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A EXPERIMENTAL DETAILS

A.1 DATASETS.

The DTU (Jensen et al., 2014) dataset contains different static scenes with 49 or 64 posed multi-
view images for each scene. It covers a variety of objects with different materials, geometry, and
texture. We evaluate our approach on DTU with the same 15 scenes following IDR (Yariv et al.,
2020) and quantitatively compare it with previous work on Chamfer Distance, given the ground truth
point clouds. The BlendedMVS (Yao et al., 2020) dataset contains 113 scenes that cover a variety
of real-world environments, providing 31 to 143 posed multi-view images for each. We select 7
challenging scenes following NeuS (Wang et al., 2021) and present qualitative comparisons with
previous works.

A.2 IMPLEMENTATION DETAILS

We set the expected number of voxels to be 963 at the coarse stage and 2563 at the fine stage,
including an up-scaling step. We use a batch size of 8,192 rays with the point sampling step size
on a ray to be half of the voxel size. We train our coarse initialization stage for 10k iterations and
the fine geometry optimization stage for 20k iterations with an Adam optimizer. The initial learning
rate is set as 1−3 for all the MLPs and 0.1 for voxels in the coarse stage, while the SDF voxel starts
by 5−3 in the fine stage.

We use the same hyper-parameters for all scenes. We use a 3-layer MLP for the coarse training stage
and two 4-layer MLPs for the dual color network in the fine training stage. We choose level 2.0 for
the hierarchical geometry feature and set the dimension of the learnable feature voxel grid as 6.

For the coarse stage, we set λtv = 10−4 and λs = 2×10−4 for the regularization terms and introduce
an additional TV term for V (feat) with a weight of 10−2. The Gaussian kernel is 53 in size with
σg = 0.8. For the fine stage, we set λ0 = 0.5 for the reconstruction loss; we set λtv = 10−3 and
λs = 5 × 10−4 for the regularization terms. The fine SDF grid starts with a resolution of 1603,
which is then up-scaled by trilinear interpolation to 2563 after 15000 iterations.

For the s value in Φs in Eqn. 2, we design a function based on the iteration, s = 1/(i/r+1/sstart),
where sstart controls the beginning value of s, i denotes the iteration number, and r basically con-
trols the decaying speed of s along with the increasing iterations. We set sstart = 0.2, r = 50 for
the coarse stage and sstart = 0.05, r = 50 for the fine stage.

For all the experimental results on the DTU (Jensen et al., 2014) dataset, our method is trained on the
training set with around 90% images for each scene, following (Wang et al., 2021) for the splitting
scheme, and the 10% images are used for evaluation of the novel view synthesis task. We notice
that the CD performance is only slightly influenced compared to training on the full dataset. For
experiments on the BlendedMVS (Yao et al., 2020) dataset, we use all the images for training.
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Table R1: Quantitative evaluation on the DTU dataset for novel view synthesis. Our method outper-
forms the baselines on all the three metrics.

Metric PSNR↑ SSIM↑ LPIPS↓
Scan NeRF DVGO NeuS Ours NeRF DVGO NeuS Ours NeRF DVGO NeuS Ours

24 26.97 27.77 26.13 27.89 0.772 0.830 0.764 0.857 0.331 0.277 0.348 0.239
37 25.99 25.96 24.08 26.90 0.811 0.833 0.798 0.870 0.206 0.184 0.222 0.160
40 27.68 27.75 26.73 28.81 0.786 0.791 0.747 0.841 0.304 0.303 0.352 0.274
55 29.39 30.42 28.06 31.02 0.917 0.939 0.887 0.950 0.143 0.116 0.177 0.108
63 33.07 34.35 28.69 34.38 0.936 0.953 0.937 0.957 0.128 0.095 0.129 0.083
65 30.87 31.18 31.41 31.48 0.954 0.956 0.958 0.960 0.114 0.103 0.112 0.094
69 27.90 29.52 28.96 30.13 0.844 0.921 0.909 0.928 0.308 0.190 0.223 0.181
83 33.49 36.94 31.56 37.43 0.948 0.969 0.950 0.968 0.125 0.084 0.120 0.084
97 27.43 27.67 25.51 28.35 0.900 0.914 0.901 0.923 0.200 0.168 0.192 0.155

