A Proof of the main theorem

The proof of the main theorem is presented in this section. We start with a generic result on a family
of AMP iterations including the (non Bayes-optimal) MLAMP one, using the framework of |Gerbelot
and Berthier|[2021]], from which we remind the required notions.

A.1 Notations and definitions

If f : RV*9 — RN*4 jg an function and i € {1,... N}, we write f; : RV>*9 — RY the component
of f generating the i-th row of its image, i.e., if X € RN*xq,
[ (X)
fX) = : € RVxe,

fn(X)
i

We write Z?Xi the ¢ x g Jacobian containing the derivatives of f; with respect to (w.r.t.) the ¢-th row
X; € R%:
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For two sequences of random variables X, Y,,, we write X, ; Y., when their difference converges
in probability to 0, i.e., X;, — Y, L5 0. Oriented graphs with a set of vertices V' and edges ﬁ are
denoted G = (V, F). The set of edges may be split into right-pointing and left-pointing edges, i.e.,
E={?1,., e}, E={%... %L}

Definition A.1 (pseudo-Lipschitz function). For k& € N* and any N, m € N*, a function ® :

RN X4 — R™*4 is said to be pseudo-Lipschitz of order k if there exists a constant L such that for any
x,y € RVXq,

IeG) = eW)lr _ (1 N (”X”F)“ N (”“F)kl) lIx = vl (10)
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For a function ¢ : R — R, the property becomes
Y (z,y) € R%, Jo(z) — (y)| < LA+ |el* + [y[*Y]e -y (11)

and a straightforward calculation shows that for any scalar pseudo-Lipshitz function of order 2, the
function

¢ :RY > R, (12)
1 d
X > g;ga(zl) (13)

is pseudo-Lipschitz of order 2 according to the definition above. This definition is handy for proofs
involving non-separable functions and leads to Gaussian concentration using the Gauss-Poincaré
inequality (see Lemma C.8. from [Berthier et al. [2020]]), while in the separable case, a strong law of
large number is proven for a class of distributions including sub-Gaussian ones in Lemma 5 of Bayati
and Montanari [2011]].

A.2 State evolution for generic multilayer AMP iterations with matrix valued variables and
dense Gaussian matrices

In the notations of (Gerbelot and Berthier| [2021], consider the AMP iteration indexed by the following
directed graph G = (V, E), where the set of vertices is denoted V' = {vg, v1, ..., v}, and the set
of edges £ = {?1, e, <?L}. For any edge €1, the corresponding matrix A, has
dimensions R™*"-1 with A« = A%l, and the variables xo, € R™*4, x4 € R"™-1*4 for some

finite ¢ € N, with N = Zle n;. Finally, we define the non-linearities of the iteration by specifying
the variables they are acting on as follows:
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f%L(A?lW?”X%l;XEng)
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where wo_,...,w, are low-rank matrices respectively in R™0*4 .. R"L-1*9 whose rows are
sampled i.i.d. from subgaussian probability distributions in R?. The graph indexing the iteration then
reads:

Xg :Alm’%—m_?l(b%) s (14)



and left oriented edges
1 &L OfL
bl = — LA w (Xg—/) € R7*9.
NS oxe, O T e

We now make the following assumptions

(A1) The matrices (A@)? < are random and independent, up to the symmetry condition
Ag = AIe>. Moreover A~ has independent centered Gaussian entries with variance 1/N.

(A2) Forall1 <1 < L, n; — oo and n;/N converges to a well-defined limit §; € [0,1]. We
denote by n — oo the limit under this scaling.

(A3) Forallt € Nand @ € E, the non-linearity f%) is pseudo-Lipschitz of finite order, uniformly
with respect to the problem dimensions (n;)o<i<L

(A4) Forall € € E, the rows of xo?, w— are sampled from subgaussian probability distributions
in RY.

(AS5) For all ¢ € F, the following limit exists and is finite:

im ¢ (% (0 2r02) 2 (68 00))

n—oo

(A6) Let (k2 )2cp be an array of bounded non- negatlve reals and Z—» ~ N(0, k21, ) inde-
pendent random variables for all €. Forall € € E, for any t € Ny, the following limit
exists and is finite:

lim *E [ (%) wz2) o (Z5%) w22 )] -

n—)oo

(A7) Consider any array of 2 x 2 positive definite matrices (S )z¢cp and the collection of
random Varlables (Z—, Z_>) ~N(0,8» ®1,,)) defined independently for each edge &
Then for any @ e Fands,t > 0, the following limit exists and is finite:

nlgréoN]EKf?(( Neree): f?(( )?I—gq?)ﬂ

Under these assumptions, we define the following state evolution recursion:

