
A Experiment Details

We provide details about each experiment in this section. Regarding the implementation of baseline
methods:

• BVFSM’s implementation is adapted from https://github.com/vis-opt-group/

BVFSM.
• Penalty’s implementation is adapted from https://github.com/jihunhamm/

bilevel-penalty.
• VRBO’s implementation is adapted from https://github.com/JunjieYang97/

MRVRBO.
• AID-CG and AID-FP implementations are adapted from https://github.com/

prolearner/hypertorch.
• ITD implementation is adapted from https://github.com/JunjieYang97/stocBiO.

A.1 Toy Coreset Problem

The problem is:

min
v,✓

k✓ � x0k2 s.t. ✓ 2 argmin
✓

k✓ �X�(v)k2 ,

where �(v) = exp(v)/
P4

i=1 exp(vi) is the softmax function, v 2 R4
, ✓ 2 R2, and X =

[x1, x2, x3, x4] 2 R2⇥4. where �(v) = exp(v)/
P4

i=1 exp(vi) is the softmax function. Here
the outer objective f pushes ✓ to towards x0 while the inner objective g ensures ✓ remains in the
convex hull formed by 4 points in the 2D plane (e.g. X = [x1, x2, x3, x4] 2 R2⇥4). We choose
x0 = (3,�2) and the four points x1 = (1, 3), x2 = (3, 1), x3 = (�2, 2) and x4 = (�3, 2). We set
v0 = (0, 0, 0, 0) and ✓0 2 {(0, 3), (�3, 1), (3.5, 1)}. For all methods, we fix both the inner stepsize
↵ and the outer stepsize ⇠ to be 0.05 and set T = 10. For BVFSM and Penalty, we grid search the
best hyperparameters from {0.001, 0.01, 0.1}. For BOME, we choose � = ⌘ krq̂k2 and ablate over
⌘ 2 {0.1, 0.5, 0.9} and T 2 {1, 10, 100}. The visualization of the optimization trajectories over the
3 initial points are plotted in Fig. 3.

Figure 3: Trajectories of (vk, ✓k) on the toy coreset problem (6.1) obtained from BOME (blue) and
three recent first-order bilevel methods: BSG-1 [15] (green), BVFSM [34] (orange), and Penalty
[39] (red). The goal of the problem is to find the closet point (marked by opt.) to the goal x0 within
the convex envelop of the four vertexes. All methods start from 3 initial points (start 1-3), and the
converged points are shown in darkblue. For BOME, we also plot the trajectory of {✓̂Tk } in cyan.

As shown, BOME successfully converges to the optimal solution regardless of the initial ✓0, while
BSG-1, BVFSM and Penalty methods converge to non-optimal points. We emphasize that for
BVFSM and Penalty, the convergence point depends on the choice of hyperparameters.

A.2 Toy Mini-max Game

The toy mini-max game we consider is:

min
v2R

v✓
⇤(v) s.t. ✓

⇤(v) = argmax
✓2R

v✓. (13)

16

https://github.com/vis-opt-group/BVFSM
https://github.com/vis-opt-group/BVFSM
https://github.com/jihunhamm/bilevel-penalty
https://github.com/jihunhamm/bilevel-penalty
https://github.com/JunjieYang97/MRVRBO
https://github.com/JunjieYang97/MRVRBO
https://github.com/prolearner/hypertorch
https://github.com/prolearner/hypertorch
https://github.com/JunjieYang97/stocBiO

For BOME and BSG-1, BVFSM, and Penalty methods, we again set both the inner stepsize ↵ and �

to be 0.05, as no significant difference is observed by varying the stepsizes. For all methods, we set
the inner iteration T = 10. For BVFSM and Penalty, we grid search the best hyperparameters from
{0.001, 0.01, 0.1}.

A.3 Without LLS assumption

The toy example to validate whether BOME requires the low-level singleton assumption is borrowed
from Liu et al. [31]:

min
v2R,✓2R2

k✓ � [v; 1]k22 s.t. ✓ 2 argmin
(✓0

1,✓
0
2)2R2

(✓01 � v)2,

where ✓ = (✓1, ✓2) and the optimal solution is v⇤ = 1, ✓⇤ = (1, 1). Note that the inner objective has
infinite many optimal solution ✓

⇤(v) since it is degenerated. We set both the inner and outer stepsizes
to 0.5 and T = 10 for all methods. For BVFSM and Penalty, we grid search the best hyperparameters
from {0.001, 0.01, 0.1}. In Fig. 4, we provide the distance of f(vk, ✓k), g(vk, ✓k), ✓k, vk to their
corresponding optimal over training time in seconds. Note that BOME ensures that q̂(vk, ✓k) =
g(vk, ✓k)� g(v⇤, ✓⇤) decreases to 0.

Figure 4: Results on Problem (A.3) which violates the low-level singleton (LLS). We compare BOME
against BSG-1, BVFSM, and Penalty. (v⇤, ✓⇤) denotes the true optimum and The four plots show
how fast f(vk, ✓k), g(vk, ✓k), ✓k and vk to the corresponding optimal values w.r.t. the training time
in seconds.

A.4 Data Hyper-cleaning

The bilevel problem for data hyper-cleaning is

min
v,✓

`
val(✓), s.t. ✓ = argmin

✓
`

train(✓, v) + c k✓k2 ,

where `
val is the validation loss on Dval, and `

train is a weighted training loss: `
train =Pm

i=1 �(vi)`(xi, yi, ✓) with �(v) = Clip(v, [0, 1]) and v 2 Rm. The training data is of size
m = 50000 and hence w 2 [0, 1]50000. The validation data is of size m = 5000. The model
✓ = (W, b) is a linear model with weight W and bias b. Where W 2 R10⇥784 and b 2 R10. For this
problem, we set inner stepsize ↵ = 0.01 for both MNIST and FashionMNIST dataset for all methods
as larger or smaller ↵ result in worse performance. As we observe v’s gradient norm is much smaller
than ✓’s in practice, we conduct a grid search over ⇠v from {10.0, 50.0, 100.0, 500.0, 1000.0} and
also search whether to apply momentum for gradient descent, for all methods. The momentum is
searched from {0.0, 0.9}. For BVFSM and Penalty methods, we also search for their best hyperpa-
rameters from {0.001, 0.01, 0.1, 1}. The model’s initial parameter ✓0 is initialized from a pretrained
model learned only on the corrupted data. We split the dataset into 4 parts: train set, validation
set 1, validation set 2, and the test set. For each method, the model is learned on the train set, and
the hyperparameter v is tuned using validation set 1. The best hyperparameter of any algorithm
(e.g. stepsize, barrier coefficient, etc.) are then chosen based on the best validation performance on
validation set 2. Then we report the final performance of the model on the test set. To conduct the
ablation on ↵ for BOME, we search for ↵ 2 {0.25⇠, 0.5⇠, ⇠, 2⇠}, where ⇠ = 0.01 is the best stepsize
we found for BOME. Results on MNIST and FashionMNIST dataset are provided in Fig. 5. In the
first column of Fig. 5, we compare BOME with (T = 1 and T = 20) with baseline methods whose T
is chosen based on best performance on the validation set 2.

17

(a) Test loss v.s. Time
Da

ta

Hy
pe

r-c
le

an
in

g
M

N
IS

T

BOME BSG_1Penalty ITD
AID_CG AID_FP

BVFSM

(b) Test loss v.s. (c) Time v.s.

(d) Ablation study on
VRBOBOME

Le
ar

na
bl

e
Re

gu
la

riz
at

io
n

Da
ta

Hy

pe
r-c

le
an

in
g

Fa
sh

io
nM

N
IS

T

reverse

Figure 5: Bilevel optimization for hyperparameter optimization. Top: data hyper-cleaning on MNIST
dataset. The solid black line is the model performance trained purely on the validation set and the
dashed black line is the model performance trained on the validation set and on the part of training set
that have correct labels. Middle: data hyper-cleaning on FashionMNIST dataset. Bottom: Learnable
regularization on 20 Newsgroup dataset. The solid black line indicates the model performance
without any regularization. The results for each method is averaged over 5 independent runs.