105 31.68 32.85 29.18 32.94 0.910 0.928 0.896 0.932 0.186 0.154 0.218 0.148
106 30.73 33.75 32.60 34.17 0.879 0.933 0.914 0.947 0.244 0.167 0.201 0.138
110 29.61 33.10 30.83 32.70 0.872 0.941 0.917 0.937 0.241 0.153 0.200 0.153
114 29.37 30.18 29.32 30.97 0.901 0.914 0.897 0.926 0.193 0.174 0.216 0.159
118 33.44 36.11 35.91 37.24 0.915 0.957 0.948 0.964 0.199 0.123 0.156 0.110
122 33.41 36.99 35.49 37.97 0.935 0.967 0.957 0.972 0.142 0.088 0.114 0.076

mean 30.07 31.64 29.63 32.16 0.885 0.916 0.892 0.929 0.204 0.159 0.199 0.144

Table R2: Quantitative evaluation on DTU dataset (without mask).
Scan 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 mean

Colmap (Schönberger et al., 2016) 0.81 2.05 0.73 1.22 1.79 1.58 1.02 3.05 1.40 2.05 1.00 1.32 0.49 0.78 1.17 1.36
NeRF (Mildenhall et al., 2020) 1.90 1.60 1.85 0.58 2.28 1.27 1.47 1.67 2.05 1.07 0.88 2.53 1.06 1.15 0.96 1.49
UNISURF (Oechsle et al., 2021) 1.32 1.36 1.72 0.44 1.35 0.79 0.80 1.49 1.37 0.89 0.59 1.47 0.46 0.59 0.62 1.02
VolSDF Yariv et al. (2021) 1.14 1.26 0.81 0.49 1.25 0.70 0.72 1.29 1.18 0.70 0.66 1.08 0.42 0.61 0.55 0.86
NeuS (Wang et al., 2021) 1.00 1.37 0.93 0.43 1.10 0.65 0.57 1.48 1.09 0.83 0.52 1.20 0.35 0.49 0.54 0.84
Ours 0.72 0.75 0.47 0.39 1.47 0.76 0.81 1.02 1.04 0.92 0.52 1.13 0.40 0.53 0.53 0.76

A.3 DETAILS FOR BASELINE METHODS

We include the following baseline methods for comparison: IDR (Yariv et al., 2020) reconstructs
high-quality surfaces with implicit representation based on foreground object masks and the corre-
sponding mask loss. NeuS (Wang et al., 2021) is a state-of-the-art approach that develops a volume
rendering method for surface reconstruction, where the mask supervision is optional. Reconstruction
results for NeuS are implemented with its official code 1 and the pre-trained models, and the novel
view rendering results are provided by the authors. NeRF (Mildenhall et al., 2020) first proposes to
use the neural radiance field for novel view synthesis. Though not specifically designed for surface
reconstruction, we can extract a noise geometry from a trained NeRF model with a selected thresh-
old. In this paper, the reconstruction evaluation results for NeRF are directly taken from (Wang
et al., 2021) for a fair comparison, while we also implement NeRF with nerf-pytorch 2 for novel
view synthesis. DVGO (Sun et al., 2022a) accelerates NeRF with a hybrid representation. We use
the official code 3 and implement DVGO-v2 (Sun et al., 2022b) for comparison, which is 2-3 times
faster than the DVGO-v1. Similarly, we select a threshold to extract the geometry from the density
voxel grid, as to be introduced below. Results for these methods with the aid of foreground object
masks are presented in Table 1 of the main text.

We also include several baselines that do not rely on foreground object masks:
Colmap (Schönberger et al., 2016) is a widely-used classical Multi-view stereo method.
UNISURF (Oechsle et al., 2021) uses the occupancy field to represent the geometry and im-
proves reconstruction quality by shrinking the sample region of volume rendering during training.
VolSDF (Yariv et al., 2021) defines the volume density function as Laplace’s cumulative distribution
function (CDF) applied to a SDF representation for surface reconstruction. We also compare with
NeRF (Mildenhall et al., 2020) and NeuS (Wang et al., 2021) under the without-mask setting. All

1https://github.com/Totoro97/NeuS
2https://github.com/yenchenlin/nerf-pytorch
3https://github.com/sunset1995/DirectVoxGO
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Table R3: Ablation over the level selection for
hierarchical geometry feature. The performance
first increases together with the level and then
converges after level 2.0.

level 0 0.5 1 1.5 2 2.5 3

CD 0.98 0.75 0.74 0.74 0.72 0.73 0.72

Table R4: Ablation over the geometry feature de-
sign. It indicates that a combination of both Gra-
dient and SDF produces the best result.

CD (mean) 0.79 0.76 0.74 0.72

Gradient ✓ ✓
SDF ✓ ✓

Table R5: Ablation over different smoothness priors. Our gradient smoothness loss is proved effec-
tive by this quantitative evaluation.

