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A APPENDIX - PAGER: A FRAMEWORK FOR FAILURE ANALYSIS OF DEEP REGRESSION
MODELS

A.1 DETAILED DESCRIPTION OF ANCHORING IN PAGER

PAGER expands on the recent successes in anchoring Thiagarajan et al. (2022); Netanyahu et al.
(2023) by building upon the �-UQ methodology introduced in Thiagarajan et al. (2022). This
methodology is used to estimate prediction uncertainties, which play a vital role in characterizing
model risk regimes, as depicted in Figure 2 of the main paper. With that context, we now provide a
concise overview of ��UQ, its training and uncertainty estimation.

Overview: ��UQ, short for ��Uncertainty Quantification, is a highly efficient strategy for esti-
mating predictive uncertainties that leverages anchoring. It belongs to the category of methods that
estimate uncertainties using a single model Van Amersfoort et al. (2020); Liu et al. (2020). ��UQ has
been demonstrated to be an improved and scalable alternative to Deep Ensembles Lakshminarayanan
et al. (2017), eliminating the need to train multiple independent models for estimating uncertainties.
The core idea behind ��UQ is based on the observation that the injection of constant biases (anchors)
to the input dataset produces different model predictions as a function of the bias. To that end, models
trained using the same dataset but shifted by respective biases generates diverse predictions. This
phenomenon arises from the fact that the neural tangent kernel (NTK)Jacot et al. (2018) induced
in deep models lacks invariance to input data shifts Bishop & Nasrabadi (2007). Consequently, the
variance among these models a.k.a anchored ensembles serves as a strong indicator of predictive
uncertainty. Based on this observation, ��UQ follows a simple strategy to consolidate the anchored
ensembles into a single model training, where the input is reparameterized as an anchored tuple, as
described in Section 2 of the main paper. It is important to note that ��UQ performs anchoring in
the input space for both vector-valued and image data.

Training: In this phase, for every training pair {x, y} drawn from the dataset D, a random anchor
rk is selected from the same training dataset. Both the input x and the anchor rk are transformed
into a tuple given as [rk, x � rk]. Importantly, this reparameterization does not alter the original
predictive task, but instead of using only x, the tuple [rk, x � rk] is mapped to the target y. For
vector-valued data, ��UQ constructs the tuples by concatenating the anchor rk and the residual
along the dimension axis. In the case of images, the tuples are created by appending along the channel
axis, resulting in a 6�channel tensor for each 3-channel image. These tuples are organized into
batches and used to train the models. Throughout the training process, in expectation, every sample x
is anchored with every other sample in the dataset. The goal here is that the predictions for every x
should remain consistent regardless of the chosen anchor. The training objective is given by:

✓⇤ = argmin
✓

L(y, F✓([rk, x� rk]), (4)

where L(.) is a loss function such as MAE or MSE. In effect, the ��UQ training enforces that for
every input sample x, F✓([r1, x� r1]) = F✓([r2, x� r2]) = · · · = F✓([rk, x� rk]), where F✓ is the
underlying model that operates on the tuple ([rk, x� rk]) to predict y.

Uncertainty Estimation: During the inference phase, using the trained model with weights ✓⇤, we
compute the prediction yt for any test sample xt. This is performed by averaging the predictions
across K randomly selected anchors drawn from the training dataset. The standard deviation of these
predictions is then used as the estimate for predictive uncertainty. The equations for calculating the
mean prediction and uncertainty around a sample can be found in Equation 1 of the main paper.

A.2 ALGORITHM LISTINGS FOR PAGER

Algorithms 1,2 and 3 provide the details for estimating predictive uncertainty, non-conformity scores
- Score1 and Score2 respectively in PAGER.

