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A Derivation of the algorithm

In this section we show how to derive the equations used in our algorithm, especially the ones
corresponding to implicit differentiation [2]. Let us recall that we consider a vector X ∈ RN and
compute a vector Y = Σ(X) ∈ [0, 1]N (either Y MF or Y NN) by:

∀i ∈ {1, ..., N}, yi = σ(xi + b̄(X)), such that:
N∑
i=1

yi = V0, σ(x) =
1

1 + e−x
,

Where X denotes (x1, ..., xN ).

We want to show that this operation is well defined and find a formula to recover ∇XC from a given
∇Y C. More precisely we have the following result.
Proposition A.1 (Proposition 2.1 in the paper). Let X ∈ RN , the operation Y = Σ(X) is well
defined. Moreover, let Ṡ be the vector of the σ̇(xi + b̄(X)). Then we have∇XC = DX∇Y C with:

DX := − 1

|Ṡ|1
ṠṠT + Diag(Ṡ). (1)

DX is a symmetric positive semi-definite matrix whose kernel corresponds to constant vectors and
has eigenvalues smaller than 1

2 .

Proof: Let us consider the function F : RN ×R −→ R defined by: F (z, b) =
∑N
i=1 σ(zi + b). It is

clear that F (X, .) is stricty increasing on R from 0 to N . Then ∃!b̄ ∈ R such that F (X, b̄) = V0.

As ∂bF (X, b̄) > 0, by the implicit functions theorem, there exists a neighbourhood V of X in RN , a
neighbourhood U of b̄ in R and a function b̄ : V −→ R of class C1 such that:

∀(z, b) ∈ V × U, F (z, b) = V0 ⇐⇒ b = b̄(z).

Moreover we also get from the implicit function theorem that:

∂b̄

∂xi
(X) = −

(
∂F

∂b
(X, b̄)

)−1
∂F

∂xi
(X, b̄) = −

( N∑
j=1

σ̇(xj + b̄)

)−1

σ̇(xi + b̄),

and we can apply chain rules:

∂C

∂xi
=

N∑
j=1

∂C

∂yj

∂yj
∂xi

=

N∑
j=1

∂C

∂yj
σ̇(xj + b̄(x))

( ∂b̄
∂xi

+ δij
)
,
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So that equation 1 makes sense. Now, if we denote Ṡ = (a1, ..., aN ), let us recall that we defined
ai = σ̇xi + b̄(X) where σ is the sigmoid function. By taking any u ∈ RN , we remark that:

(
DXu

)
i

=
ai

|Ṡ|1

N∑
j=1

aj(ui − uj). (2)

We easily deduce from equation 2 that ker(DX) = span(1N ) and that DX ∈ S+
N (R). Indeed:

∀u ∈ RN , uT (DX)u = − 1

|Ṡ|1
uT ṠṠTuT +

N∑
i=1

aiu
2
i

=
1

|Ṡ|1

{
−
( N∑
i=1

aiui

)2

+

( N∑
i=1

ai

)( N∑
i=1

aiu
2
i

)}
=

1

|Ṡ|1

∑
1≤i,j≤N

aiajui(ui − uj)

=
1

|Ṡ|1

∑
1≤i<j≤N

aiaj(ui − uj)2 ≥ 0.

Eigenvalues: We already know that 0 is an eigenvalue with multiplicity 1. So let u 6= 0 in RN and
λ > 0 such that: DXu = λu. Then we easily show:

∀i ∈ J1, NK,
ai − λ
ai

ui =
1

|Ṡ|1

N∑
j=1

ajuj =: 〈u〉a.

If 〈u〉a = 0, then necessarily λ ∈ {a1, ..., aN}
If 〈u〉a 6= 0, then we can assume (by normalising u) that 〈u〉a = 1 and we have ui = ai

ai−λ . Then we
can replace ui = ai

ai−λ in the equation 〈u〉a = 1:

N∑
j=1

aj =

N∑
j=1

a2
j

aj − λ
, which by substraction leads to F (λ) :=

N∑
j=1

aj
aj − λ

= 0,

By studying the function F , we see that ∀λ > maxi(ai), F (λ) < 0. Therefore an eigenvalue always
satisfies the inequality:

λ ≤ max{a1, ..., aN} ≤ ‖σ̇‖∞ =
1

4
,

The last inequality coming from the fact that ai = σ̇(xi + b̄(X)), as mentionned earlier.

