
A Convergence analysis of Algorithm 1

In this section, we provide a convergence rate analysis for Algorithm 1. Similar to Hazan et al. [36],
Algorithm 1 has access to an approximate density oracle and an approximate planner defined below:

• Visitation density oracle: We assume access to an approximate density estimator that takes in a
policy ⇡ and a density approximation error ✏d � 0 as inputs and returns d̂⇡ such that kd⇡� d̂

⇡k1 
✏d.

• Approximate planning oracle: We assume access to an approximate planner that, given any MDP
M and error tolerance ✏p � 0, returns a policy ⇡ such that JM (⇡) � max⇡ JM (⇡) � ✏p.

A.1 Proof of Theorem 1

We first give the following proposition that captures certain properties of the proposed objective. The
proof is postponed to the end of this section.
Proposition 1. Consider the following regularization for � > 0

R�(d; {d⇡i}k
i=1) =

X

s,a

s
d(s, a) + �

⇢cov(s, a) + �
,

with ⌧k = ⌧/k
c where ⌧ < 1, c > 0. There exist constants �, B, and ⇠ that only depend on MDP

parameters and � such that Lk(d) := J(d) + ⌧kR�(d; {d⇡i}k
i=1) satisfies the following regularity

conditions for all k � 1, an appropriate choice of c, and valid visitation densities d and d
0:

(i) Lk(d) is concave in d;

(ii) Lk(d) is �-smooth: krLk(d) � rLk(d0)k1  �kd � d
0k1, ��I � r2

Lk(d) � �I;

(iii) Lk(d) is B-bounded: Lk(d)  B, krLk(d)k1  B;

(iv) There exists �k such that maxd Lk+1(d)�Lk(d)  �k and we have
P

k

i=0(1�⌘)i�k�i  ⌧⇠.

Taking the above proposition as given for the moment, we prove Theorem 1 following steps similar
to those of Hazan et al. [36, Theorem 4.1]. By construction of the mixture density d

⇡mix,k , we have
d
⇡mix,k = (1 � ⌘)d⇡mix,k�1 + ⌘d

⇡k .

Combining the above equation with the �-smoothness of Lk(d) yields
Lk(d

⇡mix,k) = Lk((1 � ⌘)d⇡mix,k�1 + ⌘d
⇡k)

� Lk(d
⇡mix,k�1) + ⌘hd⇡k � d

⇡mix,k�1 ,rLk(d
⇡mix,k�1)i � ⌘

2
�kd⇡k � d

⇡mix,k�1k22
� Lk(d

⇡mix,k�1) + ⌘hd⇡k � d
⇡mix,k�1 ,rLk(d

⇡mix,k�1)i � 4⌘2�. (8)
Here the last inequality uses kd⇡k � d

⇡mix,k�1k2  2. By property (ii), we bound
hd⇡k ,rLk(d⇡mix,k�1)i according to

hd⇡k ,rLk(d
⇡mix,k�1)i � hd⇡k ,rLk(d̂

⇡mix,k�1)i � �kd⇡mix,k�1 � d̂
⇡mix,k�1k1

� hd⇡k ,rLk(d̂
⇡mix,k�1)i � �✏d, (9)

where in the last step we used the density oracle approximation error. Recall that we defined
rk = (1� �)rLk(d̂⇡mix,k�1). Since ⇡k returned by the approximate planning oracle is an ✏p-optimal
policy in M

k, we have (1 � �)�1hd⇡k , rki � (1 � �)�1hd⇡, rki � ✏p for any policy ⇡, including ⇡
?.

Therefore,
hd⇡k ,rLk(d

⇡mix,k�1)i � hd⇡
?

,rLk(d̂
⇡mix,k�1)i � ✏p � �✏d

� hd⇡
?

,rLk(d
⇡mix,k�1)i � ✏p � 2�✏d, (10)

where we used the density oracle approximation error once more in the second step. Going back to
inequality (8), we further bound Lk(d⇡mix,k) by

Lk(d
⇡mix,k) � Lk(d

⇡mix,k�1) + ⌘hd⇡k � d
⇡mix,k�1 ,rLk(d

⇡mix,k�1)i � 4⌘2�

� Lk(d
⇡mix,k�1) + ⌘hd⇡

?