e forl=1:
1
0. _ T 0 0 1,1 _ 0 T £0
ve, = A}gn Nw?l Kt (X?1)’ ke, = 1\}51100 N'f?l(x?l) f?1 (X?l) (15)
t+1 t
= NLIIEOO ﬁE {W—> f?l (W?lw— + Z?lﬂ (16)
T
sHLE+L _ ttlstl . N 1 1
K'g?l e 1 ’ - NE)IEOO N]E|: (f?l (W?1V%1 + Z%1) - W?1pW?lys?+1 )
(£, (we.ile, +2%,) - W?lpv‘vél'/?f” (17)
vl k' = lim lf?— (z x¢ X(<)— )Tf<0— (z x2 x9—> (18)
ey R, = U e \(Zwz, s ?1 e \PWe 1 e e,
N t
1 ofe
N . € 1,1 t
Ve T ]\}E)noo NE |:; 8zw‘glyilv (b‘?l <Zw? ’zw?lpw? V + Z_) W?2u<€2 * Z?2) ]
(19)
s+1,t+1 1 1 s s s ~S s T
€ o nLH;o NIE f?1 Zwy 7ZW?1 pW?1V?1 + Z?]’W?2V?2 + Z?z
&, (ZW?I,ZW?lpgglugl +2Zh W, D, + zfa)] (20)



e forany2<I<L—-1

. 1 1.1 . 1
Vo = B we fe O, mg = i e ()T, 05 @y

1
t+1 _ 1 T gt -1 t
vy = lim NIE [W?Lf?L (zv‘,?lilpW?lil vy, + VAR

N—+o0 -1
(22)
sHLt+1 _  t+lsHl g
fel =R =g (23)
1 —1 s s s 1 541 T
NE <f? ( we, o, Pwe, Ve, t2%, ,Wele + Z<_z) We Pwo V2, )

1 T
~0 L1 _ g 0 0 0 0 0 0
V?p'{'?l - "h_{Igo 7f<€1 (ZW?,’X?Z’X‘ELH) f?l (ZW?Z7X€>Z7X<€L+1) (25)
N t
1 ofe
N . L e, —1 t t ~1 t
Ve, = ]\}gllm NE {; 8ZW?L i ¢<?z (Zw?z’zw?zpw—glV?L + Z?NW?HlV?zH Z‘EHI) ]
(26)
s+1t+1 li 1 E| f¢ -1 s 7.5 ~ S VA T
ma = n1_>Holo ~ f<gl ZW?Z,ZW?ZPW?LI/?I + ?l,W?ZHV?ZH Tt
1 —1 t t ~1 t
f?z (ZW?L7ZW?1pw7lV?, + Z?lvw?z+1y_e)l+1z<?l+l):| (27)
e for =L
1
0. _ oyt 0. (4,0 L1 g 0 0 \T 0 (.0
ve, = lm Swo fo, (e, ) kg, = lm f5 (x¢ ) fo, (k) (28)
1
t+1 _ : T t —1 t t
V?L - N1—1>I—r&-loo NE [W?Lf?L (ZW?L71PW?L7 Ve + Z?L WL Ve T Z<€L):|
(29)

s+1,t4+1 _  t+1,s4+1 .
K3 =kKg, = NLHEOO (30)
IE s —1 s VA ~ 5 YA —1 s+1 T
N f?L zw?Lﬂp‘”—e’L,ly?Lq + oo WeLVe, + €L) W?LpW?LU?L

€1y
-0 1,1 : L o 0o\ 0
= i A (e, ) 2 )
N ¢
1 ofe .
~t+1 . e 1, —1 t t
Pl = lim E {Z e (2w, 2w, Pl Vo, + 25, } (33)
i=1 T WEpbrer
s+1,t+1 li 1 El s —1 s A T
KKEL o nLH;o ﬁ f?L ZW?L ’ ZW?L pW?L V?L + <L
fe, (ZW?L,ZW?Lp;gLv%L + Z%L)] (34)

where, for any 1 < [ < L, the symbol azw?,i, ¢ denotes the partial derivative w.r.t. the argument
of g2, (Z%,...,Z%) is a centered Gaussian random vector with covariance (k2°),. .<; ® I,,, (and
similarly for left-oriented edges), and 2y, is distributed according to N(0, p,_, ).

Theorem A.2. Assume (Al)-I(A7). Define, as above, independently for each ?l, YA L= XO?L and
(Z1 ,+-++»Z% ) a centered Gaussian random vector of covariance ("é%i)r,sgt ®1,,_,. Then for
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ny sequ nce of uniformly (in n) pseudo-Lipschitz function ® : (R™-1*(t+1a)2 _ R, for any
1<I<L

In summary, at each time step, the variables associated with right oriented edges x—, asymptotically
behave as the sum of the ground truth w-, reweighted by a ¢ x ¢ matrix coefficient &+, and a
ny—1 x q random matrix with i.i.d. rows Z—, with ¢ x g covariance K+, determined by the function

associated to the corresponding left-oriented arrow f<_ Similarly, the variables associated with left
oriented edges x+-, asymptotically behave as the sum of the linear response to the ground truth Zws,

(asymptotic equ1valent of Ao w—,) reweighted by a ¢ x ¢ matrix coefficient v+, and a n; x q
random matrix with i.i.d. rows Zgl with q X q covariance K-, determined by the function associated

to the corresponding right-oriented arrow f%l.