A.3 DESCRIPTION OF OUR TRAINING PROTOCOLS

In the case of Cell Count and Chair Angle benchmarks, we train an anchored 40 � 2 WideResnet
model. The training is performed with a batch size of 128 for 100 epochs. We utilize the ADAM
optimizer with momentum parameters of (0.9, 0.999) and a fixed learning rate of 1e� 4. To train
the anchored auto-encoder for computing Score2, we employ a convolutional architecture with
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Algorithm 1 PAGER: Predictive Uncertainty Estimation

1: Input: Input test samples {xti}Ni=1, Pre-trained anchored model F✓⇤ , Anchors {rk}Kk=1 drawn
from the training dataset D

2: Output: Predictive Uncertainties (Unc) for {xti}Ni=1
3: Initialize: Unc = list()
4: for i in 1 to N do
5: µ(yti |xti) = 1

K

PK
k=1 F✓⇤([rk, xti � rk]);

6: �(yti |xti) =
q

1
K�1

PK
k=1(F✓⇤([rk, xti � rk])� µ(yti |xti))2;

7: Unc[i] = �(yti |xti)
8: end for
9: return: Unc

Algorithm 2 PAGER: Score1 Computation

1: Input: Input test samples {xti}Ni=1, Pre-trained anchored model F✓⇤ , Train data subset
{rk, yk}Kk=1

2: Output: Score1 for {xti}Ni=1
3: Initialize: Score1 = list()
4: for i in 1 to N do
5: s = max

k

����yk � F✓⇤([xti, rk � xti])

����
1

8k 2 {1 · · ·K};

6: Score1[i] = s
7: end for
8: return: Score1

Algorithm 3 PAGER: Score2 Computation

1: Input: Input test samples {xti}Ni=1, Pre-trained anchored model F✓⇤ , Pre-trained anchored
auto-encoder A, Train data subset {rk, yk}Kk=1, Learning rate ⌘, Weighing Factor �, No. of
iterations T

2: Output: Score2 for {xti}Ni=1
3: Initialize: Score2 = list()
4: for i in 1 to N do
5: Initialize: x̄ xti
6: for iter in 1 to T do
7: Compute R(x̄) =

����x̄�A([xti, x̄� xti])

����
2

+

����x
t
i �A([x̄, xti � x̄])

����
2

.

8: Compute L = 1
K

P
k
kyk � F✓⇤([x̄, rk � x̄])k1 + �R(x̄)

9: Update x̄ x̄� ⌘rx̄L
10: end for
11: Score2[i] = kx� x̄k2
12: end for
13: return: Score2

an encoder-decoder structure. The encoder consists of two convolutional layers with kernel sizes
of (3, 3) and appropriate padding, as well as MaxPooling operations. The decoder comprises two
transposed convolutional layers with stride 2 to reconstruct the input images. We train the anchored
auto-encoder using a batch size of 128 for 100 epochs. The ADAM optimizer with momentum
parameters (0.9, 0.999), and a fixed learning rate of 1e � 3, is used for training. As mentioned in
the main paper, for the case of CIFAR-10, we train a ResNet-34 model with the standard training
configurations. For the other regression benchmarks, we used a standard MLP with 5 hidden layers,
ReLU activation and batchnorm. They were all trained for 5000 epochs with learning rate 5e� 5 and
ADAM optimizer.
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(a) Chair Angles (Gap)

(b) Chair Angles (Tails)

(c) Cells Count (Gap)

(d) Cells Count (Tails)

Figure 5: Efficacy of PAGER on Image Regression Benchmarks. We can observe that in compari-
son to the state-of-the art baseline DEUP, PAGER effectively minimizes the FN, FP and confusion
metrics even under challenging extrapolation scenarios. We find that PAGER can consistently flag
samples from the unobserved regimes which corresponds to highly erroneous predictions.

A.4 ABLATIONS

While PAGER jointly considers both anchoring-based uncertainties and non-conformity scores to
identify different risk regimes, it is important understand the performance of using each of those
components independently. To this end, we create the two following baselines and report performance
comparisons on the tabular benchmarks.

