A Experiment Details

We provide details about each experiment in this section. Regarding the implementation of baseline
methods:

* BVFSM’s implementation is adapted from https://github.com/vis-opt-group/
BVFSM.

* Penalty’s implementation is adapted from https://github.com/jihunhamm/
bilevel-penalty.

* VRBO’s implementation is adapted from https://github.com/JunjieYang97/
MRVRBO.

* AID-CG and AID-FP implementations are adapted from https://github.com/
prolearner/hypertorch,

* ITD implementation is adapted from https://github.com/JunjieYang97/stocBi0.

A.1 Toy Coreset Problem
The problem is:

mian||0—x0H2 st. 6 €argmin|f— Xo(@)|?,
v, 6

where o(v) = exp(v)/ Z?:l exp(v;) is the softmax function, v € R* 6§ € R? and X =

[T1, 79, 23, 74] € R4 where o(v) = exp(v)/ Z?Zl exp(v;) is the softmax function. Here
the outer objective f pushes 6 to towards xy while the inner objective g ensures 6 remains in the
convex hull formed by 4 points in the 2D plane (e.g. X = [z1, 72,73, 74] € R?**). We choose
xo = (3, —2) and the four points x; = (1,3), z2 = (3,1), 25 = (—2,2) and z4 = (—3,2). We set
vo = (0,0,0,0) and 6y € {(0,3),(—3,1),(3.5,1)}. For all methods, we fix both the inner stepsize
o and the outer stepsize £ to be 0.05 and set 7' = 10. For BVFSM and Penalty, we grid search the
best hyperparameters from {0.001, 0.01,0.1}. For BOME, we choose ¢ = 1 ||V¢||* and ablate over
n € {0.1,0.5,0.9} and T € {1, 10,100}. The visualization of the optimization trajectories over the
3 initial points are plotted in Fig. 3]
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Figure 3: Trajectories of (v, 8)) on the toy coreset problem obtained from BOME (blue) and
three recent first-order bilevel methods: BSG-1 [15]] (green), BVFSM [34] ( ), and Penalty
[39] (red). The goal of the problem is to find the closet point (marked by opt.) to the goal xy within
the convex envelop of the four vertexes. All methods start from 3 initial points (start 1-3), and the

converged points are shown in darkblue. For BOME, we also plot the trajectory of {ékT} in cyan.

As shown, BOME successfully converges to the optimal solution regardless of the initial 6y, while
BSG-1, BVFSM and Penalty methods converge to non-optimal points. We emphasize that for
BVFSM and Penalty, the convergence point depends on the choice of hyperparameters.

A.2 Toy Mini-max Game

The toy mini-max game we consider is:

min v0*(v) s.t. 0"(v) = argmax vf. (13)
veER 9ER
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For BOME and BSG-1, BVFSM, and Penalty methods, we again set both the inner stepsize o and 3
to be 0.05, as no significant difference is observed by varying the stepsizes. For all methods, we set
the inner iteration 7" = 10. For BVFSM and Penalty, we grid search the best hyperparameters from
{0.001,0.01,0.1}.

A.3 Without LLS assumption

The toy example to validate whether BOME requires the low-level singleton assumption is borrowed
from Liu et al. [31]]:
min |0 — [v;1]|2 st 6 € argmin (6, — v)?,
min 10— s 1) argmin (0] )

where 6 = (01, 02) and the optimal solution is v* = 1,6* = (1, 1). Note that the inner objective has
infinite many optimal solution 6*(v) since it is degenerated. We set both the inner and outer stepsizes
to 0.5 and 7" = 10 for all methods. For BVFSM and Penalty, we grid search the best hyperparameters
from {0.001,0.01,0.1}. In Fig. 4, we provide the distance of f(vg, k), g(vk, Ok), Ok, vi, to their
corresponding optimal over training time in seconds. Note that BOME ensures that §(v, ;) =
g(vk, 0r) — g(v*,0*) decreases to 0.
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Figure 4: Results on Problem which violates the low-level singleton (LLS). We compare BOME
against BSG-1, BVFSM, and Penalty. (v*, 6*) denotes the true optimum and The four plots show
how fast f (v, 0x), g(vg, Ox), Ok and vy, to the corresponding optimal values w.r.t. the training time
in seconds.

A.4 Data Hyper-cleaning

The bilevel problem for data hyper-cleaning is
min 0(6), st 6= argmin "0, v) 4 ¢ |0]?,
v, 0

where ¢*¥ is the validation loss on D'¥, and (™" is a weighted training loss: (™" =
Yo o(vi)l(xi, yi, 0) with o(v) = Clip(v, [0,1]) and v € R™. The training data is of size
m = 50000 and hence w € [0,1]59°%0. The validation data is of size m = 5000. The model
6 = (W, b) is a linear model with weight W and bias b. Where W € R0*784 and b € R!°. For this
problem, we set inner stepsize o = 0.01 for both MNIST and FashionMNIST dataset for all methods
as larger or smaller « result in worse performance. As we observe v’s gradient norm is much smaller
than 0’s in practice, we conduct a grid search over &, from {10.0, 50.0, 100.0, 500.0, 1000.0} and
also search whether to apply momentum for gradient descent, for all methods. The momentum is
searched from {0.0,0.9}. For BVESM and Penalty methods, we also search for their best hyperpa-
rameters from {0.001,0.01,0.1, 1}. The model’s initial parameter 6 is initialized from a pretrained
model learned only on the corrupted data. We split the dataset into 4 parts: train set, validation
set 1, validation set 2, and the test set. For each method, the model is learned on the train set, and
the hyperparameter v is tuned using validation set 1. The best hyperparameter of any algorithm
(e.g. stepsize, barrier coefficient, etc.) are then chosen based on the best validation performance on
validation set 2. Then we report the final performance of the model on the test set. To conduct the
ablation on « for BOME, we search for a € {0.25¢,0.5¢, €, 2¢}, where &€ = 0.01 is the best stepsize
we found for BOME. Results on MNIST and FashionMNIST dataset are provided in Fig.[5. In the
first column of Fig. [5] we compare BOME with (T = 1 and T' = 20) with baseline methods whose 7'
is chosen based on best performance on the validation set 2.
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Figure 5: Bilevel optimization for hyperparameter optimization. Top: data hyper-cleaning on MNIST
dataset. The solid black line is the model performance trained purely on the validation set and the
dashed black line is the model performance trained on the validation set and on the part of training set
that have correct labels. Middle: data hyper-cleaning on FashionMNIST dataset. Bottom: Learnable
regularization on 20 Newsgroup dataset. The solid black line indicates the model performance
without any regularization. The results for each method is averaged over 5 independent runs.