Remark: In Fig. 2 (top row), we do not include the performance of BSG-1 as we fail to find a set
of hyperparameters for BSG-1 to make it work on these data hyper-cleaning problems. VRBO’s
performance at convergence is tuned by hyparameter search. However, we observe that VRBO learns
slowly in practice, as it requires multiple steps of Hessian vector products at each step. We notice
that this is slightly inconsistent with the findings in the original paper [51]. We adapt the code from
https://github.com/JunjieYang97/MRVRBO and find the original implementation is also slow.
It is possible that a good set of hyperparameters can result in better performance.

A.5 Learnable regularization

The bilevel optimization formulation of the learnable rgularization problem is:

min
v,✓

`
val(✓) s.t. ✓ 2 argmin

✓0
`

train(✓0) + kWv✓
0k22 .

We use a linear model who’s parameter ✓ is a matrix (e.g. ✓ 2 R20⇥130107). Hence v 2 R130107. For
this experiment, the inner stepsize ↵ of all methods are searched from {1, 10, 100, 1000}. The outer
stepsize ⇠ is searched from {0.5, 1, 5, 10, 50, 100, 500, 1000}. For BVFSM and Penalty methods, we
also search for their best hyperparameters from {0.001, 0.01, 0.1, 1}. Similar to the experiment on
Data Hyper-cleaning, we split the dataset into 4 parts: train set, validation set 1, validation set 2,
and the test set. The initial model parameter ✓0 is initialized from a pretrained model without any
regularization (e.g. v = 0) to speed up the learning. To conduct the ablation on ↵ for BOME, we
search for ↵ 2 {0.25⇠, 0.5⇠, ⇠, 2⇠}, where ⇠ = 100 is the best stepsize we found for BOME. In the
bottom left of Fig. 5, we compare BOME with (T = 1 and T = 20) with baseline methods whose T

is chosen based on best performance on the validation set 2.

Remark: In Fig. 2 (bottom row), we do not include the performance of VRBO as we fail to find a set
of hyperparameters for VRBO that works well on the learnable regularization experiment.

18

https://github.com/JunjieYang97/MRVRBO

A.6 Continual Learning

Continual learning (CL) experiment follows closely to the setup in contextual transformation network
(CTN) from Pham et al. [43], which trains a deep neural network consisting of a quickly updated
backbone network (parameterized by ✓) a slowly updated controller network (parameterized by ✓).
When training the ⌧ -th task, the update on (v, ✓) is solved from a bilevel optimization:

min
v,✓

`
val
1:⌧

�
v, ✓

�
s.t. ✓ 2 argmin

✓0
`

train
1:⌧

�
v, ✓

0�
.

More specifically,

`
val
1:⌧

�
v, ✓

�
= L

ctrl�{✓⇤(v), v};Msm
<t+1

�
, and `

train
1:⌧

�
v, ✓

0� = L
tr�{✓, v, }, Dt [Mem

<t

�
. (14)

Here, Msm
t and Mem

t denote the semantic and episodic memory of task t (e.g. they can be think of
validation and training data) and Dt is the training data of task t. Hence, the inner objective learns a
backbone ✓

⇤(v) that performs well on the training data which consists of the current task data Dt as
well as previous episodic memories Mem

<t. Then, the outer objective encourages good generalization
on the held out validation data, which consists of the semantic memory Msm

<t+1. All hyperparameters
of BOME are set to the same as those of CTN. We choose �k = ⌘ krq̂k(vk, ✓kk where ⌘ = 2.0, here
⌘ is chosen from {0.1, 0.5, 1.0, 2.0}.

Method
PMNIST Split CIFAR

ACC (") NBT (#) FT (") ACC (") NBT (#) FT (")
Offline 84.95± 0.95 - - 74.11± 0.66 - -
EWC 48.07± 1.67 30.55± 1.66 78.62± 0.60 36.97± 1.87 29.61± 2.32 66.58± 0.80
MER 76.59± 0.74 6.88± 0.59 82.32± 0.34 60.32± 0.86 11.80± 0.86 69.23± 0.40
GEM 72.74± 0.91 7.79± 1.04 80.53± 0.28 61.33± 1.16 8.04± 1.10 69.37± 0.72
ER-Ring 72.11± 0.46 7.96± 0.46 80.06± 0.37 61.96± 1.22 7.18± 1.84 69.14± 0.87

CTN (+ITD) 78.40± 0.28 5.62± 0.39 84.02± 0.29 67.7± 60.96 4.88± 0.77 72.58± 0.62
CTN (+BVFSM) 77.78± 0.32 7.25± 0.28 85.0385.0385.03± 0.28 67.04± 0.76 6.97± 0.62 74.0174.0174.01± 0.57
CTN (+Penalty) 61.57± 0.29 12.69± 0.44 74.27± 0.29 47.41± 2.93 8.36± 2.63 73.82± 0.64
CTN (+BOME) 80.7080.7080.70± 0.26 4.094.094.09± 0.27 84.7984.7984.79± 0.25 68.1668.1668.16± 0.60 4.724.724.72± 0.75 72.88± 0.48

Table 2: Results of continual learning as bilevel optimization. We compute the mean and standard
error of each method’s results over 5 independent runs. Best results are bolded.

19

B Proof of the Result in Section 4.1

We proof Proposition 1 using Proposition 6.3 (presented below using our notation) in Gong et al.
[16] by checking all the assumptions required by Proposition 6.3 in Gong et al. [16] are satisfied.
Specifically, it remains to show that for any k, �k < 1, limk!1 rq(vk, ✓k) = 0 and q is lower
bounded (this is trivial as q � 0 by its definition), which we prove below.

Firstly, simple calculation shows that for any k,

�k =


�hrf(vk, ✓k),rq(vk, ✓k)i

||rq(vk, ✓k)||2

�

+


supv,✓ ||rf(v, ✓)||
||rq(vk, ✓k)||

< 1.

Here the last inequality is by ||rq(vk, ✓k)|| > 0. Secondly, note that as we assume rq is continuous,
this implies that

lim
k!1

rq(vk, ✓k) = rq(v⇤, ✓⇤).

As q(v⇤, ✓⇤) = 0, we have rq(v⇤, ✓⇤) = 0. Using Proposition 6.3 in Gong et al. [16] gives the
desired result.

Proposition B.1 (Proposition 6.3 in Gong et al. [16]). Assume f, q,rq are continuously differentiable.
Let {[vk, ✓k,�k] : k = 1, 2, ...} be a sequence which satisfies limk!1 ||rq(vk, ✓k)|| = 0 and
limk!1 ||rf(vk, ✓k) + �krq(vk, ✓k)|| = 0. Assume that [v⇤, ✓⇤] is a limit point of [vk, ✓k] as
k ! 1 and [v⇤, ✓⇤] satisfies CRCQ with r✓q, then there exists a vector-valued Lagrange multiplier
!
⇤ 2 Rm (the same length as ✓) such that

rf(v⇤, ✓⇤) +r(r✓q(v
⇤
, ✓

⇤))!⇤ = 0.

C Proof of the Result in Section 4.2

We define Lq := 2L(L/ + 1) and using Assumption 2 and 1, we are able to show that q(v, ✓) is
Lq-smooth (see Lemma 4 for details). For simplicity, we also assume that ⇠ 1 throughout the proof.
We use b with some subscript to denote some general O(1) constant and refer reader to section E for
their detailed value.