NC-only. Our NC scores (Scores 1 and 2) measure either the relative change in the target value or
distances in the input space. Since those scores are unnormalized, they behave differently across
different data regimes. For e.g., NC scores can be high for scenarios where epistemic uncertainties
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Table 5: Additional results with SKillcraft dataset. While we used synthetic shifts in the HD
benchmark experiments, real-world shifts were used in the cases of SkillCraft. For every metric, we
identify the first and second best approach across the different benchmarks. Corroborating with our
findings in the paper, naame consistently outperforms existing baselines across all four metrics.

Metrics Method SkillCraft
DEUP 7.83

Data SUITE 13.45
PAGER (Score1) 4.43

FN#

PAGER (Score2) 6.6
DEUP 14.33

Data SUITE 17.03
PAGER (Score1) 8.91

FP#

PAGER (Score2) 10.5
DEUP 5.47

Data SUITE 6.92
PAGER (Score1) 4.72

Clow#

PAGER (Score2) 5.8
DEUP 6.69

Data SUITE 7.01
PAGER (Score1) 2.94

Chigh#

PAGER (Score2) 2.05

are high or low (Fig. 1 in the main paper). Hence, they are insufficient to accurately rank samples
on their own. However, designing a normalization strategy that works even for unseen test data is
non-trivial, and hence PAGER works with unnormalized scores only. Table ?? shows results for the
1D benchmarks used in our study. While NC-only baseline can reasonably control FP, it is not able to
reduce the FN.

Anchor-UQ. In this baseline, we directly utilized the uncertainties from �-UQ to detect risk regimes.
Table 1 from the main paper includes the performance assessment for this baseline as well. We observe
that uncertainties from the anchored model are a much more effective baseline, even outperforming
DEUP in all cases.

In comparison to both these baselines, PAGER leads to significant improvements in all metrics,
emphasizing the importance of considering both uncertainty and non-conformity together.

A.5 ADDITIONAL RESULTS

Image regression experiment. For the cell count and chair angle prediction benchmarks from the
main paper, we provide examples of high-risk sample as detected by PAGER. Please refer to Figure 5
for the examples. Notably, these samples correspond to regimes that were not encountered during
training.

Skillcraft dataset. In Table 5, we report the results for the Skillcraft benchmark where the evaluation
data belongs to unobserved league indices (represents real-world distribution shifts). As expected,
PAGER provides considerable improvements across all four metrics.

Demonstrating benefits of Score2. Conceptually, Score2 employs a more rigorous optimization
approach to effectively address test scenarios in which both a test sample and its residual are
individually out-of-distribution (OOD), not just their combination, with respect to P (X) and P (�).
As demonstrated earlier, Score2 often demonstrates noteworthy improvements in confusion scores
(Clow and Chigh) in both gaps and tails settings. This is particularly valuable in practice where users
cautiously identify failures (Top K%) and it is essential to prevent the misclassification of some high-
risk samples as moderate risk. Another scenario where Score2 can be very useful is when the test
samples are drawn from a different distribution compared to training (referred to as covariate shifts).
To demonstrate this hypothesis, we repeated the CIFAR-10 rotation angle prediction experiment
by applying natural image corruptions (defocus blur and frost) at different varying severity levels.
Interestingly, we observed significant improvements in both FP and FN scores with Score2 as the

16



Under review as a conference paper at ICLR 2024

Table 6: Benefits of Score2. Performance of PAGER on the CIFAR-10 rotation angle prediction
model, where the test images undergo natural image corruptions. As the severity of image corruption
increases, the benefits Score2 become apparent in both FP and FN metrics.

Defocus Blur FrostMetric Score Sev.1 Sev. 3 Sev. 5 Sev.1 Sev. 3 Sev. 5
Score1 8.05 10.29 18.54 7.81 8.80 16.52FP#
Score2 9.28 9.95 14.08 9.06 9.58 11.76
Score1 3.65 5.85 19.81 3.77 6.12 15.63FN#
Score2 3.92 5.05 14.99 4.01 5.68 11.14

Table 7: Implementing PAGER with an anchored regression head. Even with only an anchored
regression head on top of a pre-trained feature extractor, PAGER performs effectively in terms of
recovering the different risk regimes and is consistently superior to baselines.

