
This document contains supplementary material for the CoRL 2024 submission 393 ”SoloParkour:473

Constrained Reinforcement Learning for Visual Locomotion from Privileged Experience”. The code474

used in the paper will be released upon publication.475

A Experiment Videos476

Figure 6: Solo-12 performing agile locomotion skills in diverse indoor and outdoor environments
such as climbing high steps, leaping over gaps, and crawling under obstacles.

The supplementary video contains both indoor and outdoor experiments of the system. Figure 6477

illustrates these experiments.478

B Implementation Details479

B.1 Rewards and Constraints480

We use the reward function 3 from [13] that measures progress toward a specic direction. To481

always have positive rewards, we add a survival bonus of 0.5 at each time step, and, following [5],482

we clip total rewards below 0.0.483

To enforce the constraints, we follow CaT [20] and reformulate the constrained RL problem 1 into484

the following RL problem:485

max
π

E
τ∼π



∞


t=0



t


t′=0

γ(1− δ(st′ , at′))



r(st, at)



, (5)

with termination probabilities δ(st, at). Following CaT, we dene the termination probabilities as:486

δ = max
i∈I

pmax
i clip(

c+i
cmax
i

, 0, 1), (6)

where c+i = max(0, ci(s, a)) is the violation of constraint i, cmax
i is an exponential moving average487

of the maximum constraint violation over the last batch of experience collected in the environment,488

and pmax
i a hyperparameter that controls the maximum termination probability for the constraint i.489

14

Table 2 lists all the constraints used. Following [20], we separate constraints between hard con-490

straints, where pmax
i = 1.0, and soft constraints, where pmax

i increases throughout the course of491

training, allowing the RL agent to discover agile locomotion during the early stage of training while492

enforcing more the constraints later on to ensure safe behaviors. To encourage the emergence of a493

specic locomotion style, some constraints are activated only in specic settings. For instance, the494

Stand still constraints cstill are only active when no velocity command is provided, whereas the Sase495

orientation and Number of foot contacts are only active on at terrains and on early terrain levels.496

We found that rescaling the constraint violations by the square root function ci ←


c+i helps CaT497

be less sensitive to extreme values of constraint violations.498

Type Expression Hard Cond.

Knee or base collision cknee/base contact = 1knee/base contact ✓ ×
Foot contact force cfoot contactj = ∥f footj∥2 − f lim

✓ ×

Foot stumble cstumblej = ∥f
footj
xy ∥2 − 4|f

footj
z | × ×

Heading cheading = |anglebase − anglecmd|− anglelim × ×
Torque ctorquek = |τk|− τ lim × ×

Joint velocity cjoint velocityk = |q̇k|− q̇lim × ×
Joint acceleration cjoint accelerationk = |q̈k|− q̈lim × ×

Action rate caction ratek =
|∆qdest,k−∆qdest−1,k|

dt
− q̇des lim × ×

Joint limits min cjoinmin
j

= jointmin
j − jointj × ×

Joint limits max cjoinmax
j

= jointj − jointmax
j × ×

Foot air time cair timej = tdesair time − tair timej × ×

Base orientation (x-axis) cori = |base orix|− baselimx × ×
Base orientation cori = ∥base orixy∥2 − baselim × ✓

Number of foot contacts cn foot contacts = |nfoot contact − ndes
foot contact| × ✓

Stand still cstill = ∥q − q⋆∥2 − ϵstill × ✓

Table 2: List of constraints, where Hard indicates whether each row corresponds to a hard constraint
and Cond. indicates whether a constraint is active only under certain conditions.

B.2 Policy Learning499

We built our RL algorithm with the CleanRL implementations of PPO and DDPG. During privileged500

policy learning, we linearly increase the damping parameter (Kd) of the PD controller from 0.05 to501

0.2 but keep it xed at 0.2 during visual policy learning. Indeed, we empirically observed that RL502

discovers agile skills more easily with lower Kd but policies with higher Kd transfer better to the503

real Solo-12.504

Privileged Policy Learning An MLP parametrizes the privileged policy with hidden dimensions505

[512, 256, 128] and elu activations. We use PPO [48] with 4096 actors in parallel in simulation. The506

training procedure is very similar to [5, 13, 20].507

Visual Policy Learning The actor processes depth images using a vision neural network consist-508

ing of three blocks of a convolution with leaky ReLU activations, followed by max pooling and a509

linear layer to produce the depth embeddings. Random translation, random noise, and random cutout510

are applied to the depth images during training. The actor then processes the history of propriocep-511

tive information, actions, and depth embeddings with a one-layer Gated Recurrent Unit [75] (GRU)512

of hidden size 256. This GRU is followed by a MLP with hidden dimensions [512, 256, 128] and513

elu activations. The output of the nal layer is processed by a tanh activation function and rescaled514

to produce the 12-dimensional action vector. We used the action bounds observed in the privileged515

experience buffer to rescale the actions given by the actor. The critic network is parameterized by a516

15

MLP with hidden dimensions [512, 256, 128], layer normalization and elu activations to process the517

privileged state.518

We generate trajectories from the privileged policy that amounts to 2 million state-action samples519

and store them in the privileged experience buffer Dpriv whereas online experience is collected by520

256 actors in parallel into the online replay buffer Donline. We store the constraint violations c+i of521

both online and privileged experience in their respective replay buffers to recompute the termination522

probabilities δ on the y during off-policy learning. Both Dpriv and Donline store privileged infor-523

mation at every step and depth image every 5 environment steps. During training, we only give the524

vision network one image every ve timesteps and then replicate the dept latent ve times to match525

the sequence length of the other observations. The online replay buffer stores the GRU hidden latent526

produced by the online actors whereas the privileged replay buffer stores zeros for these latents. This527

is done to initialize the rst hidden of the DDPG actor correctly during off-policy training.528

We train the visual policy using a variant of RLPD [21]. We build upon DDPG [70] with an update-529

to-data ratio of 8 during policy evaluation. We use REDQ [71] with 10 critics and an ensemble of 2530

random critic targets.531

C Real Robot Setup532

We use the Solo-12 quadruped robot for our experiments. We built a custom 3D-printed plastic533

piece to mount the Intel RealSense D405 stereo camera observing in front of the robot. We use the534

Python wrapper of librealsense to capture depth images at resolution 424× 240. We resize and crop535

the images to 48 × 48 and apply the librealsense postprocessing hole-lling lter. Depth images536

are preprocessed in a separate thread on a separate CPU as they come, at around 30Hz. The visual537

policy runs at 50Hz using ONNX and produces target joint angles to torque by a PD controller538

with stiffness Kp = 4.0 and damping Kd = 0.2 running at 10KHz. Hence, depth embeddings539

are updated at a higher frequency at inference than during training. All the computation is done540

through Python scripts by the onboard Raspberry Pi 5. Velocity commands are sent to the embedded541

controller via a wireless gamepad.542

16