Remark: In Fig. |2 (top row), we do not include the performance of BSG-1 as we fail to find a set
of hyperparameters for BSG-1 to make it work on these data hyper-cleaning problems. VRBO’s
performance at convergence is tuned by hyparameter search. However, we observe that VRBO learns
slowly in practice, as it requires multiple steps of Hessian vector products at each step. We notice
that this is slightly inconsistent with the findings in the original paper [51]]. We adapt the code from
https://github.com/JunjieYang97/MRVRBO and find the original implementation is also slow.
It is possible that a good set of hyperparameters can result in better performance.

A.5 Learnable regularization

The bilevel optimization formulation of the learnable rgularization problem is:

mign 0(9)

sit. 6 € argmin™"(0") + |[W,0']5.
9/

We use a linear model who’s parameter  is a matrix (e.g. 6 € R20*130107) Hence v € R130107_ For
this experiment, the inner stepsize « of all methods are searched from {1, 10, 100, 1000}. The outer
stepsize £ is searched from {0.5, 1, 5, 10, 50, 100, 500, 1000}. For BVFSM and Penalty methods, we
also search for their best hyperparameters from {0.001, 0.01,0.1, 1}. Similar to the experiment on
Data Hyper-cleaning, we split the dataset into 4 parts: train set, validation set 1, validation set 2,
and the test set. The initial model parameter 6 is initialized from a pretrained model without any
regularization (e.g. v = 0) to speed up the learning. To conduct the ablation on o for BOME, we
search for « € {0.25¢,0.5¢, &, 2¢}, where & = 100 is the best stepsize we found for BOME. In the
bottom left of Fig.[5] we compare BOME with (I' = 1 and 7' = 20) with baseline methods whose T’
is chosen based on best performance on the validation set 2.

Remark: In Fig. 2 (bottom row), we do not include the performance of VRBO as we fail to find a set
of hyperparameters for VRBO that works well on the learnable regularization experiment.

18


https://github.com/JunjieYang97/MRVRBO

A.6 Continual Learning

Continual learning (CL) experiment follows closely to the setup in contextual transformation network
(CTN) from Pham et al. [43], which trains a deep neural network consisting of a quickly updated
backbone network (parameterized by 6) a slowly updated controller network (parameterized by 0).
When training the 7-th task, the update on (v, #) is solved from a bilevel optimization:

min 0 (v,0) st € argemin T (v,6').

More specifically,
0 (0,0) = L ({67 (v), v} MBy ), and (55 (0,6') = L¥({6,0,}, Dy UME). (14)

1:7

Here, M;™ and M{™ denote the semantic and episodic memory of task ¢ (e.g. they can be think of
validation and training data) and D is the training data of task ¢. Hence, the inner objective learns a
backbone 6*(v) that performs well on the training data which consists of the current task data D; as
well as previous episodic memories M. Then, the outer objective encourages good generalization
on the held out validation data, which consists of the semantic memory M}, ;. All hyperparameters
of BOME are set to the same as those of CTN. We choose ¢5, = 11 ||V (vg, Ok || where n = 2.0, here
7 is chosen from {0.1, 0.5, 1.0, 2.0}.

PMNIST Split CIFAR

Method ACC(})  NBT({) FT (1) ACC(})  NBT(}) FT (1)
Offline 84.95 £+ 0.95 - - 74.11 £ 0.66 - -
EWC 48.07 £1.67 30.55+1.66 78.624+0.60 36.97+1.87 29.61+2.32 66.58 +0.80
MER 76.59+£0.74 6.88+0.59 82.32+£0.34 60.32+0.86 11.80+0.86 69.23 +0.40
GEM 72.74 £0.91 7.79+£1.04 80.53£0.28 61.33£1.16 8.04£1.10 69.37£0.72
ER-Ring 72.11 £0.46 7.96 £0.46 80.06£0.37 61.96+1.22 718 £1.84 69.14 £0.87
CTN (+ITD) 7840 £0.28 5.62+0.39 84.02+£0.29 67.7+60.96 4.884+0.77 72.584+0.62

CTN (+BVFSM) 77.78 £0.32 7.254+0.28 85.03+£0.28 67.04£0.76 6.97+£0.62 74.01 £0.57
CTN (+Penalty)  61.57+£0.29 12.69+0.44 74.27+£0.29 47.414+293 836+2.63 73.82+0.64
CTN (+BOME) 80.70 £0.26 4.09 £0.27 84.79+0.25 68.16+0.60 4.724+0.75 72.88+£0.48

Table 2: Results of continual learning as bilevel optimization. We compute the mean and standard
error of each method’s results over 5 independent runs. Best results are bolded.
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B Proof of the Result in Section

We proof Proposition [T/ using Proposition 6.3 (presented below using our notation) in Gong et al.
[L6] by checking all the assumptions required by Proposition 6.3 in Gong et al. [16] are satisfied.
Specifically, it remains to show that for any k, Ay < 00, limg_,o0 Vq(vk,0r) = 0 and ¢ is lower
bounded (this is trivial as ¢ > 0 by its definition), which we prove below.

Firstly, simple calculation shows that for any k,

—(Vf(v, 0r), Va(vk, k) < SUPup IV f (v, 0)]|
[|Va(vk, Or)||? + 1IVa(v, 01)]|

Here the last inequality is by ||V ¢(vk, 0x)|| > 0. Secondly, note that as we assume V¢ is continuous,
this implies that

Ak =

lim Vq(vg, ;) = Vq(v*,0%).
k— o0

As q(v*,0%) = 0, we have V¢(v*,0*) = 0. Using Proposition 6.3 in Gong et al. [16] gives the
desired result.