Note that q̂ defined in Section 3 changes in different iterations (as it depends on ✓
(T)
k) and so does rq̂.

To avoid the confusion, we introduce several new notations. Firstly, given v and ✓, ✓(T) denotes the
results of T steps of gradient of g(v, ·) w.r.t. ✓ starting from ✓ with step size ↵ (similar to the definition
in (8)). Note that ✓(T) depends on v, ✓ and ↵. Our notation does not reflects this dependency on v,↵

as we find it introduces no ambiguity while much simplifies the notation. Also note that when taking
gradient on q̂, the ✓

(T)
k at iteration k is treated as a constant and the gradient does not pass through it.

To be clear, we define r̂q(v, ✓) = rg(v, ✓)�
h
r>

1 g(v, ✓
(T)), 0>

i>
, where 0 denotes a zero vector

with the same dimension as ✓. Using this definition, r̂q(vk, ✓k) = rq̂(vk, ✓k) at iteration k. We also
let �⇤(v, ✓) be the solution of the dual problem of

min
�

||r̂q(v, ✓)�rf(v, ✓)||2 s.t.
D
r̂q(v, ✓),rf(v, ✓)

E
� ⌘||r̂q(v, ✓)||2. (15)

That is

�
⇤(v, ✓) =

(
[⌘||r̂q(v,✓)||2�hr̂q(v,✓),rf(v,✓)i]+

||r̂q(v,✓)||2 when ||r̂q(v, ✓)|| > 0

0 when ||r̂q(v, ✓)|| = 0
(16)

We might use �
⇤ for �

⇤(v, ✓) when it introduces no confusion. Also, denote �
⇤(v, ✓) =

�
⇤(v, ✓)r̂q(v, ✓) +rf(v, ✓) and thus �k = �

⇤(vk, ✓k).

We start with several technical Lemmas showing some basic function properties.

C.1 Technical Lemmas

Lemma 1. Under Assumption 1, for any v, ✓, g(v, ✓)� g(v, ✓⇤(v)) � 
4 ||✓ � ✓

⇤(v)||2.

20

Lemma 2. Under Assumption 1 and 2, we have ||rq(v, ✓)� r̂q(v, ✓)||  L||✓(T) � ✓
⇤(v)|| for any

v, ✓. Also, when ||r̂q(v, ✓)|| = 0, q(v, ✓) = 0.

Lemma 3. Under Assumption 2, 1, we have ||✓⇤(v2)� ✓
⇤(v1)||  2L

 ||v1 � v2||.

Lemma 4. Under Assumption 2, we have ||r✓q(v, ✓1) � r✓q(v, ✓2)||  L||✓1 � ✓2||, for any v.
Further assume Assumption 1, we have

krq(v1, ✓1)�rq(v2, ✓2)k  Lq||[v1, ✓1]� [v2, ✓2]||,
where Lq := 2L(L/+ 1).

Lemma 5. Under Assumption 1, 2 and assume that ↵ < 2/L. Given any v, ✓, suppose ✓
(0) = ✓

and ✓
(t+1) = ✓

(t) � ↵r✓q(v, ✓(t)), then for any t, we have q(v, ✓(t))  exp(�b1(↵, L,)t)q(v, ✓),
where b1(↵, L,) = is some strictly positive constant that depends on ↵, L and .

Lemma 6. Under Assumption 3, for any [v, ✓], we have ||�⇤(v, ✓)||, ||rq(v, ✓)||, ||r̂q(v, ✓)|| 
b2(M, ⌘), where b2(M, ⌘) = (3 + ⌘)M .

Lemma 7. Under Assumption 3, for any [v, ✓], we have �
⇤||r̂q||2  ⌘||r̂q||2 +M ||r̂q||,where �

⇤

are defined in (16).

Lemma 8. Under Assumption 1 and 2, we have ||rq(v, ✓)||  2�1/2
Lqq

1/2(v, ✓).

C.1.1 Lemmas

Now we give several main lemmas that are used to prove the result in Section 4.2.

Lemma 9. Under Assumption 1, 2 and 3, when ||r̂q(vk, ✓k)|| > 0, we have

q(vk+1, ✓k+1)� q(vk, ✓k)  �⇠⌘||rq(vk, ✓k)||2 + ⇠⌘Lq||✓(T)
k � ✓

⇤(vk)|| (Lq||✓(T)
k � ✓

⇤(vk)||+ 2Lq||✓k � ✓
⇤(vk)||)

+ ⇠b2L||✓(T)
k � ✓

⇤(vk)||+ Lq⇠
2
b
2
2/2.

When ||r̂q(vk, ✓k)|| = 0, we have q(vk+1, ✓k+1)� q(vk, ✓k)  ⇠
2
Lqb

2
2/2.

Lemma 10. Under Assumption 1, 2 and 3, choosing T � b3(⌘, r,, L), we have

q(vk, ✓k)  exp(�b4k)q(v0, ✓0) +�,

where b4 = � log(1� ⇠
4⌘) is some strictly positive constant and � = O(exp(�b1T) + ⇠).

Lemma 11. Under Assumption 1, 2 and 3, we have
K�1X

k=0

||rq(vk, ✓k)||2  b5q(v0, ✓0)

⇠
+K⇠

2
b6�,

where b5 is some constant depends on Lq, ⌘,; b6 is some constant depends on , L and � is defined
in Lemma 10.

Lemma 12. Under Assumption 1, 2 and 3, choosing T � b3(⌘, r,, L) and assume that r, ⇠  1/L,
we have

K�1X

k=0

⇥
||�⇤(vk, ✓k)||2 + q(vk, ✓k)

⇤
= O(⇠�1+K exp(�b1T/2)+K⇠

1/2+⇠
�1/2

K
1/2

q
1/2(v0, ✓0)).

C.2 Proof of Theorem 1

Using our definition of �⇤ in (16), we have

||rf(v, ✓) + �
⇤(v, ✓)rq(v, ✓)||  ||rf(v, ✓) + �

⇤(v, ✓)r̂q(v, ✓)||+ ||�⇤(v, ✓)(r̂q(v, ✓)�rq(v, ✓))||
= ||�⇤(v, ✓)||+ ||�⇤(v, ✓)(r̂q(v, ✓)�rq(v, ✓))||.

21

Using Lemma 2, we know that when ||r̂q|| = 0, we have q = 0 and thus ||rq|| = 0. In this case,
||�⇤(r̂q �rq)|| = 0. When ||r̂q|| > 0, some algebra shows that

||�⇤(r̂q �rq)|| 
h
⌘ �

D
rf, r̂q/||r̂q||

E
||r̂q||�1

i
||r̂q �rq||

 (⌘ �
D
rf, r̂q/||r̂q||

E
||r̂q||�1)||r̂q �rq||.

Notice that

||r̂q(v, ✓)�rq(v, ✓)||  L||✓(T) � ✓
⇤(v)||

 2L�1/2
q
1/2(v, ✓(T))

 2L�1/2 exp(�b1T/2)q
1/2(v, ✓)

 2L�1 exp(�b1T/2)||rq(v, ✓)||.

Here the first inequality is by Lemma 2, the second inequality is by Lemma 1, the third inequality is by
Lemma 5 and the last inequality is by Assumption 1 (using ||rq(v, ✓)|| � ||r✓g(v, ✓)||). Similarly,
under assumption that T �

⌃
�b

�1
1 log(1

16
2
L
�2)

⌥
, L�1 exp(�b1T/2)  1/4,

||r̂q(v, ✓)|| = ||r̂q(v, ✓)�rq(v, ✓) +rq(v, ✓)||
� ||rq(v, ✓)||� ||r̂q(v, ✓)�rq(v, ✓)||
� ||rq(v, ✓)||(1� (2L�1 exp(�b1T/2)))

� 1

2
||rq(v, ✓)||.