Proof. This result is a special case of Lemma 2 from|Gerbelot and Berthier [2021], with a perturbation
where only the left-oriented edges involve an additional dependence on A»w—. The required
conditions are the same as in |Gerbelot and Berthier|[2021], barring the subgaussian assumption (A3)
which ensures the scaled norm of the XU?7 w— are finite with high-probability as n — oo.

A.3 State evolution for multilayer AMP iterations with random convolutional matrices

The following lemma proves the state evolution equations for a multilayer AMP iteration where the
dense Gauss1an matrices are replaced with random convolutional ones (MCC from Def[3.2) with
variance N, w1th a vector valued variables, i.e. q=1, and separables non-linearities. We choose

the variance as + ~ to follow the notations of |(Gerbelot and Berthier| [2021]] for more convenience,
recovering the varlances of iteration Eq.() is a straightforward rescaling as done in Berthier et al.
[2020] and will be discussed in the next section. Assume ¢ = 1 and that, for any ¢ € N and
1 <1 < L, the functions f%l , ffa are separable in all their arguments, i.e there exists scalar valued,

pseudo-Lipschitz functions O’t?l :R? » R, Ufa : R? — R (where ob R RolL R? — R)
such that:

forl =1,forany 1 <i < ng:

f& (x5 )i = ot (2% )
forany 1 <! < L—1,forany 1 < ¢ < ny:

f(t?l (A?LW?NXL’ XEEZ_H) = UE?I ((A?lw?l)i’x%l,i’x%l+1,i)
forany2 <I<L,1<i<n_1:

t

f?l ( 6171’X%1)i = U?z (x?thi’x%ui)
forl=L,any 1 < ¢ < ngp:

o s o, (e s, )

Define the following scalar SE equations
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e forl =1:

1,1
Z/%l = (SOE |:'U)?1U%>1 (I‘O(El ):| ; fi?l = 60E |:0'%>1 (x%l)g%l(‘r%l)} (35)
L= 0o e, o, (we, ok, + 25, )| (36)
Hs?""ll,t-i-l = 5%*11,5+1 = 5OIE[ (a%)l (w?lﬁfa + Z%l) _ w?lp;;ﬂ%{l)
(Jt?l (w?lﬁfgl +Z%1) W, Py t+1>} an
I/<0— I€<— = 51 [0<— (Zw?1a$()?1a$%2) O'O%l (Zw?l,x%l,x%J ] (38)
dol .
1 e 1,1 1 ¢ . . .
o e [W_ (Zw?l Fwe, Pug, Ve, + Z?l W Vg, + Z?Q) ] (39)
€0 e
Klfgtl,tJrl =6E |:O'<S€1 (Zw?l,zw?lp;é’ly%l + Z%l7w?2ﬁ%2 + 2%2)
0%1 <Zw?1 ’ Zw?l p;le)l V%l + Zt?l » W, ﬁ%Q + Z%z) :| 40)
e forany2<I<L—-1
1,1
o= 5,,[11@[10?10%1(33%1)} K3, = 0u B [0, (2%, )oY (a%,)] @)
l/%—;:1 = 5m—1E [w_éla't?l (Zw?klp;éz,ly%zfl + Zt?pﬂw? % Z(_ )} (42)
Hs_—)&-Lt-i—l _ K;t+1’5+1 _ )

€l €

5m_1]E[ (U%,, (zw—gl_lpﬁiﬂ,l_lu%l_l + 7%, swe e + Z<5a> —we, pw—g s;f)
(J%Z <Zw?l*1p;;l 1 V?l 1 + Z?l o We Y EE + Z ) w zpw7 Vt—j_l) :| 44)
Z/<O— K,<1_1 — 6nlE |:O'O<€l (Z’w?l ) Z‘O?l’ e l+1> 9? (Zw? ’LU—) x%lH) :| (45)

Ool .

11— i 1 . y .