Proposition B.1 (Proposition 6.3 in Gong et al. [16]]). Assume f, q, Vq are continuously differentiable.
Let {[vk, 0k, ) = k = 1,2,...} be a sequence which satisfies limy_,  ||Vq(vg, 0k)|| = 0 and
limy o0 ||V f (0, 0k) + M Va(vg, 0k)|| = 0. Assume that [v*,0*] is a limit point of (v, 0] as
k — oo and [v*, 0*] satisfies CRCQ with ¥V gq, then there exists a vector-valued Lagrange multiplier
w* € R™ (the same length as 0) such that

V", 0%) + V(Voq(v*,0%))w” = 0.

C Proof of the Result in Section

We define Ly := 2L(L/k + 1) and using Assumption 2 and |, we are able to show that (v, ) is
L4-smooth (see LemmaE] for details). For simplicity, we also assume that ¢ <1 throughout the proof.
We use b with some subscript to denote some general O(1) constant and refer reader to section E for
their detailed value.

Note that ¢ defined in Sectionchanges in different iterations (as it depends on H,ET)) and so does Vg.

To avoid the confusion, we introduce several new notations. Firstly, given v and 0, () denotes the
results of T steps of gradient of g(v, -) w.r.t. 6 starting from 6 with step size « (similar to the definition

in ). Note that #(7) depends on v,  and «. Our notation does not reflects this dependency on v, o
as we find it introduces no ambiguity while much simplifies the notation. Also note that when taking

gradient on ¢, the 9,(€T) at iteration k is treated as a constant and the gradient does not pass through it.
. T
To be clear, we define Vq(v,0) = Vg(v,0) — [Vng(v, 07y, OT} , where 0 denotes a zero vector

with the same dimension as 6. Using this definition, Vq(vg, 0;) = V{(vg, 0) at iteration k. We also
let A* (v, 0) be the solution of the dual problem of

min [[Va(v,0) = V£ (v,0)|° s.t. (Va(v,0),V(0,0)) = nl|Va(v, 0)] (15)

That is

20N when [|Vq(v,0)|] > 0

[l Va(w,0)[1>—(Va(v,0),V£(v,6))]+
A (v,0) = N (16)
0 when ||Vq(v,0)|| =0

We might use A* for A\*(v,0) when it introduces no confusion. Also, denote §*(v,0) =
M (v,0)Vq(v,0) + Vf(v,0) and thus &, = 6* (vg, ).

We start with several technical Lemmas showing some basic function properties.
C.1 Technical Lemmas

Lemma 1. UnderAssumptionfor any v, 0, g(v,0) — g(v,0*(v)) > £]10 — 6*(v)|]%

a4
4
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Lemma 2. Under Assumption and we have ||Vq(v,0) — Vq(v,0)|| < L||0T) — 6*(v)|| for any
v, 0. Also, when ||Vq(v,8)|| =0, ¢(v,0) = 0.

Lemma 3. UnderAssumptionz ! we have ||6* (v2) — 0% (v1)|] < 2L |jvy — vyl|.

Lemma 4. Under Assumption 2, we have ||Voq(v,01) — Voq(v,02)|| < L|[61 — 05|, for any v.
Further assume Assumption[l) we have

[Va(v1,01) — Vg(ve, 02)|| < Lgl|[v1,01] — [va, 2],
where Ly :=2L(L/k + 1).

Lemma 5. Under Assumptloanj Eand assume that o < 2/ L. Given any v, 0, suppose §(°) = 0
and 0+ = 0 — aVyq(v, 0WM), then for any t, we have q(v,0®)) < exp(—by (a, L, £)t)q(v, ),
where by (a, L, k) = is some smctly positive constant that depends on o, L and k.

Lemma 6. Under Assumption E for any [v,6], we have ||6*(v,0)|],||Vq(v,0)|],||Vq(v,0)]] <
ba(M,n), where by(M,n) = (3 + n)M.

Lemma 7. UnderAssumpttonElfor any [v, 8], we have X*||Vq||> < n[|Vql||? + M||Vq||,where \*
are defined in (16).

Lemma 8. Under Assumptionand we have ||Vq(v,0)|| < 2572 L,q"%(v, 0).

C.1.1 Lemmas

Now we give several main lemmas that are used to prove the result in Section[4.2]

Lemma 9. Under Assumption Eand@ when ||V q(vg, 0x)|| > 0, we have
Q(vki1, 1) = a0k, 08) < =€l Va0, 00)|1° + EnLallOR” = 0% (we)]| (Ll 10" — 0" (vr) | + 2Ll 105 — 0" (0r) ]
+Eba L]0 — 0% (vp)|| + Ly€203/2.
When ||V q(vg, 0)|| = 0, we have q(vs1,0x41) — q(vg, O) < E2Lyb3/2.
Lemma 10. Under Assumption Eand choosing T' > bs(n,r, k, L), we have
q(vg, 0) < exp(—bsk)q(vo,b0) + A,
where by = —log(1 — 5 nk) is some strictly positive constant and A = O(exp(—b1T) + &).

Lemma 11. Under Assumption[l} 2|and[3] we have

bsq(vo, 0o)
3

where bs is some constant depends on Lg, 1, k; bg is some constant depends on k, L and A is defined
in Lemmal[I0l

K-1
> IVa(ok, 0| < + K&
k=0

Lemma 12. Under Assumption|l} 2|and[3| choosing T > bs(n,r, r, L) and assume that r,& < 1/L,
we have

N

Z 16" (o, 0111 + a(or, 01)] = O(E™" + K exp(=b1T/2)+ K&/2 +67 2 K122 (09, 6y)).