This implies that

||r̂q �rq||
||r̂q||

 2
||r̂q �rq||

||rq||  4L�1 exp(�b1T/2).

We thus have

||�⇤(v, ✓)(r̂q(v, ✓)�rq(v, ✓))||  ⌘||r̂q �rq||+
*
rf,

r̂q

||r̂q||

+
||r̂q �rq||

||r̂q||

 2L�1 exp(�b1T/2)

"
⌘||rq(v, ✓)||+ 2

*
rf,

r̂q

||r̂q||

+#

 2L�1 exp(�b1T/2)(⌘ + 2)b2,

where the last inequality is by Lemma 6. Combining all the results and using ||rq(vk, ✓k)|| 
2�1/2

Lqq
1/2(vk, ✓k) by Lemma 8, we have

K(v, ✓)  ||rf(v, ✓) + �
⇤(v, ✓)rq(v, ✓)||2 + q(v, ✓)

 2||rf(v, ✓) + �
⇤(v, ✓)r̂q(v, ✓)||2 + q(v, ✓) + 2||�⇤(v, ✓)(r̂q(v, ✓)�rq(v, ✓))||2

 2||�⇤(v, ✓)||2 + q(v, ✓) + 8L2

�2 exp(�b1T)(⌘ + 2)2b22.

Using Lemma 12, we have

min
k

K(vk, ✓k) = O(min
k

(||�⇤(vk, ✓k)||2 + q(vk, ✓k)) + exp(�b1T))

= O(⇠�1 +K exp(�b1T/2) +K⇠
1/2 + ⇠

�1/2
K

1/2
q
1/2(v0, ✓0)).

22

C.3 Proof of Lemmas

C.3.1 Proof of Lemma 9

When ||r̂q(vk, ✓k)|| > 0, by Lemma 4, we know that q is Lq-smoothness, we have

q(vk+1, ✓k+1)� q(vk, ✓k)  �⇠ hrq(vk, ✓k), �
⇤(vk, ✓k)i+

Lq⇠
2

2
||�⇤(vk, ✓k)||2

 �⇠

D
r̂q(vk, ✓k), �

⇤(vk, ✓k)
E
� ⇠

D
rq(vk, ✓k)� r̂q(vk, ✓k), �

⇤(vk, ✓k)
E
+ Lq⇠

2
b
2
2/2

 �⇠⌘||r̂q(vk, ✓k)||2 � ⇠

D
rq(vk, ✓k)� r̂q(vk, ✓k), �

⇤(vk, ✓k)
E
+ Lq⇠

2
b
2
2/2

 �⇠⌘||r̂q(vk, ✓k)||2 + ⇠b2||rq(vk, ✓k)� r̂q(vk, ✓k)||+ Lq⇠
2
b
2
2/2.

where the second and the last inequality is by Lemma 6 and the third inequality is ensured by
the constraint in the local subproblem (

D
rr̂q(vk, ✓k), �⇤(vk, ✓k)

E
� ⌘||r̂q(vk, ✓k)2||.). And by

Lemma 2, we have ||rq(vk, ✓k)� r̂q(vk, ✓k)||  L||✓(T)
k � ✓

⇤(vk)||. Plug in the bound we have

q(vk+1, ✓k+1)� q(vk, ✓k)  �⇠⌘||r̂q(vk, ✓k)||2 + ⇠b2L||✓(T)
k � ✓

⇤(vk)|| .
Also notice that���||r̂q(vk, ✓k)||2 � ||rq(vk, ✓k)||2

���  ||r̂q(vk, ✓k)�rq(vk, ✓k)|| ||r̂q(vk, ✓k) +rq(vk, ✓k)||

 ||r̂q(vk, ✓k)�rq(vk, ✓k)|| (||r̂q(vk, ✓k)�rq(vk, ✓k)||+ 2||rq(vk, ✓k)||)

 Lq||✓(T)
k � ✓

⇤(vk)|| (Lq||✓(T)
k � ✓

⇤(vk)||+ 2||rq(vk, ✓k)||)

= Lq||✓(T)
k � ✓

⇤(vk)|| (Lq||✓(T)
k � ✓

⇤(vk)||+ 2||rq(vk, ✓k)�rq(vk, ✓
⇤(vk))||)

 Lq||✓(T)
k � ✓

⇤(vk)|| (Lq||✓(T)
k � ✓

⇤(vk)||+ 2Lq||✓k � ✓
⇤(vk)||),

where the third inequality is by Lemma 2, the equality is by rq(vk, ✓⇤(vk)) = 0 and the last
inequality is by Lemma 4.

Using this bound, we further have

q(vk+1, ✓k+1)� q(vk, ✓k)  �⇠⌘||rq(vk, ✓k)||2 + ⇠⌘

���||r̂q(vk, ✓k)||2 � ||rq(vk, ✓k)||2
���

+ ⇠b2||rq(vk, ✓k)� r̂q(vk, ✓k)||+ Lq⇠
2
b
2
2/2

 �⇠⌘||rq(vk, ✓k)||2 + ⇠⌘Lq||✓(T)
k � ✓

⇤(vk)|| (Lq||✓(T)
k � ✓

⇤(vk)||+ 2Lq||✓k � ✓
⇤(vk)||)

+ ⇠b2L||✓(T)
k � ✓

⇤(vk)||+ Lq⇠
2
b
2
2/2.

When ||r̂q(vk, ✓k)|| = 0, by Lemma 2, q(vk, ✓k) = 0 and hence rq(vk, ✓k) = 0. We thus have

q(vk+1, ✓k+1)� q(vk, ✓k)  �⇠ hrq(vk, ✓k), �
⇤(vk, ✓k)i+

Lq⇠
2

2
||�⇤(vk, ✓k)||2

=
Lq⇠

2

2
||�⇤(vk, ✓k)||2

 ⇠
2
Lqb

2
2/2.

C.3.2 Proof of Lemma 10

By Lemma 9, when ||r̂q(vk, ✓k)|| > 0, we have

q(vk+1, ✓k+1)� q(vk, ✓k)  �⇠⌘||rq(vk, ✓k)||2 + ⇠⌘Lq||✓(T)
k � ✓

⇤(vk)|| (Lq||✓(T)
k � ✓

⇤(vk)||+ 2Lq||✓k � ✓
⇤(vk)||)

+ ⇠b2L||✓(T)
k � ✓

⇤(vk)||+ Lq⇠
2
b
2
2/2.

By Lemma 1 and Lemma 5

||✓(T)
k � ✓

⇤(vk)||  2�1/2
q
1/2(vk, ✓

(T)
k)  2�1/2 exp(�b1T/2)q

1/2(vk, ✓k).

||✓k � ✓
⇤(vk)||  2�1/2

q
1/2(vk, ✓k).

23

Using those bounds, we know that

Lq||✓(T)
k � ✓

⇤(vk)|| (Lq||✓(T)
k � ✓

⇤(vk)||+ 2Lq||✓k � ✓
⇤(vk)||)  12L2

q
�1 exp(�b1T)q(vk, ✓k)

This implies that

q(vk+1, ✓k+1)� q(vk, ✓k)

� ⇠⌘||rq(vk, ✓k)||2 + 12⇠⌘L2
q

�1 exp(�b1T)q(vk, ✓k)

+2⇠b2L
�1/2 exp(�b1T/2)q

1/2(vk, ✓k) + Lq⇠
2
b
2
2/2

� ⇠⌘q(vk, ✓k) + 12⇠⌘L2
q

�1 exp(�b1T)q(vk, ✓k)

+2⇠b2L
�1/2 exp(�b1T/2)q

1/2(vk, ✓k) + Lq⇠
2
b
2
2/2.