CD (mean) 1.18 0.79 0.74 0.72

SDF TV ✓ ✓
Gradient smoothness loss ✓ ✓

the results above are directly adopted from the original papers. Their comparisons to our method
under this setting are shown in Table R2.

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 NOVEL VIEW SYNTHESIS.

We report the results for novel view synthesis on the DTU dataset in Table R1. Our method
outperforms the baselines in all three metrics, including PSNR, SSIM (Wang et al., 2004), and
LPIPS (Zhang et al., 2018) (VGG). Examples of rendered images at testing views are shown in
Fig. S8 and Fig. S9 in Sec. I.

B.2 COMPARISONS FOR THE W/O MASK SETTING.

Our method can also work on cases where the background is not clean. Following NeRF++ (Zhang
et al., 2020) and MipNeRF-360 (Barron et al., 2022), we invert the background points outside the
unit sphere into the unit sphere by x′ = x/r2, y′ = y/r2, z′ = z/r2, where r =

√
x2 + y2 + z2.

We then represent the background with another density voxel grid, together with a feature grid and
a shallow MLP. We report our results and comparisons to previous approaches in Table R2.

B.3 ADDITIONAL ABLATION STUDIES AND ANALYSIS

Ablation over the hierarchical geometry feature. For hierarchical geometry feature design, we
explore different design details, including the level selection and the effect of gradient and SDF
value, as shown in Table R3 and Table R4, respectively.

Ablation over smoothness priors. (1) We introduce two regularization terms as smoothness priors
during training, i.e. the TV on the SDF voxel grid and a gradient smoothness prior. We carry out an
ablation study on them during the fine training stage in Table R5, where we reveal the effectiveness
of our gradient smoothness loss via quantitative comparisons. (2) Furthermore, we also evaluate
the effectiveness of 3D convolution with a Gaussian kernel during coarse training and post-process.
Experimental results show that the CD error increases from 0.72 to 0.74 if we remove Gaussian
kernel during coarse training. And the it will be slightly reduced from 0.720 to 0.715 if we remove
Gaussian kernel for post-process. The post-processing stage improves the visualization quality with
a minor sacrifice of the quantitative performance.

Ablation over the voxel grid resolution. The voxel grid resolution denotes the number of voxels
contained in V (sdf) of the fine training stage. We study the effect of voxel grid resolution by keeping
all the other settings to be the same, as shown in Table R6. Increasing the voxel grid resolution from
1283 to 1923 and from 1923 to 2563 consistently results in lower Chamfer Distance (CD) with longer
training time. However, the case with 3203 achieves a similar CD with 2563, and requires a higher
training cost. Thus, we take the number of voxels to be 2563 as the default setting in the other
experiments.
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Table R6: The effect of voxel grid resolution on reconstruction performance and training time. All
the cases below are trained with the same settings except for the voxel grid resolution.

Resolution 1283 1923 2563 3203

CD (mean) 0.79 0.75 0.72 0.73
Train time 11 mines 12 mins 14 mins 17 mins

Stage-1 Stage-2

Stage-1 end Stage-2 end

Up-scale

Figure S1: The two-stage training process of Voxurf. The number in the vertical axis is calculated by
log10(10x) for better visualization.

Two-stage training process. Our method adopts a two-stage training pipeline. We show the curve
of Chamfer Distance and the visualization result by the end of each stage in Fig. S1. We show
that 1) we can obtain a coherent shape by the end of the Stage-1 (coarse training stage), while the
performance is limited by the low resolution that the details are hard to be reconstructed; 2) the fine
details are recovered by the end of Stage-2 (fine training stage) and the overall structure is consistent
with the coarse shape of Stage-1.

Threshold selection. To extract the surface from a trained DVGO (Sun et al., 2022a) model, we
can first obtain the alpha value for any point in the 3D space by density interpolation and activation.
And then, we show how we select a proper alpha threshold when we extract the surface in Fig. S2.
A small threshold like 0.001 and 0.01 usually results in noise areas floating above the surface, while
a large one like 0.5 and 0.8 would lead to an incomplete surface with large holes. We thus select 0.1
as the alpha threshold that is adopted in this paper.

C DVGO+NEUS W/ SMOOTHNESS

Our method introduces several designs to boost the smoothness of the reconstruction results, includ-
ing the 3D convolution with a Gaussian kernel G(V, kg, σg) for coarse stage training (not adopted in
fine stage) (Sec. 5.1), the gradient smoothness loss Lsmooth(∇V (sdf)) (Sec. 5.3), a 3D convolution
with a Gaussian kernel G(V, kg, σg) for post-processing during inference (Sec. 5.3), and the SDF
total variation loss LTV (V

(sdf)) (Sec. 5.3).