C.2 Proof of Theorem

Using our definition of A* in (16, we have
V£ (0,6) + X (0,0)Va(v, 0)|| < ||V f(v,6) + X (v,6)Va(v,0)]| + |IN*(v,8)(Va(v,6) = Va(v,6))]]
= [16" (v, 0)[] + |I\*(v,60)(Va(v,0) = Vq(v,6))]].
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Using Lemma E, we know that when ||V¢]|| = 0, we have ¢ = 0 and thus ||Vg|| = 0. In this case,
[|A*(Vg — Vq)|| = 0. When ||Vq|| > 0, some algebra shows that

IN(Va = Va)ll < [n— (V£,Va/IVall) [Vall '] IVe — Vel

< (= (V1. Va/IIVal}[[Vall~)lIVa ~ V.
Notice that

1Va(v,0) = Vg(v,0)|| < L|[0T - 0% (v)]]
< 2Lk 2¢?(0,01))
< 2LKY2 exp(—=b1T/2)q"? (v, 6)
< 2Lk exp(—by T/2)|[V(v, 0)]|
Here the first inequality is by Lemma|[2} the second inequality is by Lemmal[I] the third inequality is by

Lemma|[5|and the last inequality is by Assumption ] (using ||Vq(v, 0)|| > ||Veg(v,6)|]). Similarly,
under assumption that 7' > [—b7 " log(fsx?L™2)], L~  exp(—b1T/2) < 1/4,

||@Q(U7 9)” = ||@q(vv ) - V(](va 0) + VQ(U79)||

> V(0. 0)| ~ [[Va(v.0) ~ Va(v. )]
> [[Va(w, 0)l|(1 ~ (2Li~ exp(~5iT/2))
> V(0. 6)]|.

This implies that

Ve = Vdll _ ,[IVa—Vdl|

< < < 4Lk texp(—b1T/2).
[[Vql| Il

‘We thus have

||)\*(U:9)(@Q(U,9)—Vq(v,@))”§n|@q_vq|_~_<Vf7 0 >||Vq—w||

1Vall 1Vall

0l Va(v,0)|| +2 <Vf, Vq>

< 2Lkt exp(—b1T/2) -
[[Vql|

< 2L Yexp(=b1T/2)(n 4 2)ba,

where the last inequality is by Lemma[6, Combining all the results and using ||Vq(vk, 0k)|| <
22 L,q" % (v, 01,) by Lemma we have

K(v,0) < |[V£(v,0) + A*(v,0)Va(v, O)|* + a(v,6)
< 2|V f(0,0) + A" (0,0)Va(v,0)|* + q(v,0) + 2]\ (v,0)(Va(v,0) — Va(v,0))||?
< 2/|6% (v, 0)])* 4 q(v, 0) + 8L*k ™2 exp(—byT)(n + 2)b3.

Using Lemma|[I2] we have

mkinIC(v;€7 k) = O(mkin(||5*(v;€7 9;€)||2 + q(vg, O0k)) + exp(—b1T))

=0 + Kexp(—b1T/2) + K&Y? + ¢ V2K Y212 (05, 6y)).
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C.3 Proof of Lemmas
C.3.1 Proof of Lemma|§|

When ||Vq(vg, 0;)|| > 0, by Lemma@ we know that g is L,-smoothness, we have

2
k1, 0u1) — 10k, ) <~ (Ta(og, 0), 8" (v 00)) + Z2 15" (o, 03)
< q(vi, Or), Ukvek)> §<VQ(Uk79k) - @Q(Ukﬂk)ﬁ*(vkﬁk» + La&?b3/2
< —&nl|Va(vr, 1) —€<VCI(Uk=9k) — Va(vi, 0), 5*(Uk»9k)> + L,£%b3/2

—&nl|Va(or, 01)||* + €b2Va (v, k) — Va(ur, 01| + Lo&*b3/2.
where the second and the last inequality is by Lemma [6 and the third inequality is ensured by
the constraint in the local subproblem (<V?q(vk, 1), 6* (v, Hk)> > n[|Vq(vr, 01)?||.). And by

Lemma we have || Vq(vr, 0x) — Va(vg, )| < L||0,(€T) — 6*(vg)||. Plug in the bound we have

(k1,0 11) — q(vr, O) < —Enl[Vq(vg, 0x)|2 + b2 L]0 — 6% (v -
Also notice that

‘Ilﬁq(vk,%)\ﬁ - HVCI(vk,@k)HQ’ < [|Va(vk, 0) — Va(vk, 01| [|Va(vr, O) + Va(vx, 01|
< |Va(vk, 0x) — Va(vk, 0)|| ([IVa(vr, 0x) — Va(vk, 0)]| + 2/ Va(vk, 0x)|])
< LolI0g" = 07 (wn) ] (Lqll6y" — 0% (wp)|] + 2/ Va(vk, 0x)]])
= Lollof" = 0" (vl (L1657 — 6% (0| + 21|V a(vr, 0x) — Va(vr, 0% (vp))]])
< Lollos” — 0" (oi) || (Lqll6L" — 0% (vi) || + 2Lq 16k — 0% (vi)]]),

where the third inequality is by Lemma 2, the equality is by Vq(vg, 6% (v;)) = 0 and the last
inequality is by Lemmaf]

| /\

Using this bound, we further have
q(Vt1, Okr1) — q(v, O) < —En||Va(vk, O1)|* + &n ‘H@fJ(Ukﬁk)HQ —IVq(vi, 0) |2
+ &bV (v, O1) — Va(vr, O1)|| + Lg&%b5/2
< —&nl|Va(vr, 00)|1* + EnLyl|65" — 07 (wr) || (LgllOg” — 0 (ve)|| + 2Ll 104 — 0 (v3)[])
+ b || — 0% (v) || + Lg2b3/2.
When ||Vq(vk, 61)|| = 0, by Lemma q(vk, 0x) = 0 and hence Vq(vg, 0;) = 0. We thus have
Lq§2
2

q(Vky1,Or11) — q(vg, O) < = (Vq(vg, Ok), 0" (vk, Ok)) + 116* (vk, 0| P

L 2
= 15 (e, 00) 2

< ELyb3/2.
C.3.2 Proof of Lemma

By Lemma@ when ||Vq(uvk, 0%)|| > 0, we have
4(Vkt1, Ok 1) — q(vr, O0x) < —€nl[Vig(vr, 0|12 + EnLyl 057 — 0% (o)l (LgllOS" — 0% (i)l + 2Lgl 161 — 0" (i) [])
+ Ebo L6 — 0% (0| + Lo€703 /2.
By Lemma|[I]and Lemma 3]
165 — 6% (u)]] < 267 /2¢ 2 (04, 67 < 26712 exp(—b1T/2)q™? (g, 1.
105 — 0" (vr)[] < 257262 (vy, O,).
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Using those bounds, we know that
Ll 087 = 07 (We)l| (Lqll0f™ = 07 (ui)[| + 2L 10k — 0" (ve)|]) < 122257  exp(—b1 T)g(vx, O)
This implies that