= on 0] ; (Zw?t Fuwg Puy V2 + Z?z’ ¢ z+1V€’z+1Z<?z+1> (46)
Zw‘e—l S0 d)(?l 1

stli+l bl —1 s s ~S s
e = Onik Lﬂgl <Zw?l 1 Fue, Pug Ve, - Z?z ’ w?HlV?HlZ?Hl)
~t t
V?Z+IZ<€L+1) :| “@n

t 1 .
0g, (Zw?l ) ngl Pw?l V2, + Z?l WP,
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e for I=L

1,1
V%L = 5nL1E[w?laO?L(x9?L)], K3, =0n, ,E {U%L (l'%L)O'%L (m%L)} (48)
V%"’Ll =0,, ,E {w?LU%L (zw?,L_lp;;L_lu%L_l + Z%L_l,w?LﬁfgL + Z%Lﬂ
49)
HS?JFLLtJrl _ K;rj,5+1 _ (50)

L

5nL1E|: (US?L (ZW?L,lp;;L71V%L71 + Z%L—l7w_e,Lﬁ%L + Z(SG_L) o w?Lpl_U;LVSJFI)

("%L (Zw?L_lpiéL_l Vo, 2%, we,be, + Zta) - w?Lp;;LV%f) }
(51
P, me = 5nLE{U%L (200, 2%, ) 0%, (zw—gL)] (52)
t
) = 0n,E {%i% (szfL s, Py Vo, Z%L> } (53)
l@'f;;,t-i-l =0, E |:0‘<S€L (Z“’?L A p;;L vy, + Z%L)
O’%L (Z“"c‘L , ZW?LP;;L I/%L + Z%L> } (54)

Lemma A.3. Under the assumptions of section define, as above, independently for each 7,
Z%l = 2% and (Zl?l7 e Z%l) a centered Gaussian random vector of covariance (”%Sl)nsﬁt (and

similarly for left-oriented edges). Then for any 1 < [ < L, for any sequence of uniformly (in n)
pseudo-Lipschitz function ®; : (R™-1*(t+1))2 5 R

P
d (XS ) (xf—) ~
D) gcoct’ \ €1 ) gcoct e, e F

1 ~
E {q)( (Zw?lpw?zy%l + Z%l)ogsgtfaeﬁ ’ (w?“ly%lfl * Z%lfl)ogsgt ﬂ

Proof. Consider the following iteration, corresponding to the algorithm presented in the previous
section Eq.(14) with ¢ = 1 indexed on the same graph as above, but where the matrices A, are

replaced with random convolutional ones, denoted A?, such that

V?GEA?ZNM(D?17P_> k?l’q?z) (55)

€

where A, € RP7:92,%FP2,92, and we remind that we chose variances of 1/N. Since we assume
that ¢ = 1, thus the Onsager terms are scalars, which we denote with lowercase letters bt?. The
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corresponding iteration then reads:

t+1 _ A t. gt t—1
Xt =Azmy be—{mg1 ,
to_ gt t
mi; = %, (<) -
41 ATt gt t—1
XE —Ae—1>mé71 bgme_f s
¢

t+1 _ A to gt t—1
X =Agzmy be—%mg ,

(56)

t+1 _ A t. gt t—1
X —Ae—gme—g bamg ,

Then, according to Lemma for any 1 < [ < L, there exists a pair of orthogonal matrices
U- e RP#%72,%P=292, v e RP7:9%,%P2,9%, such that Aw, = U» A» VD, and A =
! ’ € 1 €1 €1 €y €1

a2,

i1
[(Pp?l a4z, ) Q?l} ,where Q3, € RP#:*P2,72, is composed of q=, blocks of size Dz, x
, i=1

P, denoted Q%l, verifying

e forany 1 < j < k+, Qj? has i.i.d. N'(0, %) elements

 forany k> < j < ¢-, all elements of Qj? are zero.

In the preceding definition of A? ,» Q2, is understood as a vector of size RF2 92 with elements in
RP7, such that the permutation matrix Pp., ¢ shifts blocks of size D x P, yielding

PO (k) 1
pE Q<?i>l @) Q! (k=)
Q¥ Q¥ ... q¥%
Ao = ¢ Q¥ .. QY : (57)
Q2 Q¥ . a Q]




The iteration then reads

e (58)

Since we will not be making any change of variable on the w—, we will keep the A—> notation for
the quantities related to the planted model. Define, for any 1 < ! < L and any ¢ € N:

< . _ 71T <, _ T

Xo, = U?LX?L X4, = V?Lxg

~t T ot ~t  _ 71T ot
m-; fV?lm?l me fU?lm%l

(A?Qw?z’i%’ t&) U?Qf% (A?ZW?2’U?2 G V?di{tg)

St St
U?L—lx?Lfl’V?LX?L)

—
miﬁ»
™
/N
M
QLH»
T
“;,g;
;bT(‘#
Il
<
al—
~
3
™
/

f;-L (U?LA?LVH wo,, Uz, iﬁ)
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Using the orthogonality of the permutation matrices U, V-, the iteration may be rewritten

s (59)
i = L (Ao, wo, %5, %6 )