Choosing T such that T � b3(⌘,↵,, L) where

b3(⌘,↵,, L) =

⇠
�b

�1
1 log(

⌘

64⌘L2
q

)

⇡
,

we have

q(vk+1, ✓k+1)�q(vk, ✓k)  �3

4
⇠⌘q(vk, ✓k)+2⇠b2L

�1/2 exp(�b1T/2)q
1/2(vk, ✓k)+Lq⇠

2
b
2
2/2.

This implies that when 64b22L
2

⌘2 exp(�b1T)  q(vk, ✓k) and 2Lq⇠b
2
2

⌘  q(vk, ✓k),

q(vk+1, ✓k+1)� q(vk, ✓k)  �1

4
⇠⌘q(vk, ✓k).

Let a = max(64b
2
2L

2

⌘2 exp(�b1T),
2Lq⇠b

2
2

⌘). Also, when q(vk, ✓k) < a,

q(vk+1, ✓k+1)  q(vk, ✓k) + 2⇠b2L
�1/2 exp(�b1T/2)q

1/2(vk, ✓k) + Lq⇠
2
b
2
2/2

< a+ 2⇠b2L
�1/2 exp(�b1T/2)

p
a+ Lq⇠

2
b
2
2/2.

Note that

2⇠b2L
�1/2 exp(�b1T/2) 

⇠⌘

4

p
a

Lq⇠
2
b
2
2/2  ⇠⌘

4
a.

This gives that in the case of q(vk, ✓k) < a,

q(vk+1, ✓k+1) < (1 +
⇠⌘

4
)a.

Define k0 as the first iteration such that q(vk, ✓k) < a. This implies that, for any k  k0,

q(vk, ✓k)  (1� ⇠

4
⌘)kq(v0, ✓0).

When any k > k0, we show that q(vk+1, ✓k+1)  (1 + ⇠⌘
4)a. This can be proved by induction.

At k = k0 + 1, if q(vk, ✓k) < a, we have q(vk, ✓k) < (1 + ⇠⌘
4)a. Else if at k = k0 + 1,

q(vk, ✓k) � a, q(vk+1, ✓k+1)  q(vk, ✓k)  a. We thus have the conclusion that for any k > k0,
q(vk, ✓k)  (1 + ⌘

4)a. Combining the result, we have

q(vk, ✓k)  (1� ⇠

4
⌘)kq(v0, ✓0) +�,

where we denote

� = (1 +
⌘

4
)(
64b22L

2

⌘23
exp(�b1T) +

2Lq⇠b
2
2

⌘
) + Lq⇠

2
b
2
2/2 = O(exp(�b1T) + ⇠). (17)

Let b4(⌘,, ⇠) = � log(1� ⇠
4⌘), we have the desired result.

24

C.3.3 Proof of Lemma 11

By Lemma 8 and 10, we have

||rq(vk, ✓k)||2  2�1
L
2
qq(vk, ✓k)

 2�1
L
2
q [exp(�b4k)q(v0, ✓0) +�] ,

where � is defined in (17). Also notice that

||r̂q(v, ✓)||  ||r̂q(v, ✓)�rq(v, ✓)||+ ||rq(v, ✓)||
 L||✓(T) � ✓

⇤(v)||+ ||rq(v, ✓)||
 2L�1/2

q
1/2(v, ✓(T)) + ||rq(v, ✓)||

 2L�1/2 exp(�b1T/2)q
1/2(v, ✓) + ||rq(v, ✓)||

 (2L�1 exp(�b1T/2) + 1)||rq(v, ✓)||
 (2L�1 + 1)||rq(v, ✓)||

Here the first inequality is by triangle inequality, the second inequality is by Lemma 2, the third
inequality is by Lemma 1, the forth inequality is by Lemma 5 and the fifth inequality is by Assumption
1. Taking summation over iteration and using Lemma 10, we have

K�1X

k=0

||r̂q(v, ✓)||2  (2L�1 + 1)2
K�1X

k=0

||rq(vk, ✓k)||2

 (2L�1 + 1)2
"
2�1

L
2
qq(v0, ✓0)

K�1X

k=0

[exp(�b4k)] +K�

#

 (2L�1 + 1)2
"
2�1

L
2
qq(v0, ✓0)

1� exp(�b4)
+K�

#

=
b5q(v0, ✓0)

⇠
+Kb6�,

where we define b5(Lq, ⌘,) =
16L2

q

⌘2 (2L�1 + 1)2 and b6(, L) = (2L�1 + 1)2.

C.4 Proof of Lemma 12

Remind that by our definition of �⇤ in (16) and Assumption 2, we have

f(vk+1, ✓k+1)� f(vk, ✓k)  �⇠ hrf(vk, ✓k), �
⇤(vk, ✓k)i+

L⇠
2

2
||�⇤(vk, ✓k)||2

= �⇠

D
�
⇤(vk, ✓k)� �

⇤(vk, ✓k)r̂q(vk, ✓k), �
⇤(vk, ✓k)

E
+

L⇠
2

2
||�⇤(vk, ✓k)||2

= �(⇠ � L⇠
2

2
)||�⇤(vk, ✓k)||2 + ⇠�

⇤(vk, ✓k)
D
r̂q(vk, ✓k), �

⇤(vk, ✓k)
E

 �(⇠ � L⇠
2

2
)||�⇤(vk, ✓k)||2 + ⇠⌘�

⇤(vk, ✓k)||r̂q(vk, ✓k)||2

 �⇠

2
||�⇤(vk, ✓k)||2 + ⇠⌘�

⇤(vk, ✓k)||r̂q(vk, ✓k)||2,

where the last inequality is by the assumption on ⇠  1/L. To show the second inequality, we use the
complementary slackness of Problem (15), that is

�
⇤(vk, ✓k)

hD
r̂q(vk, ✓k), �

⇤(vk, ✓k)
E
� ⌘||r̂q(vk, ✓k)||

i
= 0.

25

By telescoping,
K�1X

k=0

f(vk+1, ✓k+1)� f(vk, ✓k)  �⇠

2

K�1X

k=0

||�⇤(vk, ✓k)||2 + ⇠⌘

K�1X

k=0

�
⇤(vk, ✓k)||r̂q(vk, ✓k)||2

 �⇠

2

K�1X

k=0

||�⇤(vk, ✓k)||2 + ⇠⌘

K�1X

k=0

(⌘||r̂q(vk, ✓k)||2 +M ||r̂q(vk, ✓k)||)

= �⇠

2

K�1X

k=0

||�⇤(vk, ✓k)||2 + ⇠⌘
2
K�1X

k=0

||r̂q(vk, ✓k)||2 + ⇠⌘M

K�1X

k=0

||r̂q(vk, ✓k)||

 �⇠

2

K�1X

k=0

||�⇤(vk, ✓k)||2 + ⇠⌘
2
K�1X

k=0

||r̂q(vk, ✓k)||2 + ⇠⌘M

p
K

vuut
K�1X

k=0

||r̂q(vk, ✓k)||2,

where the second inequality is by Lemma 7 and the last inequality is by Holder’s inequality. SincePK�1
k=0 f(vk+1, ✓k+1)� f(vk, ✓k) = f(vK , ✓K)� f(v0, ✓0), rearrange the terms, we have

⇠

K�1X

k=0

||�⇤(vk, ✓k)||2  2(f(v0, ✓0)�f(vK , ✓K))+2⇠⌘2
K�1X

k=0

||r̂q(vk, ✓k)||2+2⇠⌘M
p
K

vuut
K�1X

k=0

||r̂q(vk, ✓k)||2.

This implies that

⇠

K�1X

k=0

⇥
||�⇤(vk, ✓k)||2 + q(vk, ✓k)

⇤
 2(f(v0, ✓0)� f(vK , ✓K)) + 2⇠⌘2

K�1X

k=0

||r̂q(vk, ✓k)||2

+ 2⇠⌘M
p
K

vuut
K�1X

k=0

||r̂q(vk, ✓k)||2 + ⇠

K�1X

k=0

q(vk, ✓k).