q(Vky1, Ok 1) — q(vk, Ok )
< —&nl[Va(vk, Ox)|I* + 1260 L2k~ " exp(—b1T)q(v, O
+26by L™ Y2 exp(—b1T/2) ¢ ? (vg,, 01.) + Ly€2b3/2
< — &nrq(ok, Or) + 126nLE k™" exp(—b1T)q(vk, O )
+26by L™V exp(—b1T/2)q" 2 (vk,, O1,) + Ly&2b3/2.
Choosing T such that T' > b3(n, «, k, L) where

we have
Op1)— 0,) <> 01 )+2Ebg L~ /2 —01T/2)q % (vg, 0%)+ Lo E2b2 /2
q(Vrg1, Op 1) —q(vg, Or) < 577511(%, k)+28ba L™= exp(=b1T/2)q = (vk, On )+ L7035 /2.

64b L2

This implies that when 2" exp(—01T") < q(vy, 0y) and ugifbg < q(vg, Ok),

1
q(Vr1, Ok 1) — q(vg, Ox) < —ZﬁﬂH(J(Uk»ek)

64b3L°
Let a = max(—%
n?kK

exp(—b1T), 2Lq£b2) Also, when gq(vi, ) < a

QU1 011) < vk, O1) + 26ba L% exp(=b1 T/2)q"/? (vi, O) + Lo&2b3/2
< a+ 26by LY exp(—b1T/2)V/a + L,E2b3/2.
Note that

2by Lk~ Y2 exp(—b1 T/2) < 577 SR Ja

q£2b2/2 < S 577
This gives that in the case of q(v, 0;) < a
K
q(Vrt1,0k41) < (1+ %)

Define kg as the first iteration such that g(vg, %) < a. This implies that, for any k& < ko,

ook, 00) < (1= Sum)¥a(uo, 0o).

When any k& > ko, we show that q(vi11,0k+1) < (1 + 577”)(1. This can be proved by induction.

Atk = ko + 1, if g(vg, 0r) < a, we have q(vg,0;) < (1 + €f’T”)a. Else if at k = ko + 1,
q(vg, 0k) > a, q(Vkt1,0k+1) < q(vg, k) < a. We thus have the conclusion that for any k& > ko,
q(vk, 0x) < (1 + 4F)a. Combining the result, we have

e, ) < (1 Smm)aluo, O0) + A,

where we denote

nk . 64b3L2 2L,Eb3
A= (1 B (B exp(ob) + 2082

)+ Ly€?b3/2 = O(exp(=biT) +&).  (17)
Let by(n, k,&) = —log(1 — %nn), we have the desired result.
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C.3.3 Proof of Lemma

By Lemma (8] and [T0] we have

IV q(or, 0x)[1* < 2671 LEg(vr, O1)
< 2/<flL§ [exp(—bsk)q(vo, 0o) + A],

where A is defined in (17). Also notice that

IVa(v,0)[] < |IVq(v,0) = Va(v,0)|| + ||Va(v, 0)]]
< L)J0™) — 6% ()| + || Va(v,0)]]
< 2Lk 2" 2(0,6)) + ||Vq(v, 0)||
< 2Lk exp(—bi T/2)g /2 (0,0) + [|Vq(v, 0) |
< 2Lk exp(—=b1T/2) +1)||Vq(v, 0)]]
< (2L&™! +1)[[Va(v, 9)|
Here the first inequality is by triangle inequality, the second inequality is by Lemma 2, the third

inequality is by LemmalT] the forth inequality is by Lemmal5|and the fifth inequality is by Assumption
[I} Taking summation over iteration and using Lemma[I0] we have

K—

H

K-1
IVq(v,0)||* < (2L~ + 1) 22 [1Vq(vk, 0k)l|
k=0 k=0

< (2L 14 1)2

K-1
26~ 1L2q (vo, o) Z exp(—bsk)] + KA
k=0

2K~ 1L2q(v0,90)

KA
T—oxp(—br)

< 2Lkt 4+1)2

_ bsq(vo, 0o)

et Kb,

2
where we define bs(Lg, 7, k) = 1776’;" (2Lk~ +1)? and bg(k, L) = (2Lk~1 +1)2.

C.4 Proof of Lemma

Remind that by our definition of A* in (16) and Assumption |2} we have

2
Pk, Oucr) = (01, 06) < ~€ (77 (o, 00), 6% (o, 00)) + T 18" (0, 00)
2
= £ (5" (on,00) — X (0,00 V01 04), 07 (01, 00) ) + o |67 (01, 00|

2
(€~ T8 ok, O0)1” + A" o, 00) (Vo 00), 8" (v, 1))

L§2 * 2 * 2
(6~ EENI5 (0 00)112 + €00 (0, 00)] [V(en 00)|
< —gna*(vk,akm? € (g, 00 [V 001,

where the last inequality is by the assumption on £ < 1/L. To show the second inequality, we use the
complementary slackness of Problem (I3, that is

X (v, 00) [ { Va(vr, 60),0° (0r, 60)) = nl|Va(or, 00) |
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By telescoping,

K-—1 g K-—1 K-—1 R
D FWrs1,0k41) — f ok, 61) < —3 16 (ks 011> 4+ €m Y A (vk, 1) Va(vr, )|
k=0 k=0 k=0
g K-1 K—-1 R R
<=2 ) 1107 (e, 0011 + €m >l Va(vk, 04)[1” + M|[Va(vx, 61)]])
k=0 k=0
§K71 K-1 . K—-1 R
=-3 D 16" vk, 0017+ €n* D (IVa(or, 0)[1* + EnM Y || Va(vr, 0)|
g K-—1 K—1 ) K-—1 )
<=3 D 1107 (e, 00 + & D IVa(or, 0[P + EnMVE, | Y [[Va(uk, 01)]1%,
k=0 k=0 k=0

where the second inequality is by Lemma[7 and the last inequality is by Holder’s inequality. Since
ZkK:_Ol fgs1,0k11) — f(vk,0k) = f(vk,0k) — f(vo,00), rearrange the terms, we have