� d
⇡mix,k�1 ,rLk(d

⇡mix,k�1)i � ⌘✏p � 2⌘�✏d � 4⌘2�

� (1 � ⌘)Lk(d
⇡mix,k�1) + ⌘Lk(d

⇡
?

) � 4⌘2� � ⌘✏p � 2⌘�✏d,

19

where the last inequality is by concavity of Lk(d). Therefore,

Lk(d
⇡
?

) � Lk(d
⇡mix,k)  (1 � ⌘)[Lk(d

⇡
?

) � Lk(d
⇡mix,k�1)] + 2⌘�✏d + ⌘✏p + 4⌘2�.

By assumption (iv), we write

LK+1(d
⇡
?

) � LK+1(d
⇡mix,K)  LK(d⇡

?

) � LK(d⇡mix,K) + 2�K

 (1 � ⌘)[LK(d⇡
?

) � LK(d⇡mix,K�1)] + 2�K + 2⌘�✏d + ⌘✏p + 4⌘2�

 Be
�⌘K + 2�✏d + ✏p + 4⌘� + 2

KX

i=0

(1 � ⌘)i�K�i

 Be
�⌘K + 2�✏d + ✏p + 4⌘� + 2⌧⇠.

It is straightforward to check that setting ⌘  0.1✏��1
, ✏p  0.1✏, ✏d  0.1✏��1

, ⌧  0.1✏, and the
number of iterations K � ⌘

�1 log(10B✏
�1) yields the claim of Theorem 1.

Remark 2. Since the temperature parameter ⌧k in Proposition 1 goes to zero as k increases, one
can show that the expected value of policy returned by Algorithm 1 converges to the maximum
performance J(⇡?).

Proof of Proposition 1. For claim (ii), observe that r2
Lk(d) is a diagonal matrix whose (s, a)

diagonal term is given by

(r2
Lk(d))s,a =

�⌧

4kc
⇥ 1

(d(s, a) + �)3/2(⇢cov(s, a) + �)1/2
.

The diagonal elements are bounded by �1/(4�2)  (r2
Lk(d))s,a  1

4�2 =: �. Furthermore, by
Taylor’s theorem, one has

krLk(d) � rLk(d
0)k1  max

(s,a),↵2[0,1]
(r2

Lk(↵d + (1 � ↵)d0))kd � d
0k1  �kd � d

0k1.

Claim (i) is immediate from the above calculation as the Hessian r2
Lk(d) is negative definite. Claim

(iii) may be verified by explicit calculation:

X

s,a

d(s, a)r(s, a) +
⌧

kc

X

s,a

s
d(s, a) + �

⇢cov(s, a) + �
 SA

1 +

r
1 + �

�

!
=: B.

For claim (iv), we have

Lk+1(d) � Lk(d) 
X

s,a

⌧

(k + 1)c

s
d(s, a) + �

⇢cov(s, a) + �
 SA⌧

(k + 1)c

r
1 + �

�
=: �k

We have
kX

i=0

(1 � ⌘)i�k�i = ⌧SA

r
1 + �

�

kX

i=0

(1 � ⌘)i

(k � i + 1)c
.

For example, for c = 2, the above sum is bounded by
P1

n=1 1/n2 = ⇡
2
/6. Thus, one can set

⇠ := ⇡
2
SA

6

q
1+�

�
.

B Experimental details

Source code is included in the supplemental material.

B.1 Bidirectional lock

Environment. For the bidirectional lock environment, one of the locks (randomly chosen) gives a
larger reward of 1 and the other lock gives a reward of 0.1. Further details on this environment can be
found in the work [3].

20

Exploration bonuses. We consider three exploration bonuses:

• Hoeffding-style bonus is equal to
Vmaxp
Nk(s, a)

,

for every s 2 S, a 2 A, where Vmax is the maximum possible value in an environment which we
set to 1 for bidirectional lock.