Recall, for any 1 < [ < L, the dimensions A?l € RP=92,%P2,92, gpnd f%l() € RPz172.,
Consider then

(L) = : (60)

where, for any 1 < k < g2, (f%l)(’“)(...) € RP?. The product A?zft?,('“) € RP7:7%: then

reads, using the circulant structure of A?l

QY Q¥ ... QU ]
! & 2 ! k 5\
Q) Q¥ . Qi (Fe) "
QY Q¥ ... Qi : : 61)
~ \(22)
:(2) (3) B (k=) 1) (f%z) l ( )
L, Q_e)l Q?I? Q?l_
i—1 5 9e,
- [((Pp?l,q?L) Q?l> f?,(---)} (62)
=1
k7l a2,
n—2]4 1
= > Q (L ) e ) (63)
j=1 n=1
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where the notation |.| 4z, denotes the modulo g, i.e. the remainder of the euclidian division by
g=,- Now define

=i & (1) it \(ae,) £ Pz ke, X
ae o ke, Xae
[(,PP?[#I?Z) [( _e>l) (f?l) L }:|i_1 R l c RP2,92,%a2,
0 0 9=, —k=,
[

j=1
(64)

and the matrix Q?l € RP7:92,%P2,92, i5 a dense Gaussian matrix with i.i.d. elements. Then

k= ; ~ L'fqu +1 k2 . ~ L+ 72Jq +1
O I, () YU (L)Y L) L @) (L ) e L)
?L ?l o = ..

c RP2,92, %47,

where each ... is an identical copy of the first Do, X g, block, for a total of k-, blocks. This
means the D, g, output of the product A?l f%l (...) may be rewritten as a D, X ¢, matrix
(copied k- . times) resulting from the product of a dense Gaussian matrix with i.i.d. elements and a
matrix valued function F%l which verifies the same regularity conditions as ft?l. Note that, owing to
the separability assumption, we may use any permutation of the ( f%L )(i), 1 <4 < g, and will thus
drop the permutations to write

Fh () = (P (F, e RP7970%92, (65)

I (k2,) 1"
al Q2 . Qi
(k=) ;
Ql Q¥ .. Qy (7))
1) (2 (k2,) .
Q- Qy Q. : (66)
. 5 \(22)
: . (7))
(2) (3) = (1)
Q3 Qy, Qe Q7
i1 1 (k=) 2 ; L
B [((Ppa,q?l) (@) 0..0)@%T)T ... @2)T )f%x-..)] (67)
: i=1
Then, using once again the separability assumption, we may define:
k=
ft (1) ft \(ag,)| ! D k2, xa2e
L () = [(?ﬂ U LL:leR C N erPmmn (68)

e
05,00, |
such that the term Q%I ng, (...) also contains k-, copies of a Pz, x g, block containing the ¢,

blocks of size P, of the original P, g, vector A%l f?l (...). The iterates of the sequences defined
by Eq.(59) may then be rewritten as a subset of the rows of the following matrix valued iteration, i.e.:
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(69)

where each W, contains k-, copies of the initial w, reorganised into matrices as described
above. The dimensions of the variables are Note that at this point we have almost reached an iteration
verifying the structure of that appearing in Theorem[A.2] except the Onsager term isn’t, a priori, the
correct one. Consider the following iteration, where we replaced the original, scalar Onsager terms
with the correct, matrix-valued ones:

(70)



vit+tl _ A Tt rt—1 (1<t
Xe-g - Q?LMC-L) o M& (be-Z) ) (71)
rt 7t vt e
Mg =F2, (X?L,ﬂxg) )
.
vi+tl _ AT Tt \rt—1 (1.t
X' = Qi M - M (bl )

where, for any = E and any ¢ € N for the right oriented edges

t _ elf < t ) g2, Xq2
byl = E - € R7 L.
el — < 1)2ee,

and left oriented edges

1 el’L t &, Xq&
bl = NZ: Q2 W=, (X?f)?;ﬁz;a% e R

Using the separability assumption, we can simplify this expression. To take a concrete example,
consider Ft?z (Xte_{, X%) Let’s start with the dimensions. Recall

f?z (x? x<— ) c RFZ.92, = V_> f—> ( ?li%,v?jc%) (72)
where Xt?l € RD?lq?l = Rp?zq72 and X X?2 c Rp?zq?Q (73)

using the separability assumption, we may write

V1<i< Pe,qe, (74)
(#2. (U236, V2.35)), = o, (U2.3h), - (Vo35) ) 3
And
L (X%I,X%z) € RP2292, %02, (76)
where X%IRP?zq?zxq?z and X%Q € RP?212, %12, (77)
_ . ~ Ft o\ (1) t(l) ~t( 7t \(az,) t,(¢2,) J(q?)}

P (X, XE,) = (PG D) (6 Noa | as)