K-1 K-1 K-1
&Y 116" (o, 0117 < 2(f (w0, 00)— f (v, 0))+26m D Iﬁq(vk,9k)||2+2£nM\/EJ > IVa(or, 1)

k=0 k=0 k=0
This implies that

K-1 K-1
€ (16" (wrs 0) 112 + v, 1)) < 2(f (vo,00) — f (v, 0x)) + 260> > [[Va(vi, Ox)|>
k=0 k=0

K- K—1
+2€nM\/§J Z IV a0k, 0)12 + €Y vk, 0).
k=0 k=0
Using Lemma[I0] we know that

ook, O0) < (1~ S a(vo, ) + A
This gives that

0
¢ Z (v, O1) < (”0’ o) | eka.
Using Lemmaand VT +y g VZ + /Yy, we have

K
26112 3" |Va(or, 0> < 20%bsq(vo, 0) + 2K 12Eb6 A
k=1

K
2677M\/?\J > 1[Va(or, )2 < 262K 2052y M g (v, 00) + 2K €bg *nM A
k=1

This implies that

K—1
€ 116" Wk 00|12 + (v, b))
k=0
<2(f(vo,00) — f(vi,0K)) + 20°bsq(vo, 00) + 2Kn°Ebs A + 251/2K1/2bé/277Mq1/2(v07 6o)

4q(vo, 6
Dy N (L)
Nk

+¢KA

<2(f(vo,b0) — f(vi,0x)) + (2n%bs + %)q(vo, Bo) + 2KE(by *nMAY? + (ben? + 1/2)A)

+26/2 125 "M (vo, 0o)
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‘We thus have

K-1

> 116" (ow, 0011 + a(wr, )]

k=0
:O(f_l 4 KA1/2 + 5—1/2K1/2q1/2(vo790))
=0(E + Kexp(—b1T/2) + K€Y/ + ¢ V2KY 2612 vy, 0,)).

C.5 Proofs of Technical Lemmas

C.5.1 Proof of Lemma

Please see the proof of Theorem 2 in Karimi et al. [24]].

C.5.2 Proof of Lemma

Since Vag(v,0*(v)) = 0, we have V,g(v,0*(v)) = Vig(v,0*(v)) + V,0*(v)Vag(v,0*(v)) =
Vig(v,6*(v)). Thus

Va(v,0) = [ Vo9 (v, 0) — Vug(v, 0°(v)) ]

|: vvg(vv 9) - Vlg(v, 9*(1})) :l
Veg(va 6‘) .

Veg(va 9)

Also note that

v _ vvg(vve) - Vlg(v79(T))
Va(v.6) = [ Vog(v, ) '
This gives that

1Va(v,0) = Va(v,0)|| = [[Vig(v,0) = V1g(v, 6% (v))]]
< LI — 6% (v)]].

Also when 0 = [|[Vq(v,0)]| [Vug(v,0) — Vig(v, 0|2 + [|Veg(v,0)||2, we have
[IVog(v,0)]| = 0. Under Assumptlon

0 =[Vag(v, )|l = r(g(v,0) — g(v,0"(v))) = rq(v,0).

C.5.3 Proof of Lemma

Using Assumption [T]and V2g(v1,6*(v1)) = 0, we have

[V2g(v1, 0% (v2))]] > V/k(g(v1, 0% (v2)) — g(v1, 0% (v1)).

2)
Also by Lemma[ we have g(v1,0%(v2)) — g(v1,0%(v1) > 1k]|0*(v2) — 6% (v1)|[%. These imply
that

* 1 * *
1V29(v1, 07 (v2))l| = 54167 (v2) — 67 (va)]-
Also

[[Vag(v1, 0% (v2))]|
=[|V2g(v1,0"(v2)) — Vog(v2, 0" (v2))]|
=[Va[g(v1, 0" (v2)) — g(va, 0" (v2))]|
<V 2 lg(ve, 0% (v2)) — g(va, 07 (v2))]]]
<Lllv1 — val,

where V[LQ] denotes taking the derivative on both first and second variables. We thus conclude that

* X 2L
167 (v2) = 0% (va)l] < —=llv1 — wo|-
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C.5.4 Proof of Lemma@

To prove the first property,
IVaq(v,01) = Vaq(v, 02)|| = |[Vag(v,01) = Vog(v, 0)]|
< L[|6y — 62]].
Also
[Vq(v1,01) — Va(v2,02)[| = [[Vg(v1,01) — Vg(va,02) — Vg(v1,0"(v1)) + Vg(va, 0 (v2))
< [Vg(v1,61) = Vg(va, 02)[| 4 [[Vig(vr, 07(v1)) — Vig(va, 07 (v2))] -
By Assumption 2] (Lipschitz continuity of Vg),
IV1g(v1, 0% (v1)) = Vig(vz, 0% (v2))l| < [IV1219(v1, 07 (v1)) — Viz219(v2, 07 (v2)) ]
< LV16%(01) = 6 (02)]? + [Jo1 = va][?,
where V[ 5] denotes taking the derivative on both first and second variable. Also By Lemma

412
L\/16%(v1) = 0% (w2)[]? + [Jur — v2[? < L\/nzlvl — 0a|[? + [[or — v |?

2L
< L(? + )[|vr — vall.
This gives that
[Va(v1,01) — Vq(va, 02)|| < [[Vg(v1,01) — Vg(va, 02)[| + [[Vig(v1, 0 (v1)) — Vig(ve, 07 (v2)) ||
< Ly/lJoy — v2] ]2+ [101 — 62| + | V1g(v1, 07 (v1)) — Vig(va, 0% (v2))]|
2L
< Ly/|Jor — 0ol + |61 — 6] + L(? + D1 — v2]|

< Lo/ |lvr — val[? + (61 — 622,
where L, := 2L(L/k + 1).