Using Lemma 10, we know that

q(vk, ✓k)  (1� ⇠

4
⌘)kq(v0, ✓0) +�.

This gives that

⇠

K�1X

k=0

q(vk, ✓k) 
4q(v0, ✓0)

⌘
+ ⇠K�.

Using Lemma 11, 10 and
p
x+ y 

p
x+

p
y, we have

2⇠⌘2
KX

k=1

||r̂q(vk, ✓k)||2  2⌘2b5q(v0, ✓0) + 2K⌘
2
⇠b6�

2⇠⌘M
p
K

vuut
KX

k=1

||r̂q(vk, ✓k)||2  2⇠1/2K1/2
b
1/2
5 ⌘Mq

1/2(v0, ✓0) + 2K⇠b
1/2
6 ⌘M�1/2

This implies that

⇠

K�1X

k=0

⇥
||�⇤(vk, ✓k)||2 + q(vk, ✓k)

⇤

2(f(v0, ✓0)� f(vK , ✓K)) + 2⌘2b5q(v0, ✓0) + 2K⌘
2
⇠b6�+ 2⇠1/2K1/2

b
1/2
5 ⌘Mq

1/2(v0, ✓0)

+2K⇠b
1/2
6 ⌘M�1/2 +

4q(v0, ✓0)

⌘
+ ⇠K�

2(f(v0, ✓0)� f(vK , ✓K)) + (2⌘2b5 +
4

⌘
)q(v0, ✓0) + 2K⇠(b1/26 ⌘M�1/2 + (b6⌘

2 + 1/2)�)

+2⇠1/2K1/2
b
1/2
5 ⌘Mq

1/2(v0, ✓0)

26

We thus have
K�1X

k=0

⇥
||�⇤(vk, ✓k)||2 + q(vk, ✓k)

⇤

=O(⇠�1 +K�1/2 + ⇠
�1/2

K
1/2

q
1/2(v0, ✓0))

=O(⇠�1 +K exp(�b1T/2) +K⇠
1/2 + ⇠

�1/2
K

1/2
q
1/2(v0, ✓0)).

C.5 Proofs of Technical Lemmas

C.5.1 Proof of Lemma 1

Please see the proof of Theorem 2 in Karimi et al. [24].

C.5.2 Proof of Lemma 2

Since r2g(v, ✓⇤(v)) = 0, we have rvg(v, ✓⇤(v)) = r1g(v, ✓⇤(v)) + rv✓
⇤(v)r2g(v, ✓⇤(v)) =

r1g(v, ✓⇤(v)). Thus

rq(v, ✓) =


rvg(v, ✓)�rvg(v, ✓⇤(v))

r✓g(v, ✓)

�
=


rvg(v, ✓)�r1g(v, ✓⇤(v))

r✓g(v, ✓)

�
.

Also note that

r̂q(v, ✓) =


rvg(v, ✓)�r1g(v, ✓(T))

r✓g(v, ✓)

�
.

This gives that

||rq(v, ✓)� r̂q(v, ✓)|| = ||r1g(v, ✓
(T))�r1g(v, ✓

⇤(v))||
 L||✓(T) � ✓

⇤(v)||.

Also when 0 = ||r̂q(v, ✓)|| =
p

||rvg(v, ✓)�r1g(v, ✓(T))||2 + ||r✓g(v, ✓)||2, we have
||r✓g(v, ✓)|| = 0. Under Assumption 1,

0 = ||r✓g(v, ✓)|| � (g(v, ✓)� g(v, ✓⇤(v))) = q(v, ✓).

C.5.3 Proof of Lemma 3

Using Assumption 1 and r2g(v1, ✓⇤(v1)) = 0, we have

||r2g(v1, ✓
⇤(v2))|| �

p
(g(v1, ✓⇤(v2))� g(v1, ✓⇤(v1)).

Also by Lemma 1, we have g(v1, ✓⇤(v2)) � g(v1, ✓⇤(v1) � 1
4||✓

⇤(v2) � ✓
⇤(v1)||2. These imply

that

||r2g(v1, ✓
⇤(v2))|| �

1

2
||✓⇤(v2)� ✓

⇤(v1)||.

Also

||r2g(v1, ✓
⇤(v2))||

=||r2g(v1, ✓
⇤(v2))�r✓g(v2, ✓

⇤(v2))||
=||r2[g(v1, ✓

⇤(v2))� g(v2, ✓
⇤(v2))]||

||r[1,2][g(v1, ✓
⇤(v2))� g(v2, ✓

⇤(v2))]||
L||v1 � v2||,

where r[1,2] denotes taking the derivative on both first and second variables. We thus conclude that

||✓⇤(v2)� ✓
⇤(v1)|| 

2L


||v1 � v2||.

27

C.5.4 Proof of Lemma 4

To prove the first property,
||r✓q(v, ✓1)�r✓q(v, ✓2)|| = ||r✓g(v, ✓1)�r✓g(v, ✓2)||

 L||✓1 � ✓2||.

Also
krq(v1, ✓1)�rq(v2, ✓2)k = krg(v1, ✓1)�rg(v2, ✓2)�rg(v1, ✓

⇤(v1)) +rg(v2, ✓
⇤(v2))k

 krg(v1, ✓1)�rg(v2, ✓2)k+ kr1g(v1, ✓
⇤(v1))�r1g(v2, ✓

⇤(v2))k .

By Assumption 2 (Lipschitz continuity of rg),
||r1g(v1, ✓

⇤(v1))�r1g(v2, ✓
⇤(v2))||  ||r[1,2]g(v1, ✓

⇤(v1))�r[1,2]g(v2, ✓
⇤(v2))||

 L

p
||✓⇤(v1)� ✓⇤(v2)||2 + ||v1 � v2||2,

where r[1,2] denotes taking the derivative on both first and second variable. Also By Lemma 3,

L

p
||✓⇤(v1)� ✓⇤(v2)||2 + ||v1 � v2||2  L

r
4L2

2
||v1 � v2||2 + ||v1 � v2||2

 L(
2L


+ 1)||v1 � v2||.

This gives that
krq(v1, ✓1)�rq(v2, ✓2)k  krg(v1, ✓1)�rg(v2, ✓2)k+ kr1g(v1, ✓

⇤(v1))�r1g(v2, ✓
⇤(v2))k

 L

p
||v1 � v2||2 + ||✓1 � ✓2||2 + kr1g(v1, ✓

⇤(v1))�r1g(v2, ✓
⇤(v2))k

 L

p
||v1 � v2||2 + ||✓1 � ✓2||2 + L(

2L


+ 1)||v1 � v2||

 Lq

p
||v1 � v2||2 + ||✓1 � ✓2||2,

where Lq := 2L(L/+ 1).

C.5.5 Proof of Lemma 5

By Lemma 4, we have

q(v, ✓(t+1))� q(v, ✓(t))  �(↵� L↵
2

2
)||r✓q(v, ✓

(t))||2.

By Assumption 1, we have

||r✓q(v, ✓
(t))||2 = ||r2g(v, ✓

(t))||2 � (g(v, ✓(t))� g(v, ✓⇤(v)) = q(v, ✓(t)).

Plug-in, we have

q(v, ✓(t+1))  (1� (↵� L↵
2

2
))q(v, ✓(t)).

Recursively apply this inequality, we have

q(v, ✓(t))  (1� (↵� L↵
2

2
))tq(v, ✓).

Let b1(r, L,) = log(1� (↵� L↵
2
/2)), we have the desired result.