Metrics Method CIFAR-10
DEUP 14.9

PAGER (Full Anchoring) 3.34FN#
PAGER (Anchored Head) 4.78

DEUP 15.22
PAGER (Full Anchoring) 7.86FP#
PAGER (Anchored Head) 8.33

DEUP 18.81
PAGER (Full Anchoring) 3.28Clow#
PAGER (Anchored Head) 4.96

DEUP 27.50
PAGER (Full Anchoring) 5.34Chigh#
PAGER (Anchored Head) 6.05

severity increases. In summary, while Score1 excels in scalability and is well-suited for online
evaluation, Score2 proves advantageous in addressing challenging testing scenarios.

A.6 IMPLEMENTING PAGER WITH AN ANCHORED REGRESSION HEAD

Regarding the application of PAGER to standard models (trained without anchoring), we want to begin
by emphasizing that anchoring does not necessitate any adjustments to the optimizer, loss function,
or training protocols, e.g., incorporation of additional strategies such as mixup. The sole modification
lies in the input layer, requiring additional dimensions for vector-valued data or channels for images,
and a modest addition of parameters to the first layer. This approach is adaptable to any architecture,
be it a Multi-Layer Perceptron (MLP), Convolutional Neural Network (CNN), or Vision Transformer
(ViT). Recent research indicates that incorporating anchoring not only aligns with test performance
but can even enhance generalization to out-of-distribution (OOD) regimes. However, in situations
involving pre-trained models, it is feasible to train solely an anchoring-based regression head attached
to a conventionally trained feature extractor backbone, effectively implementing PAGER. Optionally,
one may choose to fine-tune the feature extractor concurrently with the anchored regression head in an
end-to-end manner, adhering to standard practices. As an illustration, in the experiment on CIFAR-10
rotation angle prediction under the Gaps setting with Score1, we considered a variant, where we
exclusively trained an anchored regression head while keeping the feature extractor frozen. Note, the
feature extractor was obtained through standard training on the same dataset. Our findings reveal that
even with this approach, the performance is comparable to that of a fully anchored ResNet-34 model.
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A.7 DISCUSSION: UTILITY OF PAGER IN ANALYZING CLASSIFIER MODELS

In classification tasks, incorrectly assigned labels are considered failures. Therefore, detecting failure
is framed as assessing the probability of an inaccurate label prediction. State-of-the-art approaches
typically employ auxiliary predictors, trained retrospectively, to correlate various sample-level scores
(such as uncertainties, smoothness, and disagreement across multiple hypotheses) with the likelihood
of an incorrect prediction. This approach inherently depends on extra labeled calibration data and has
implications for the generalization of the learned failure detector in the face of shifts.

A key difficulty in characterizing failures in regression tasks stems from the variability in the
permissible tolerance levels on error estimates, which can differ across use-cases. This is in contrast
to the clear-cut definition of failure in classification tasks. Addressing this challenge, PAGER
proposes to organize samples into various risk regimes rather than relying on a binary pass-fail
(0-1) categorization. This approach not only allows for a nuanced assessment without the need for a
predefined, rigid definition of failure, but also eliminates the necessity for labeled calibration data.
It’s worth noting, however, that state-of-the-art methods like DEUP, which seek to emulate failure
detectors from the classification literature by fitting an auxiliary predictor to estimate the loss, exhibit
poor performance in practice.

Ultimately, while the risk regime characterization approach introduced by PAGER may not find
direct applicability in the existing frameworks for failure detection in deep classifiers, it’s crucial to
underscore that the proposed uncertainty and non-conformity scores can serve as alternatives to widely
used scoring functions for training the auxiliary predictor. Nevertheless, unlike the implementation
in PAGER, adopting these scores in current classifier failure detectors would necessitate access to
additional calibration data. This naturally emphasizes the importance of developing calibration-free
failure detectors, even in the context of multi-class classification, and we reserve that for future work.
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