OP? (g2, —ke,)xaz,

- ~t,(1) ~t,(1 - ) =tilae,) t(ee,) 1722
- {(Q%L)(l)(x?(l)’x%_(z))"'(gt—e}l)(qel)(x?l ’X62 ):|i:1 (79
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where each fc%(:) € RP?29725 Recall that, for any 1 <1 < Pk, Ft bl R%?2 — R%%2. Then, for
any 1 < k,l < qv,

Pz, q2 [t
~ 1 2 72 OF%, ik (o ~
bt ) S 7<Xt Xt ) 80
( Z2)p1 T N ; 0X4, i1 EAR (50)
Pz, q2 ~ k
_1 N 78(9%2”')( )(587("') %Ry 81)
N = 65(%)2,2‘ S
1 Pz,q2, 9
_ T k ~t,(l) "tv(l)
i=1 %2
1l (VT J (Uﬁ 20 v, i“”) \% )5 (83)
= N (Ve T o (UeiXa ' VeuXis” ) Ve, ) b
1 X N
= T (T (U2 % Vo, 15 ) ) 0 (84)
Pz, g2,
1 (0", ((U2,%) , (V.xE) )6 (85)
N e 17eq i’ 2 S i k,l
i=1

where we wrote ‘7(9% y the N x N Jacobian matrix of the function (9%2)(k) : RN — R¥. Using
2

Berthier et al. [2020] corollary 2, the Onsager term can be replaced by any estimator based on the
asymptotically Gaussian iterates converging, in the high-dimensional limit, to the correct expectation.
The adaptation to the graph framework of |Gerbelot and Berthier [2021] is immediate (see the proof
in Berthier et al.|[2020] and corresponding comment in |Gerbelot and Berthier|[2021]). Using the
permutation invariance of the Gaussian distribution, we can therefore replace each element of the
matrix the Onsager term with

1 Pz,aq2,
Pos, 2 e ((30), (%6),) b )
€92 €9 i=1 7 3
which amounts to ~
bt?g = bt?glqyz Xqz, (87)

We therefore obtain an exact reformulation of the initial MLAMP iteration with convolutional
matrices in terms of a subset (first row of size Pz, X g, for right oriented edges and D, X g,
for left-oriented variables) of the variables of a matrix-valued iteration with dense Gaussian matrices
verifying the SE equations. Isolating the aforementioned first lines, recalling that the SE equations
prescribes i.i.d. rows in the asymptotically Gaussian fields, we recover that, forany 1 < [ < L,
the variable x5, € RY7%197: is composed of g, copies of block of size Py, with i.i.d. Gaussian
elements distributed according to the SE equations (A.3). The distribution of the variables associated
to left-oriented edges is obtained similarly. Note that, from a finite size point of view, the effect
of D+, Pz, is different from that of g, : the former results in subGaussian concentration i.e.
exponential in the dimension, while the latter only represents copies (and not i.i.d. samples), and thus
only has an averaging effect. This is observed in simulations.

O

A.4 Bayes-optimal MLAMP with random convolutional matrices

In this section, we specialize the equations obtained in the previous section to the Bayes-optimal
MLAMP iteration of the main body of the paper. Several functions are reminded for convenience.
Consider the MLAMP iteration outlined in section [3.3} The scalar updates described in Eq.(4) can be
rewritten as vector-valued updates as follows, for any ¢ € N, and any 0 < [ < L:

wO(#) =WOhO @) - vO)g® —1) (88)

BO (1) = (W) g0(t) ~ 7O @) (59)
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To define the update functions and terms V() VD, the following partition functions were introduced.

e forl =1
w12

_ (==
dzP)( 2@ (90)

20 (5, 0,u0) = / yl2)e
9 ’ W out

e forany2<<I<L—-1:
2z (Aufl),B(lfl)’ v<l>,w<l>) —

(sz(l))2

A(l71)1L2+B(l71)h - O]
m /dhdzPout hlz)e™ e 2@ 1)
e forl=1L
24D, By = /dhpx(h)(%mmhm?wm ©2)
We then define the layer-dependent, time-dependent, scalar update functions f():t, fOt
Y (B,w) € R?