C.5.6 Proof of Lemma 6

Notice that ||rq(v, ✓)||  ||rg(v, ✓)|| + ||rg(v, ✓⇤(v))||  2M . ||r̂q(v, ✓)||  ||rvg(v, ✓)|| +
||r1g(v, ✓(T))||+ ||r✓g(v, ✓)||  3M . When ||r̂q|| = 0, ||�⇤|| = ||rf ||  M . When ||r̂q|| > 0,

||�⇤|| = ||[⌘||r̂q||2 �
D
rf, r̂q

E
]+/||r̂q||2r̂q +rf ||

 ⌘||r̂q||+ 2||rf ||  (2 + ⌘)M.

This concludes that ||�⇤||  (2 + ⌘)M .

28

C.5.7 Proof of Lemma 7

In the case that
D
rf, r̂q

E
< ⌘||r̂q||2, �⇤||r̂q||2 = ⌘||r̂q||2 �

D
rf, r̂q

E
. In the other case,

�
⇤||r̂q||2 = 0. Thus in all cases,

�
⇤||r̂q||2  ⌘||r̂q||2 + ||rf || ||r̂q||

 ⌘||r̂q||2 +M ||r̂q||.

C.5.8 Proof of Lemma 8

Notice that since rq(v, ✓⇤(v)) = 0, we have

||rq(v, ✓)|| = ||rq(v, ✓)�rq(v, ✓⇤(v))||  Lq||✓ � ✓
⇤(v)||  2�1/2

Lqq
1/2(v, ✓),

where the first inequality is by Lemma 4 and the second inequality is by Lemma 1.

D Proof of the Result in Section 4.3

We use b with some subscript to denote some general O(1) constant and refer reader to section E for
their detailed value.

For notation simplicity, given v and ✓, ✓(T) denotes the results of T steps of gradient of g(v, ·)
w.r.t. ✓ starting from ✓ using step size ↵ (similar to the definition in (8)). And note that r̂q(v, ✓) =

rg(v, ✓)�
h
r>

1 g(v, ✓
(T)), 0>

i>
, where 0 denotes a zero vector with the same dimension as ✓. We

refer readers to the beginning of Appendix C for a discussion on the design of this extra notation and
how it relates to the notation we used in Section 3. For simplicity, we omit the superscript ⇧ in q

⇧ and
simply use q to denote q

⇧ in the proof.

We start with the following two Lemmas.

Lemma 13. Under Assumption 4 and assume ↵  1/L, for any v, ✓, g(v, ✓) � g(v, ✓⇧(v, ✓)) �

4 ||✓ � ✓

⇧(v, ✓)||2.

Proof. It is easy to show that

g(v, ✓(t+1))  g(v, ✓(t))� (↵� L↵
2

2
)||r✓g(v, ✓

(t))||2  g(v, ✓(t)).

We thus have g(v, ✓⇧(v, ✓))  g(v, ✓). The result of the proof follows the proof of Theorem 2 in
Karimi et al. [24].

Lemma 14. Under Assumption 2 and 4, ||✓⇧(v2, ✓)� ✓
⇧(v1, ✓)||  4L

 ||v1 � v2|| for any v1, v2.

Proof. Notice that rq(v2, ✓⇧(v2, ✓)) = 0, we have

||rq(v1, ✓
⇧(v2, ✓))�rq(v2, ✓

⇧(v2, ✓))|| = ||rq(v1, ✓
⇧(v2, ✓))||.

By Assumption 4, we have ||rq(v1, ✓⇧(v2, ✓))|| �
p

(g(v1, ✓⇧(v2, ✓))� g(v1, ✓⇧(v1, ✓)). And by
Lemma 13, we have

g(v1, ✓
⇧(v2, ✓))� g(v1, ✓

⇧(v1, ✓)) �


4
||✓⇧(v2, ✓)� ✓

⇧(v1, ✓)||2.

Combing all bounds gives that

2L||v1�v2|| � ||rq(v1, ✓
⇧(v2, ✓))�rq(v2, ✓

⇧(v2, ✓))|| = ||rq(v1, ✓
⇧(v2, ✓))|| �



2
||✓⇧(v2, ✓)�✓

⇧(v1, ✓)||.

This implies that ||✓⇧(v2, ✓)� ✓
⇧(v1, ✓)||  4L

 ||v1 � v2||.

29

Now we proceed to give the proof of Theorem 2.

Note that

q(vk+1, ✓k+1)� q(vk, ✓k) = [g(vk+1, ✓k+1)� g(vk+1, ✓
⇧(vk+1, ✓k+1))]� [g(vk, ✓k)� g(vk, ✓

⇧(vk, ✓k))]

= [g(vk+1, ✓k+1)� g(vk+1, ✓
⇧(vk+1, ✓k))]� [g(vk, ✓k)� g(vk, ✓

⇧(vk, ✓k))]

+ [g(vk+1, ✓
⇧(vk+1, ✓k))� g(vk+1, ✓

⇧(vk+1, ✓k+1))]

= [g(vk+1, ✓k+1)� g(vk, ✓k)]� [g(vk+1, ✓
⇧(vk+1, ✓k))� g(vk, ✓

⇧(vk, ✓k))]

+ [g(vk+1, ✓
⇧(vk+1, ✓k))� g(vk+1, ✓

⇧(vk+1, ✓k+1))].

Note that

g(vk+1, ✓k+1)� g(vk, ✓k)  �⇠ hrg(vk, ✓k), �
⇤(vk, ✓k)i+

L⇠
2

2
||�⇤(vk, ✓k)||2

�[g(vk+1, ✓
⇧(vk+1, ✓k))� g(vk, ✓

⇧(vk, ✓k))] 
⌦
r[1,2]g(vk, ✓

⇧(vk, ✓k)), [vk+1, ✓
⇧(vk+1, ✓k)]� [vk, ✓

⇧(vk, ✓k)]
↵

+
L

2
||[vk+1, ✓

⇧(vk+1, ✓k)]� [vk, ✓
⇧(vk, ✓k)]||2.

Notice that as r2g(vk, ✓⇧(vk, ✓k)) = 0,
⌦
r[1,2]g(vk, ✓

⇧(vk, ✓k)), [vk+1, ✓
⇧(vk+1, ✓k)]� [vk, ✓

⇧(vk, ✓k)]
↵
= ⇠

⌦
r[1,2]g(vk, ✓

⇧(vk, ✓k)), �
⇤(vk, ✓k)

↵
.

Also using Lemma 14, we have

||✓⇧(vk+1, ✓k)� ✓
⇧(vk, ✓k)|| 

4L


||vk+1 � vk||.

This implies that

||[vk+1, ✓
⇧(vk+1, ✓k)]�[vk, ✓

⇧(vk, ✓k)]||2  (
16L2

2
+1)||vk+1�vk||2  (

16L2

2
+1)⇠2||�⇤(vk, ✓k)||2.

We thus have

q(vk+1, ✓k+1)� q(vk, ✓k)  �⇠ hrq(vk, ✓k), �
⇤(vk, ✓k)i+ Lq⇠

2||�⇤(vk, ✓k)||2/2 + �k,

where we define Lq = (16L
2

2 + 2) and �k = [g(vk+1, ✓
⇧(vk+1, ✓k)) � g(vk+1, ✓

⇧(vk+1, ✓k+1))].
Using the same argument in the proof of Lemma 10 and Lemma 11, we have

q(vk+1, ✓k+1)� q(vk, ✓k)

� ⇠⌘||rq(vk, ✓k)||2 + 12⇠⌘L2
q

�1 exp(�b1T)q(vk, ✓k)

+2⇠b2L
�1/2 exp(�b1T/2)q

1/2(vk, ✓k) + Lq⇠
2
b
2
2/2 + �k

� ⇠⌘||rq(vk, ✓k)||2 + 12⇠⌘L2
q

�2 exp(�b1T)||rq(vk, ✓k)||2

+2⇠b2L
�1 exp(�b1T/2)||rq(vk, ✓k)||+ Lq⇠

2
b
2
2/2 + �k.

