
experience buffer to rescale the actions given by the actor. The critic network is parameterized by a

15

517
518

519
520
521
522
523
524
525
526
527
528

529
530
531

532

533
534

536
537
538
539
540
541
542

MLP with hidden dimensions [512, 256, 128], layer normalization and elu activations to process the
privileged state.

We generate trajectories from the privileged policy that amounts to 2 million state-action samples
and store them in the privileged experience buffer DPV whereas online experience is collected by
256 actors in parallel into the online replay buffer D°"i". We store the constraint violations ¢;” of
both online and privileged experience in their respective replay buffers to recompute the termination
probabilities & on the fly during off-policy learning. Both DP"Y and D" store privileged infor-
mation at every step and depth image every 5 environment steps. During training, we only give the
vision network one image every five timesteps and then replicate the dept latent five times to match
the sequence length of the other observations. The online replay buffer stores the GRU hidden latent
produced by the online actors whereas the privileged replay buffer stores zeros for these latents. This
is done to initialize the first hidden of the DDPG actor correctly during off-policy training.

We train the visual policy using a variant of RLPD [21]. We build upon DDPG [70] with an update-
to-data ratio of 8 during policy evaluation. We use REDQ [71] with 10 critics and an ensemble of 2
random critic targets.

C Real Robot Setup

We use the Solo-12 quadruped robot for our experiments. We built a custom 3D-printed plastic
piece to mount the Intel RealSense D405 stereo camera observing in front of the robot. We use the
Python wrapper of librealsense to capture depth images at resolution 424 x 240. We resize and crop
the images to 48 x 48 and apply the librealsense postprocessing hole-filling filter. Depth images
are preprocessed in a separate thread on a separate CPU as they come, at around 30Hz. The visual
policy runs at S0Hz using ONNX and produces target joint angles to torque by a PD controller
with stiffness Kp = 4.0 and damping Kd = 0.2 running at 10KHz. Hence, depth embeddings
are updated at a higher frequency at inference than during training. All the computation is done
through Python scripts by the onboard Raspberry Pi 5. Velocity commands are sent to the embedded
controller via a wireless gamepad.

16