Fw) = 9,l0gZ™ (3, VO (1),w) ©3)
FOHB,w) = ,logz® (A(l_l)(t),B,V(l)(t)7w> 2<I<L (94)
FOB, w) = dplog2+D) <A<l>(t —1),B, VUt — 1),w) 1<I<L-1 (95

FEND(B) = dplogZ L+ (A(L)(t - 1),3) : (96)

and their corresponding separable, vector valued counterparts £(*)| £, which leads to the following
iteration

w(l)( ) W(l)f(l) ( (l),t—l’w(l+1),t—1) _ V(l) (t)f(l)vt_l(B(l_l)*t_17w(l)vt_l) 97)

BO(¢) = (W(z)> FOHBU-DE D) O ) FOL (RO D=1y (98)

where the Onsager terms V' ()+* and V-t reduce to, using the separability of the update functions,
ni—1

174 )t — Z Op f(l) t (l) t— 1 (H’l) t— 1) (99)

(l) t Za f l) t l 1), t (l)vt) — _A(l),t (100)

We now show that the update functions defined above are Lipschitz continuous and increasing, thus
ensuring that the integrals are well defined through positivity of the parameters V, V.
Lemma A.4. Forany 1 < < L, and any ¢ € N, the functions f()-*, f(O- are Lipschitz continuous

in B, w. Furthermore, the functions f():¢, f F(D:t are respectively decreasing in w and increasing in B.
As a consequence, the variance terms A(l) tand VOt are strictly positive.

Proof. Recall the partition function, omitting the layer index since all regularity assumptions are the
same for all layers and time indices,

N2
Z(A,B,V,w) = ﬁ/PhV exp (Bh—Ah2 (2 2‘;") ) dh dz (101)

recalling p(h|z) = [p(€)d(h — fe(2))dE, integrating in h yields

(z —w)

2
Z(A,B,V,w) = 57 >d§dz (102)

1 2
\/W P(¢)exp (Bfg(z)—QAfg(z) —
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Starting with f, we can straightforwardly verify the conditions to apply the dominated convergence
theorem and differentiate under the integral to obtain

an(B, OJ) = 8% log (Z(A7 Ba ‘/7 W))
1
T (V2nVZ(A, B,V,w))?

/P(g) exp (Bfg(z) - %Afg(z)Q - (Z;‘;‘))Q) dé dz—

(z —w)?

([P@szeen (sr) - jare? - E520 ) dean

([ Pescron (B - Laner - 52 acar) ) 0
(103)

where the positivity comes from the Cauchy-Schwarz inequality and positivity of the term
2
P(¢)exp (Bfg (z) — $Afe(2)* — @) Turning to f, we complete the square in the variable h

2V
to obtain
exp B2 A B 2 )2
Z(AB.V,w) = 2<7T;> [ P©ew (—2 (7~ ) ) exp (B30 ) deas
(104)
and differentiating under the integral yields
f(B,w) = 0,log (Z(A, B,V,w)) (105)
1 [ JP()zexp (—é (fe(z) — %)2) exp (—M> d€ dz
=5 " — ) —w (106)
(fP(f) exp (—5 (fg(z) — Z) )exp ( 7) d§dz>

J P( 5)zeXp(—é(f§(z % exp( (G >d5dz
where the term is the conditional mean of the dis-
(7@ (20 7)o o) a7

J P exp(~4(fe(=)-8) )exp( Coo® ) ae
(j P({)exp(ff(fg 77) )exp( M) dé dz )

straightforward to verify using the polynomial bound assumption on the activation functions and the
inverse exponential factors. O

tribution with density The Lipschitz property is

In the Bayes-optimal MLAMP, see Manoel et al. [2017], the planted vectors w—, are chosen
as independently distributed as the asymptotic SE representation of the output of the previous
layer, and are therefore Lipschitz transforms of subGaussian random variables, and thus are also
subgauss1an Using the permuation invariance of the Gaussian distribution, the quantities z, = A? .
remain Gauss1an We can therefore apply the result of Lemma[A.3|to this iteration and obtam that
iterates of Eq.(4) verify the SE equations from Lemma[A 3| with the corresponding update functions.
Furthermore, in the Bayes optimal case, the Nishimori conditions, see e.g. Krzakala et al. [2012],
allow to only keep the parameters v, 4, to describe the distribution of of the iterates, recovering
the equations of Theorem 4.2} Flnally, the rescaling of the variances to go from the factors J; to the

B, of the main can be done by rescaling each non-linearity f?l by v/N/n;_1 (and similary for the
f‘t?z with \/N/n;) as done in|{Javanmard and Montanari [2013|], Berthier et al. [2020].

B Fast MCC-vector Products

Here is a simple sketch of an algorithm for multiplying M ~ MCC(D, P, q, k) with a vector v € R4
that runs in time O(DPqlogq). If k >> log g, this improves on the runtime required by a simple
sparse matrix-vector product. We use Matlab index notation for matrix and vector coordinates, for
example M[i : j, k] = [Myy : 7 =1...j], and we write shorthand M;; for M|, j].
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Data: matrix M ~ MCC(D, P, q, k), vector v € R4
Initialize s € RP the zero vector;
for:=1...Ddo
forj=1...Pdo
Cij + Mlgi: q(i +1), g : ¢(j + 1)];
Wij = Cij [0, 0: k],
wij = FFT(wi;);
8 = FFT(o[qJ, q(j + 1):
S; = Wij * Uy,
slgi : q(i +1)] = IFFT(8;);