Here the second inequality is by Assumption 4. Choosing T such that T � b7(⌘,↵,, L) where

b7(⌘,↵,, L) =

⇠
�b

�1
1 log(


2

48⌘L2
q

)

⇡
,

we have

q(vk+1, ✓k+1)�q(vk, ✓k)  �3

4
⇠⌘||rq(vk, ✓k)||2+2⇠b2L

�1 exp(�b1T/2)||rq(vk, ✓k)||+Lq⇠
2
b
2
2/2+�k.

Using Young’s inequality, given any x > 0,

exp(�b1T/2)||rq(vk, ✓k)||  x exp(�b1T) +
1

x
||rq(vk, ✓k)||2.

Choosing x = 4Lb2
⌘ , we have

q(vk+1, ✓k+1)� q(vk, ✓k)  �1

4
⇠⌘||rq(vk, ✓k)||2 +�+ �k,

30

where we denote � = ⇠
8L2b22
⌘2 exp(�b1T) +

1
2Lq⇠

2
b
2
2. This gives that

1

4
⇠⌘

KX

k=0

||rq(vk, ✓k)||2  q(v0, ✓0)� q(vK , ✓K) +K�+
K�1X

k=0

�k.

Using the same argument in the proof of Lemma 11,

||r̂q(v, ✓)||  (2L�1 + 1)||rq(v, ✓)||.
We hence have

K�1X

k=0

||r̂q(vk, ✓k)||2  (2L�1 + 1)2
K�1X

k=0

||rq(vk, ✓k)||2

 4(2L�1 + 1)2

⇠⌘
(q(v0, ✓0)� q(vK , ✓K) +K�+

K�1X

k=0

�k).

Similar to the proof of Lemma 12,

K�1X

k=0

||�⇤(vk, ✓k)||2  2(f(v0, ✓0)� f(vK , ✓K))

⇠
+2⌘2

K�1X

k=0

||r̂q(vk, ✓k)||2+2⌘M
p
K

vuut
K�1X

k=0

||r̂q(vk, ✓k)||2.

Using
p
x+ y 

p
x+

p
y, we have

2⌘2
K�1X

k=0

||r̂q(vk, ✓k)||2  8⌘(2L�1 + 1)2

⇠
(q(v0, ✓0)� q(vK , ✓K) +K�+

K�1X

k=0

�k)

2⌘M
p
K

vuut
K�1X

k=0

||r̂q(vk, ✓k)||2 
p
K

4⌘1/2M(2L�1 + 1)

⇠1/2
(
p

q(v0, ✓0)� q(vK , ✓K) +K
1/2�1/2 +

vuut
"
K�1X

k=0

�k

#

+

).

Also notice that by Assumption 4,
K�1X

k=0

q(vk, ✓k) 
K�1X

k=0

⇠


||rq(vk, ✓k)||2

 4

⌘⇠
(q(v0, ✓0)� q(vK , ✓K) +K�+

K�1X

k=0

�k)

We hence have

K�1X

k=0

(||�⇤(vk, ✓k)||2 + q(vk, ✓k)) = O

0

B@
1

⇠
+

K�

⇠
+

K
1/2

⇠1/2
+

K�1/2

⇠1/2
+K

1/2

0

@
"
K�1X

k=0

�k

#

+

1

A
1/2

1

CA

= O

0

B@
1

⇠
+K exp(�b1T/2) +K⇠

1/2 +
K

1/2

⇠1/2
+

0

@K

"
K�1X

k=0

�k

#

+

1

A
1/2

1

CA .

Using the same argument as the proof of Theorem 1, when T �
⌃
�b

�1
1 log(1

16
2
L
�2)

⌥
,

K⇧(v, ✓)  2||�⇤(v, ✓)||2 + q(v, ✓) + 8L2 exp(�b1T)
�2(⌘ + 2)2b22.

This implies that

min
k

K⇧(vk, ✓k) 
1

K

K�1X

k=0

[2||�⇤(v, ✓)||2 + q(v, ✓)] + 8L2 exp(�b1T)
�2(⌘ + 2)2b22

= O

0

B@
1

⇠K
+ exp(�b1T/2) + ⇠

1/2 +
1

⇠1/2K1/2
+

0

@
"
1

K

K�1X

k=0

�k

#

+

1

A
1/2

1

CA .

31

Now we proceed to bound 1
K

PK�1
k=0 �k. Notice that

�k = g(vk+1, ✓
⇧(vk+1, ✓k))� g(vk+1, ✓

⇧(vk+1, ✓k+1))

= g(vk+1, ✓
⇧(vk+1, ✓k))� g(vk, ✓

⇧(vk, ✓k)) + g(vk, ✓
⇧(vk, ✓k))� g(vk+1, ✓

⇧(vk+1, ✓k+1)).

Notice that using Assumption 2 and Lemma 14

g(vk+1, ✓
⇧(vk+1, ✓k))� g(vk, ✓

⇧(vk, ✓k))  L||[vk+1, ✓
⇧(vk+1, ✓k)]� [vk, ✓

⇧(vk, ✓k)]||
 L(||vk+1 � vk||+ ||✓⇧(vk+1, ✓k)� ✓

⇧(vk, ✓k)||)

 (L+
4L


)||vk+1 � vk||

 (L+
4L


)⇠||�⇤(vk, ✓k)||.

Note that using the same procedure as the proof of Lemma 6, ||�⇤(vk, ✓k)||  b2. We thus conclude
that

K�1X

k=0

�k 
K�1X

k=0

g(vk, ✓
⇧(vk, ✓k))� g(vk+1, ✓

⇧(vk+1, ✓k+1))

+ (L+
4L


)⇠

K�1X

k=0

||�⇤(vk, ✓k)||


K�1X

k=0

g(vk, ✓
⇧(vk, ✓k))� g(vk+1, ✓

⇧(vk+1, ✓k+1)) + (L+
4L


)b2⇠K

= g(v0, ✓
⇧(v0, ✓0))� g(vK , ✓

⇧(vK , ✓K)) + (L+
4L


)b2⇠K.

We thus have 1
K

PK�1
k=0 �k = O(1

K + ⇠).

E List of absolute constants used in the proofs

Here we summarize the absolute constant used in the proofs.

b1(↵, L,) = log(1� (↵� L↵
2
/2))

b2(M, ⌘) = (3 + ⌘)M

b3(⌘,↵,, L) =

⇠
�b

�1
1 log(

⌘

64⌘L2
q

)

⇡

b4(⌘,, ⇠) = � log(1� ⇠

4
⌘)

b5(Lq, ⌘,) =
16L2

q

⌘2
(2L�1 + 1)2

b6(, L) = (2L�1 + 1)2

b7(⌘,↵,, L) =

⇠
�b

�1
1 log(


2

48⌘L2
q

)

⇡

32

	Introduction
	Background
	Method
	Analysis
	KKT Conditions
	Convergence with unimodal g
	Convergence with multimodal g

	Related Works
	Experiment
	Experiment Problems and Results
	Observations

	Conclusion and Future Work
	Acknowledgement
	Experiment Details
	Toy Coreset Problem
	Toy Mini-max Game
	Without LLS assumption
	Data Hyper-cleaning
	Learnable regularization
	Continual Learning

	Proof of the Result in Section 4.1
	Proof of the Result in Section 4.2
	Technical Lemmas
	Lemmas

	Proof of Theorem 1
	Proof of Lemmas
	Proof of Lemma 9
	Proof of Lemma 10
	Proof of Lemma 11

	Proof of Lemma 12
	Proofs of Technical Lemmas
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of Lemma 6
	Proof of Lemma 7
	Proof of Lemma 8

	Proof of the Result in Section 4.3
	List of absolute constants used in the proofs