• We use a Bernstein-style bonus
s

Vars0⇠Pk(·|s,a)Vk(s0)

Nk(s, a)
+

1

Nk(s, a)

based on the bonus proposed in [37]. Pk denotes an empirical estimation of transitions
Pk(s0|s, a) = Nk(s, a, s0)/Nk(s, a), where Nk(s, a, s0) is the number of samples on transiting to
s
0 starting from state s and taking action a.

• MADE’s bonus is set to the following in tabular setting:
1p

Nk(s, a)Bk(s, a)
.

Algorithms. Below, we describe details on each tabular algorithm.

• Value iteration. We implement discounted value iteration given in [37] with all three bonuses.
• PPO. We implement a tabular version of the algorithm in [16], which is based on PPO with bonus.

Specifically, the algorithm has the following steps: (1) sampling a new trajectory by running the
stochastic policy ⇡k, (2) updating the empirical transition estimate Pk and exploration bonus, (3)
computing Q-function Qk of ⇡k over an MDP Mk with empirical transitions Pk and total reward
rk which is a sum of extrinsic reward and exploration bonus, and (4) updating the policy according
to ⇡k+1(a|s) / ⇡k(a|s) exp(↵kQk(s, a)), where ↵k =

p
2 log(A)/HK based on Cai et al. [16,

Theorem 13.1].
• Q-learning. We implement Q-learning with bonus based on the algorithms given by Jin et al. [44].

B.2 Chain MDP

For the chain MDP described in Section 4.2, we run policy gradient for a tabular softmax policy param-
eterization ⇡(s|a) = ✓s,a with the following RL objectives. Since we use a simplex parameterization,
we run projected gradient ascent.

• Vanilla PG. The vanilla version simply considers the standard RL objective J(⇡✓). For the gradient
r✓J(⇡✓), see e.g. Agarwal et al. [2, Equation (32)].

• PG with relative policy entropy regularization. We use the objective (with the additive constant
dropped) given in Agarwal et al. [2, Equation (12)]:

L(⇡✓) := J(⇡✓) + ⌧k

X

s,a

log ⇡✓(a|s).

Here, index k denotes the policy gradient step. This form of regularization is more aggressive than
the policy entropy regularized objective discussed next. Partial derivatives of the above objective
are simply

@L(⇡✓)

@✓s,a
=

@J(⇡✓)

@✓s,a
+ ⌧k

1

✓s,a
,

where the first term is analogous to the vanilla policy gradient.
• PG with policy entropy regularization. Policy entropy regularized objective [100, 67, 70, 62] is

L(⇡✓) := J(⇡✓) � ⌧k(1 � �)�1 E(s,a)⇠d
⇡✓
⇢ (·,·)[log ⇡✓(a|s)].

The gradient of the regularizer of the above objective is given in Lemma 1.

21

• PG with MADE’s regularization. For MADE, we use the following objective

L(⇡✓) := J(⇡✓) � ⌧k

X

s,a

p
d⇡(s, a).

The gradient of MADE’s regularizer is computed in Lemma 2.

For all regularized objectives, we set ⌧k = 0.1/
p
k.

B.3 MiniGrid

We follow RIDE [17] and use the same hyperparameters for all the baselines. For ICM, RND,
IMPALA, RIDE, BeBold and MADE, we use the learning rate 10�4, batch size 32, unroll length
100, RMSProp optimizer with ✏ = 0.01 and momentum 0. For entropy cost hyperparameters, we
use 0.0005 for all the baselines except AMIGo. We provide the entropy cost for AMIGo below. We
also test different values {0.01, 0.02, 0.05, 0.1, 0.5} for the temperature hyperparameter in MADE.
The best hyperparameters we found for each method are as follows. For Bebold, RND, and MADE

we use intrinsic reward scaling factor of 0.1 for all environments. For ICM we use intrinsic reward
scaling factor of 0.1 for KeyCorridor environments and 0.5 for the others. Hyperparameters in RIDE

are exactly the same as ICM. For AMIGo, we use an entropy cost of 0.0005 for the student agent,
and an entropy cost of 0.01 for the teacher agent.