Since we observe the combination of DVGO and NeuS (DVGO + NeuS) produces continuous but
noisy surfaces, it is interesting to apply these smoothness designs to the baseline. In this way, we can
more clearly verify the effectiveness of other technical contributions in Voxurf. Specifically, the SDF
total variation loss (SDF TV) has already been adopted to DVGO + NeuS for better results in Fig.
1 and Table. 1. We further evaluate the Gaussian kernel for training, gradient smoothness loss, and

Threshold 0.001 Threshold 0.01 Threshold 0.1 Threshold 0.5 Threshold 0.8

Figure S2: Comparisons of Alpha threshold selection for surface extraction from a trained DVGO (Sun et al.,
2022a) model. A large threshold leads to holes and the incomplete surface, while a small one leads to floating
noises above the surface.
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Baseline w/ post-processing w/ gradient smoothness loss

w/ Gaussian kernel for training w/ all the strategies Ours

Figure S3: Qualitative comparisons of the DVGO+SDF baseline enhanced with different combinations of
smoothness priors. A huge performance gap still exists when the strongest smoothness strategies are applied.

Table R7: The experimental results of applying Gaussian kernel for post-processing, gradient smoothness loss,
and Gaussian kernel for training on DVGO + NeuS. Notably, SDF TV has already been adopted as a default
setting, thus it is not discussed here.

CD (mean) 1.13 1.22 0.99 1.00 1.00 1.00 0.98

Post-processing ✓ ✓ ✓ ✓
Gradient smoothness loss ✓ ✓ ✓

Gaussian kernel for training ✓ ✓ ✓

Voxurf 0.72

Gaussian kernel for post-processing on DVGO + NeuS. The most simple approach to make surfaces
smooth is adopting the Gaussian kernel for post-processing. As shown in Fig. S3, the surfaces
clearly become smooth, but the chamfer distance (CD) becomes worse as in Table R7. As either
the Gradient smooth loss or Gaussian kernel for training is leveraged, both the chamfer distance
(CD) and surfaces become better. Notably, the Gaussian kernel for post-processing will not harm
the performance here with these smooth priors (i.e., Gradient smoothness loss, Gaussian kernel for
training) adopted. Finally, via combining all of these designs, we achieve smooth surfaces and lower
CD. However, both the quantitative comparison and visualization show that Voxurf is significantly
better than DVGO + NeuS w/ smoothness. Moreover, after adopting all these designs, the training
time of DVGO + NeuS w/ smoothness increases from 12min to 15min which is slightly longer than
Voxurf (14min), singe Voxurf does not need the Gaussian kernel for training in the second stage
thanks to the other designs.

D DISCUSSIONS ON THE ASSUMPTION OF COLOR-GEOMETRY DEPENDENCY

The assumption of color-geometry dependency is based on the idea of shape-from-shading, which
has been proven effective in surface reconstruction by previous approaches (Yariv et al., 2020; 2021).
This technique generally does more good than harm, while side effects do exist in some cases where
the surface texture is not correlated with the geometry/normal. We carry out several experiments
with an example in Fig. S4, where we can observe obvious relief-like structures on a plane surface
caused by the texture.

This is a common problem shared by most of the recent neural surface reconstruction meth-
ods (Oechsle et al., 2021; Yariv et al., 2020; 2021; Wang et al., 2021). Nevertheless, this problem can
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NeuS VolSDF Voxurf

Figure S4: An example where the surface color is not correlated with geometry. The assumption of the color-
geometry dependency leads to relief-like structures in VolSDF (Yariv et al., 2021), NeuS (Wang et al., 2021),
and Voxurf, where our method is least affected by the side effect. It reveals that this problem can be mostly
alleviated by multi-view consistency in an accurate reconstruction.
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Figure S5: Qualitative comparisons on the Synthetic-NeRF and Synthetic-NSVF dataset.

be largely alleviated via multi-view consistency when the geometry and color fields are well-trained
with enough input views. In Fig. S4, we observe that our method is better at overcoming the prob-
lem than previous state-of-the-art methods, being least affected by the textures. Fully addressing
this side effect is out of the scope of this work and would be investigated in the future.

E EVALUATIONS ON NEW DATASETS

We further evaluate our method on other datasets, namely Synthetic-NeRF (Mildenhall et al., 2020)
and Synthetic-NSVF (Liu et al., 2020), and a qualitative comparison can be found in Fig. S7. Com-
pared with the baseline methods, our method shows superior performance, which does not suffer
from the heavy noise as DVGO (Sun et al., 2022a) while producing far more accurate thin structures
than NeuS (Wang et al., 2021).
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Scene 0050 Scene 0616Scene 0580

Figure S6: Qualitative results on large scenes, e.g., the ScanNet dataset.