end
end
Algorithm 1: O(DPqlog q) time algorithm for MCC-vector products
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Figure 6: Replica of Figurefor q = 10 and P = 10000. (left) Compressive sensing yo = Wxg + ¢
for noise ¢; ~ A(0,10~*) and signal prior zg ~ pN(0,1) + (1 — p)d(x), where W € RP7*F4 hag
varying aspect ratio 8 = D/P. Crosses correspond to AMP evaluations for W ~ MCC(D, P, ¢, k)
according to Definition [3.2] averaged over 10 independent trials. Lines show the state evolution
predictions when W;; ~ N (0,1/Pq). The system size is P = 10000, ¢ = 10, k¥ = 3, where 3 and
D = BP vary. (right) AMP iterates at p = 0.25 and 3 near the recovery transition.

C Additional Experiments

C.1 Sparse Compressive Sensing

We observe empirically that in the sparse compressive sensing task of Figure[I] the relative sizes of
(D, P) and q have little impact on the performance of the corresponding AMP iteration. In Figure
[6, we show a replica of this figure with ¢ = 10 and P = 10000. Despite a significant difference
between the relative sizes of these parameters, the AMP iterations behave largely the same.

C.2 Empirical Results for Vector-AMP Algorithms

We observe that a similar equivalence property as Theorem [.2] holds for algorithms based on the
VAMP framework Schniter et al.| [2016], |[Fletcher et al. [2018]], Baker et al. [2020]]. Previously, state
evolution has been proven for such algorithms when their sensing matrices are drawn from a right-
orthogonally-invariant ensemble. While the random MCC ensemble does not satisfy this property,
we show in Figure[/|a comparison between empirical VAMP performance and the corresponding SE
predictions for dense matrices, which are almost identical.
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Sparse Compressive Sensing (¢ = 10, P = 100) AMP lterates for p = 0.25 (¢ = 10, P = 100)
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Figure 7: Replica of Figure |I using Tree-AMP Baker et al. [2020], a compositional VAMP type
algorithm, for ¢ = 10 and P = 100. (left) Compressive sensing yo = Wzo + ¢ for noise
¢ ~ N(0,107%) and signal prior xg ~ pN(0,1) + (1 — p)d(x), where W € RP2*F4 has varying
aspectratio 5 = D/ P. Crosses correspond to AMP evaluations for W ~ MCC(D, P, q, k) according
to Definition [3.2] averaged over 30 independent trials. Lines show the state evolution predictions
when W;; ~ N(0,1/Pq). The system size is P = 100, ¢ = 10, k = 3, where 3 and D = 3P vary.
(right) AMP iterates at p = 0.25 and [ near the recovery transition.

D Structured Convolutions and Non-separable Denoising

Our proof uses a relatively simple version of spatial coupling, leaving avenues for potential gener-
alizations. Spatially coupled sensing matrices typically consist of a block structured matrix whose
blocks are i.i.d. Gaussian with different variances, as in (for instance) Krzakala et al. [2012], Barbier
et al.|[2015]. As a model, consider Mj, of the following form, with variances x € R‘j_xq,

ki1An k2l ... /ilquq
Y Ko1 A1
My, =
Kjlquq RPN quAqq

As a result of Lemma a given MCC matrix M 1is equivalent to M corresponding to the case
where « is a convolutional matrix according to Deﬁnition with filterw = [1 1 ... 1] € R*. One
avenue to extend our results is to consider general M where & is any circulant matrix. Inverting the
permutation lemma, this corresponds to MCC matrices whose convolutional blocks have filters with
independent non-isotropic coordinates, as in the following definition, which may be viewed as a
simple model for structured convolutional filters.

Definition D.1 (Independent Gaussian Random Convolutions). Let & = [k1,..., kK] € R’i and let
Y = diag(K). Let ¢ > k > 0 be integers. The Gaussian convolutional ensemble C(q, k) contains
random circulant matrices C' € R9*? whose first rows are given by C) = Zero-pad, x[w] where

w~ N(0,%).

This model is a natural extension of our current setting, which is also amenable to proof techniques
designed for spatial coupling. However, because the nonzero coordinates of the sensing matrix are no
longer i.i.d., the Bayes-optimal denoising functions corresponding to this problem are non-separable.
So, an equivalence theorem analogous to Theorem [.2]is not expected to hold — in other words, state
evolution in this convolutional model is not expected to reduce to that of a signal model with dense
i.i.d. couplings. More generally, multilayer AMP iterations with non-separable non-linearities may
be written to compute marginals of posterior distributions involving such functions, and will verify
SE equations. However there will be no direct correspondance with the iteration and SE equations of
the fully separable case.
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