B.4 DeepMind Control Suite

Environment. We use the publicly available environment DeepMind Control Suite [95] without
any modification (Figure 9). Following the task design of RE3 [86], we use Cheetah_Run_Sparse
and Walker_Run_Sparse.

Cheetah Hopper Walker Pendulum CartPole

Figure 9: Visualization of various tasks in DeepMind Control Suite. DeepMind Control Suite includes image-
based control tasks with physics simulation. We mainly experiment on locomotion tasks in this environment.

Model-free RL implementations. For the experiments, we use the baselines of RAD [55], and we
conduct a hyperparameter search over certain factors:

• RND. We search for the temperature parameter ⌧0 over {0.001, 0.01, 0.05, 0.1, 0.5, 10.0} and
choose the best for each task. Specifically we use ⌧0 = 0.1 for Pendulum_Swingup and
Cheetah_Run_Sparse, ⌧0 = 10 for Cartpole_Swingup_Sparse, and ⌧0 = 0.05 for others.

• ICM. We search for the temperature parameter ⌧0 over {0.001, 0.01, 0.05, 0.1, 0.5, 1.0} and choose
the best for each task. Specifically we select ⌧0 = 1.0 for Cheetah_Run_Sparse and ⌧0 = 0.1
for the others. For the total loss used in training the networks, to balance the coefficient between
forward loss and inverse loss, we follow the convention and use Lall = 0.2 ·Lforward+0.8 ·Linverse,
where Lforward is the loss of predicting the next state given current state-action pair and Linverse is
the loss for predicting the action given the current state and the next state.

• RE3. We use an initial scaling factor ⌧0 = 0.05 (the scaling factor of ⌧k at step 0) and decay it
afterwards in each step. Note that we use the number of clusters M = 3 with a decaying factor on
the reward ⇢ = {0.00001, 0.000025}. Therefore, the final intrinsic reward scaling factor becomes:
⌧k = ⌧0e

�⇢k.
• MADE. We search for the temperature parameter ⌧0 over {0.001, 0.01, 0.05, 0.1, 0.5} and choose

the best for each task. Specifically we select ⌧0 = 0.05 for Cartpole_Swingup_Sparse,
Walker_Run_Sparse and Cheetah_Run_Sparse, ⌧0 = 0.5 for Hopper_Hop and
Pendulum_Swingup, and ⌧0 = 0.001 for Quadruped_Run.

22

We use the same network architecture for all the algorithms. Specifically, the encoder consists of 4
convolution layers with ReLU activations. There are kernels of size 3 × 3 with 32 channels for all
layers, and stride 1 except for the first layer which has stride 2. The embedding is then followed by a
LayerNorm.

Model-based Rl implementation Here we provide implementation details for the model-based
RL experiments. We adopt Dreamer as a baseline and build all the algorithms on top of that.

• RE3. For RE3, we follow the hyperparameters given in the original paper. We use an initial scaling
factor ⌧0 = 0.1 without decaying ⌧k afterwards. The number of clusters is set to M = 50. We use
a decaying factor on the reward ⇢ = 0.

• MADE. We search for the temperature parameter ⌧0 over {0.0005, 0.01, 0.05, 0.1, 0.5} and
choose the best for each map. Specifically we use 0.5 for Cartpole_Swingup_Sparse,
Cheetah_Run_Sparse and Hopper_Hop, 0.01 for Walker_Run_Sparse and
Pendulum_Swingup and 0.0005 for Quadruped_Run.

C Gradient computations

In this section we compute the gradients for policy entropy and MADE regularizers used in the chain
MDP experiment. Before presenting the lemmas, we define two other visitation densities. The state
visitation density d

⇡ : S ! [0, 1] is defined as

d
⇡(s) := (1 � �)

1X

t=0

�
t Pt(st = s;⇡),

where Pt(st = s;⇡) denotes the probability of visiting s at step t starting at s0 ⇠ ⇢(·) following
policy ⇡. The state-action visitation density starting at (s0, a0) is denoted by

d
⇡

s0,a0(s, a) := (1 � �)
1X

t=0

�
t Pt(st = s, at = a;⇡, s0 = s

0
, a0 = a

0).