NeuS VolSDF Voxurf

PointNeRF – finetuned

Neural points CD: 0.56

Ours

Poisson surface CD: 1.77 Neural surface CD: 0.37

Figure S7: A comparison with Point-NeRF (Xu et al., 2022) in surface reconstruction. We use the Open3D
Libarary (Zhou et al., 2018) to perform Poisson surface reconstruction from the point cloud.

These datasets rarely appear in previous benchmarks of surface reconstruction, because they do
NOT have publicly available 3D ground truth for evaluation. The average PSNRs of our method on
Synthetic-NeRF and Synthetic-NSVF are 32.38 and 35.18, where DVGO achieves 31.95 and 35.08,
respectively. Considering the time limitation, we will provide a full comparison of both geometry
and novel view synthesis on multiple methods in the final version. Results for more datasets (e.g.,
deepvoxels (Sitzmann et al., 2019) and Tanks-and-Temples (Knapitsch et al., 2017)) will also be
included in the final version.

F QUALITATIVE RESULTS ON LARGE SCENES

We further evaluate Voxurf on large scenes, i.e., Scannet dataset (Dai et al., 2017). Following
MonoSDF (Yu et al., 2022), we adopt depth and normal estimated by MiDaS (Ranftl et al., 2022)
as extra supervision. In Fig. S6, we show the qualitative results on scene 0050, 0580, and 0616 of
Scannet. The results show that Voxurf can basically model the scene with an accurate layout and
some details. However, it still performs unsatisfactory in reconstructing planes, e.g., floor and wall.
We conjecture that the under-constrained voxel grids are not suitable to reconstruct from sparse-view
observations like ScanNet videos. It is an import topic for future works.

G COMPARISONS WITH MORE METHODS

We further include Point-NeRF (Xu et al., 2022) for a comparison, which is an impressive work on
NeRF acceleration based on an innovative neural point representation. This approach is proposed
for the NVS task, and we manage to obtain the neural points after the finetuning stage and use
Poisson surface reconstruction (Kazhdan et al., 2006) to extract a surface from the points. The
DTU performance on NVS task of Point-NeRF and our method are not directly comparable since
they use different scenes and splits for training and testing. Therefore, we currently compare surface
reconstruction results on the only one shared scene as shown in Fig. S7. It can be seen that the
neural points after fine-tuning can roughly represent the surface of the scene, while the CD error
(0.56) is obviously higher than ours (0.37). When we use Poisson surface reconstruction (Kazhdan
et al., 2006), a widely used method to mesh a point cloud, to recover a water-tight surface with the
neural points, the CD error substantially increases to 1.77. We will try to adopt Point-NeRF in the
benchmark and perform a comprehensive evaluation on both surface reconstruction and rendering
in the final version.
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H LIMITATIONS

Here we discuss the limitations and further research directions of our Voxurf.

(1) Current neural surface reconstruction approaches (Oechsle et al., 2021; Yariv et al., 2020; 2021;
Wang et al., 2021), including our Voxurf, are built upon color-geometry dependence. Although
the assumption does more good than harm, it sometimes causes side effects, e.g., a plane with
printed textures will lead to relief-like structures. As discussed in Sec. D and Fig. S4, Voxurf is
relatively less affected by such cases due to the accurate surface reconstruction enhanced by multi-
view consistency, but the undesirable artifacts still exist. It is valuable to explore how to tackle this
problem in the future.

(2) Voxurf follows the NeRF-based techniques that represent 3D objects with view-conditioned
emitted radiance. This design is insufficient to reconstruct an accurate surface with less texture,
strong reflection, and transparency due to strong ambiguity. This is another problem we can explore
with Voxurf.

I ADDITIONAL QUALITATIVE COMPARISONS

Finally, we show the qualitative comparisons for novel view synthesis in Fig. S8 and Fig. S9, and
we show additional surface reconstruction results in Fig S10, Fig S11, and Fig S12.
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Figure S8: Qualitative comparisons on DTU for novel view synthesis. (Part 1/2)
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Figure S9: Qualitative comparisons on DTU for novel view synthesis. (Part 2/2)
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Figure S10: Additional surface reconstruction comparisons on DTU. (Part 1/2)
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Figure S11: Additional surface reconstruction comparisons on DTU. (Part 2/2)
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Figure S12: Additional surface reconstruction comparisons on BlendedMVS.
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