C.5.5 Proof of Lemma
By Lemmafd] we have

(t+1) 0 La? (2
a0, 00) — gfu,609) < (o~ 20| V(w002
By Assumption|[I] we have
1V0q(0, D)2 = [|Vag(v, 0D)|* > k(g(v,0)) = g(v,6%(v)) = rg(v,0")).
Plug-in, we have
La?

a(v,0V) < (1= (@ = S )ma(v,0).

Recursively apply this inequality, we have
2

L
a(v.69) < (1= (a = Z)r)'q(v,0).
Let by (r, L, k) = log(1 — (o — La?/2)k), we have the desired result.
C.5.6 Proof of Lemma 6]

Notice that ||Vq(v,0)|| < [[Vg(v,0)|| + ||Vg(v, 60 (0))|| < 2M. |[Va(v,0)|| < [|V,g(v,0)]| +
1V19(0, 0| +[|Vog(v, 0)|| < 3M. When |[Vq|| = 0,[[67|| = |V f|| < M. When [|Vq|| >0,

1511 = 1Vl = (¥ £.Va) /11 al?¥a + V1

< |Vl +2([VfI| < (2 +n) M.
This concludes that ||6*|| < (2 +n)M.
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C.5.7 Proof of Lemma

In the case that <Vf, @q> < l|Vgl|2, M[|V|]> = ||Vl - <Vf7 @q> In the other case,
MN*||Vq|[? = 0. Thus in all cases,
N([Vall* < ml[Val[* + [V £ [Vl
< nl|Val[® + M]|Vql|.
C.5.8 Proof of Lemmal8]

Notice that since Vq(v, 0*(v)) = 0, we have

1Va(v,0)[| = [|Va(v,8) — Va(v,0%(v))]] < Lg|[0 — " (v)]| < 26~ /2 Lyg' (v, ),
where the first inequality is by Lemma[] and the second inequality is by Lemmal[T]

D Proof of the Result in Section

We use b with some subscript to denote some general O(1) constant and refer reader to section@for
their detailed value.

For notation simplicity, given v and 6, (7) denotes the results of 7" steps of gradient of g(v, -)
w.r.t. 6 starting from 6 using step size « (similar to the definition in (E)). And note that Vg(v, ) =

b
Vg(v,0) — {Vng(v, 07y, OT} , where 0 denotes a zero vector with the same dimension as 6. We

refer readers to the beginning of Appendix [C]for a discussion on the design of this extra notation and
how it relates to the notation we used in Section [3} For simplicity, we omit the superscript ¢ in ¢° and
simply use ¢ to denote ¢ in the proof.

We start with the following two Lemmas.

Lemma 13. Under Assumption | and assume o < 1/L, for any v,6, g(v,0) — g(v,6°(v,6)) >
4110 = 0° (v, 0)| .

Proof. 1t is easy to show that

L 2
9(0,01%D) < g(0,60) = (o = =) [Vog(v, 00| < g(0,6).

We thus have g(v, 6°(v,6)) < g(v,8). The result of the proof follows the proof of Theorem 2 in
Karimi et al. [24]. O

Lemma 14. Under Assumptionlg'andli‘] 116 (v2,0) — 6°(v1,0)|| < 2L||vy — vs]| for any vy, va.

Proof. Notice that Vq(vg, 0°(v2,0)) = 0, we have
IVq(v1,6°(v2,0)) — Va(v2,6°(v2,0))]| = [[Vg(v1,6°(v2,0))]]-

By Assumption@ we have [|Vq(v1,0°(v2,0))|| > v/k(g(v1,0°(v2,0)) — g(v1,0°(v1,0)). And by
Lemmal|13] we have

K
g(v1790(v279)) - 9(01,90(01,9)) > ZHGO(U%G) - 90(1}1,9)H2.
Combing all bounds gives that
K
2L||vr—vzl| 2 [[Va(vr, 0°(v2,6)) =V (v2, 8° (v2, 0))I| = [[Va(v1, 6% (v2, 0))[| = S116°(v2,8)—0° (w1, O)l-

This implies that ||6°(v2,8) — 6° (v, 0)|| < 2L||vy — vy O
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Now we proceed to give the proof of Theorem 2}

Note that

q(Vkt1, k1) — q(v, Ok) = [9(Vk+1, Ok+1) — 9(Vk41, 0% (Vit1, O41))] — [9(vk, Ok) — g(vk, 0° (v, O))]
= [9(Vk+1, Ok+1) — 9(Vkt1,0° (Vk1, 0k))] — [9(vi, O) — g(vi, 0° (v, O))]

[9(vkt1,0° (Ve 1, 0k)) — 9(Vkt1, 0° (Ve 1, Oi1))]

= [9(vk+1, Ok+1) — 90k, Ok)] = [9(Vk+1, 0% (Vk+1,0k)) — g(vk, 0° (vi, Ok))]

+ [9(Vk41,0° (Vk+1,0k)) — 9(Vk+1, 0% (Viet1, Ok 41))]-

+

Note that

L 2
9(Vr+1, O+1) = 90k, Ok) < =€ (Vg (i, 0n), 8" (v, O )) + —= 107 (v, 0n)l?

—19\Vk+1,0 \Vk41,Vk)) — g\Vk, U (Vk, Uk ) )| = 1,219\Vk, U Vg, Uk ) ), |Vk+1, 0 (Vk+1,Yk)] — [Vk, U (Vk, Uk

[9(vk+1,0° (U1, 01)) — 9(vk, 0° (v O))] < (V1,219 vk, 0° (v Ok)), [V, 0°( 01)] = [or, 0° (vr, 0)])

L
5 k1, 0% (Wrg1, 0)] = [or, 6° (v, 04| .
Notice that as Vag(vg, 0°(vg, 0%)) =0,
<v[1,2]g(vkﬂ90(vkaak))v [vk+1,90(vk+139k)] - [vkago(vkaek)D =< <v[1,2]g(vk7eo(vkvok))va*(vk79k)>'
Also using Lemma([T4] we have
o o 4L
10° (Wk1, 0k) = 0% (v, On)| < ——Ilvms1 — v

This implies that

16L2
[vrs1, 0% (Vrt1, O)] = [vis 0° (v, )] I* < ( 2

We thus have
Q(vk—O—la 0k+1) - Q(”Uka ak) S 75 <Vq("Uk, Hk)a 6*(Uk7 9k)> + quZH(S* (vka 0k)||2/2 + Xk

where we define L, = (185~ + 2) and i = [g(vks1,0°(vh41,06)) — 90k 11, 0° (Vks1, Ops1))].