The following lemma computes the gradient of policy entropy with respect to policy parameters.
Lemma 1. For a policy ⇡ parameterized by ✓, the gradient of the policy entropy

R(⇡✓) := �E(s,a)⇠d
⇡✓
⇢ (·,·)[log ⇡✓(a|s)],

with respect to ✓ is given by

r✓R(⇡✓) = E(s,a)⇠d
⇡✓
⇢ (·,·)


r✓ log ⇡(a|s)

✓
1

1 � �
hd⇡

s,a
,� log ⇡i

◆
� log ⇡(a|s)

�
.

Proof. By chain rule, we write

r✓R(⇡✓) = �
X

s,a

r✓d
⇡(s, a) log ⇡(a|s) +

X

s,a

d
⇡(s, a)r✓ log ⇡(a|s) = �

X

s,a

r✓d
⇡(s, a) log ⇡(a|s).

The second equation uses the fact that Ex⇠p(·)[r✓ log p(x)] = 0 for any density p and that d⇡(s, a) =
d
⇡(s)⇡(a|s) as laid out below:

X

s,a

d
⇡(s, a)r✓ log ⇡(a|s) =

X

s

d
⇡(s)

X

a

⇡(a|s)r✓ log ⇡(a|s) = 0.

By another application of chain rule, one can write

r✓d
⇡(s, a) = r✓[d

⇡(s)⇡(a|s)] = r✓d
⇡(s)⇡(a|s) + d

⇡(s, a)r✓ log ⇡(a|s).
We further simplify r✓R(⇡✓) according to

r✓R(⇡✓) = �
X

s,a

r✓d
⇡(s, a) log ⇡(a|s)

= �
X

s,a

r✓d
⇡(s)⇡(a|s) log ⇡(a|s) �

X

s,a

d
⇡(s, a)r✓ log ⇡(a|s) log ⇡(a|s).

23

We substitute r✓d
⇡(s) based on Zhang et al. [109, Lemma D.1]:

r✓R(⇡✓) = � 1

1 � �

X

s0,a0

d
⇡(s0, a0)r✓ log(a0|s0)

X

s,a

ds0,a0(s, a) log ⇡(a|s)

�
X

s,a

d
⇡(s, a)r✓ log ⇡(a|s) log ⇡(a|s)

=E(s,a)⇠d
⇡✓
⇢ (·,·)


r✓ log ⇡(a|s)

✓
1

1 � �
hd⇡

s,a
,� log ⇡i

◆
� log ⇡(a|s)

�
,

where hd⇡
s,a

,� log ⇡i denotes the inner product between vectors d⇡
s,a

and � log ⇡. This completes
the proof.

The following lemma computes the gradient of MADE regularizer with respect to policy parameters.
Lemma 2. For a policy ⇡ parameterized by ✓, the gradient of the regularizer

R(⇡✓) :=
X

s,a

p
d⇡(s, a),

with respect to ✓ is given by

r✓R(⇡✓) =
1

2
E(s,a)⇠d⇡(·,·)

"
r✓ log ⇡(a|s)

1

1 � �
hd⇡

s,a
,

1p
d⇡

i +
1p

d⇡(s, a)

!#
.

Proof. The proof is similar to that of Zhang et al. [109, Lemma D.3]. We write r✓d
⇡(s, a) =

r✓d
⇡(s)⇡(a|s) + d

⇡(s, a)r✓ log ⇡(a|s) and conclude based on Zhang et al. [109, Lemma D.1] that

r✓R(⇡✓) =
1

2

X

s,a

r✓d
⇡(s, a)p

d⇡(s, a)

=
1

2(1 � �)

X

s0,a0

d
⇡(s0, a0)r✓ log ⇡(a0|s0)

X

s,a

d
⇡

s0,a0(s, a)
1p

d⇡(s, a)

+
1

2

X

s,a

d
⇡(s, a)r✓ log ⇡(a|s) 1p

d⇡(s, a)

=
1

2
E(s,a)⇠d⇡(·,·)

"
r✓ log ⇡(a|s)

1

1 � �
hd⇡

s,a
,

1p
d⇡

i +
1p

d⇡(s, a)

!#
.

24