Using the same argument in the proof of Lemma[I0]and Lemma|[T1] we have

161>
+1) ok —vxl* < (7+1)£2|I5*(vk,9k)|\2~

q(vk+1, Ox+1) — q(vk, Ok)
< — &nl[Va(ve, O )l1* + 1260 L3k~ exp(~01T)q (v, O
+26bo L™ 2 exp(=b1T/2) g (vg, 0k) + Le&2b3/2 + X
< — &nl[Va(vr, Or)||* + 126 L3k~ exp(=b1T)|[Va(vx, x>
+26ba L™t exp(=01T/2) ||V (g, 0) || + Le&2b3/2 + X
Here the second inequality is by Assumpnon@ Choosing T such that T > b7(n, «, k, L) where

we have
3 _
q(Vkt1, Ok1)—q(vg, Or) < *ZfUHV‘](Uk’9k)|‘2+2£b2L"5 Lexp(—=b1T/2)||Vq(v, 0k ) ||+ La&2b3 /24 Xk

Using Young’s inequality, given any = > 0,
1
exp(—017/2)[|Vq(vg, 0k)|| < wexp(=b1T) + ;\|VQ(Uk»9k)||2~

Choosing z = %, we have
1
(041, k1) = a(vw, Ox) < —2€nlIVa (v, 0)|1> + A+ X,
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where we denote A = 587?:35 exp(—b1T) + 3 L,&%b3. This gives that

K K—1
1
2612 IVa(or, 00)11° < a(vo,00) — a(vie, O0x) + KA+ D xi
k=0 k=0
Using the same argument in the proof of Lemma|T1]
IVa(v,0)|| < (2Le™" + 1) Va(v, 6)]l-
We hence have
K—1
D IVa(vr: )17 < L™+ 1) Y [[Va(v, 63)]]
k=0 k=0
420k + 1) =
< 2L 7, 00) — aores 01) + KA+ S ).
& k=0
Similar to the proof of Lemma [I2]
K-1 K—1 K—1
N 2(f(vg,00) — f(vk, 0
> 15" un, )| < L2 IO gy 3, 0] P4 2000V | Y ¥ 002
k=0 k=0 k=0
Usingy/z +y < v/x 4 ,/y, we have
K-1 K-1
- 8n(2Lk~1 +1)2
22 3 [¥a(on, 00)] 2 < 77(5)(61(110790) ok 0) + KA Y i)
k=0 k=0
K=l ) A2 M (20K~ 4 1) 1/2 A1/2
MmMVE | 3 [|Va(or, 0)]2 < VE ai (Va(vo, o) — q(vi, 0k ) + K'/2AV2 4
k=0
Also notice that by Assumption 4]
K—1 K71£
S 2
> ok, 06) < Y ~IVa(or, 04l
k=0 k=0
4 K—-1
< —(q(vo, 00) — q(vrc, 0x) + KA+ Y xi)
ULTS —
We hence have
K—1 K—1 1/2
~ 1 KA  KY2  KAY? ~
* 2 _ 1/2
];)(Hé (vg, Ok)||* + q(vg, 0)) = O g + — ¢ + 51/2 + W + K/ [kzo Xk‘|
= = +

1/2

=0 et K exp(—b1T/2) + K¢ 51/2 + Z Xk
+
Using the same argument as the proof of Theorem when T > [—by " log(5x%L~2)],
K°(v,0) < 2[[6"(v,0)[1> + q(v,0) + 8L exp(—biT)x > (1 + 2)°b3.
This implies that
1 K-1
min K (v, 0x) < Z [2/|6% (v, 0)||* + q(v,0)] + 8L exp(—by T)x~2(n + 2)%b2
k=0
1/2

1 1/2
f + exp( blT/Q)—‘rf/ +W+
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Now we proceed to bound 7 Zk o Xk- Notice that
Xk = 9(Vk+1, 0% (Vkt1,0k)) — 9(Vkt1, 0% (Vg1, Ot1)
= 9(Vkg1,0° (g1, 0k)) — g(vk, 0° (v, Ok)) + gk, 0° (Vk, Ok)) — g(Vks1,0° (Vkg1, Okt1))-
Notice that using Assumption[2]and Lemma[I4]
9(Vk41,0° (Vg1,01)) — gV, 0°(vk, Ok)) < L||[Vks1, 0% (Vrt1, Ok)] — [vk, 0° (vk, O1)]|]
< L(|Jvk41 — vgll + [10° Vg1, Ok) — 0°(vi, O)]])
47,
<L+ s — i)

< (& + el i, 001

Note that using the same procedure as the proof of Lemmal6] ||6*(vx, 01,)|| < bs. We thus conclude
that

T

I

k=0

g, 0° (v, 01)) — g(Vs1, 0° (Vrg1, Ony1))

HM

K-1

+@+552mwmm

=

4]
g, 0° (v, 01)) — g(vrs1, 0° (Vrg1, Ony1)) + (L + *)b2§K

IA
>
g

4L
= g(vo,6°(v0,60)) — 9(vic, 0°(vic, Oxc)) + (L + —=)ba€ K.
We thus have = S0 xi = O(& +€).
E List of absolute constants used in the proofs

Here we summarize the absolute constant used in the proofs.
bi(a, L, k) =log(l — (o — La?/2)k)
b, 1) = | b s )|
g

ba(n, K,§) = —log(1 — %7&)
2

16L
bs(Lg,n, k) = 77T2(1(2L’<571 +1)°

be(k, L) = (2L~ +1)?

b7(777 a, R, L) = ’71)1_1 log(

K2 )
48nL2
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