Remark: As shown above an important property of the matrix DX is that it cancels out constants,
which allows us to consider the limiting NTK up to some constant. The fact that the eigenvalues of
DX are in [0, 1

4 ] can help to avoid exploding gradients.

B Equations of evolution

We quickly show how equations 5, 6 and 7 of the paper are derived. The proofs are mainly based on
chain rules.

Let us first remark that the matrix DX introduced above actually corresponds to the jacobian matrix
∇XΣ of the application Σ : RN −→ [0, 1]N . So we can immediately applied chain rules to
Y NN = Σ(X(θ)) and get:

∂Y NN

∂t
= DX(θ(t))

∂X(θ(t))

∂t

= −DX(θ(t))Θ̃
L
θ(t)∇Xθ(t)C (Gradient Descent)

= −DX(θ(t))Θ̃
L
θ(t)DX(θ(t))∇Y NNC(θ(t)) (By proposition A.1).
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Similarly, for the MF method, we set X = TX̄ and obtain:

∂Y MF

∂t
= DX(t)

∂X(t)

∂t

= DX(t)T
∂X̄(t)

∂t
(Linearity)

= −DX(t)T∇X̄C (Gradient descent)

= −DX(t)TT
T∇XC (Chain rule)

= −DX(t)TT
TDX(t)∇Y MFC.

C Details about embeddings

C.1 Torus embedding

The aim of this section is to give details about properties of the limiting NTK in case of Torus
embedding. As a reminder we consider the following embedding:

R2 3 p = (p1, p2) 7−→ ϕ(p) = r(cos(δp1), sin(δp1), cos(δp2), sin(δp2));

In particular we show the following proposition which basically says that Θ̃∞ is in that case a discrete
convolution and derive from there its spectral properties and construct its positive semi-definite square
root
Proposition C.1 (Proposition 3.3 in the paper). We can always extend our nx × ny grid and choose
δ such that the embedded grid covers the whole torus (typically δ = π

2 max(nx,ny) and take a n× n
grid with n = 4 max(nx, ny)). Then the Gram matrix Θ̃∞ of the limiting NTK is a 2D discrete
convolution matrix. Moreover the NTK Gram matrix has a positive definite square root

√
Θ̃∞ which

is also a discrete convolution matrix.

proof: We assume that we extend the grid in a n× n grid with n ≥ nx, ny. Now we take δ = 2π
n

and we consider the limiting NTK Gram matrix on ϕ
(
Jn, nK× Jn, nK

)
.

As Θ∞(ϕ(p), ϕ(p′)) depends only on p− p′, we can see the limiting NTK Gram Matrix as a discrete
convolution kernel K acting on Z/nZ× Z/nZ:

Θ∞((k, k′), (j, j′)) = K(k − k′, j − j′),
For (k, k′), (j, j′) ∈ Z/nZ× Z/nZ.

We see Θ̃∞ as a n2 square matrix with each index in Z/nZ× Z/nZ.

We introduce the Fourier vectors Ωm = (e−i2π
mk
n )0≤k≤nx−1. As Θ̃∞ is a 2D convolution matrix,

we classically have the following results:

The eigenvectors of Θ̃∞ are exactly given by:

Ωm ⊗ ΩM ,

for 0 ≤ m ≤ nx − 1 and 0 ≤M ≤ ny − 1, ⊗ denotes the Kronecker product. The corresponding
eigenvalue is given by the discrete Fourier transform K̂(m,M) with:

K̂(m,M) =

n−1∑
j=0

n−1∑
j′=0

e−i2π
mj
n e−i2π

Mj′
n K(j, j′).

Moreover, as the matrix Θ̃∞ is positive definite (from the positive definiteness of the NTK, [3])
those eigenvalues verify K̂(m,M) ≥ 0 and it makes sense to write the square root of the NTK Gram

Matrix as the inverse Fourier transform of the
√
K̂(m,M):√

Θ̃∞((k, k′), (j, j′)) =
1

n2

n−1∑
m=0

n−1∑
M=0

ei2π
m(j−k)

n ei2π
M(j′−k′)

n

√
K̂(m,M), (3)
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It is easy to see that the matrix defined by equation 3 is symmetric and positive semi-definite. Indeed
we can write

√
Θ̃∞((k, k′), (j, j′)) = g(k − j, k′ − j′) with g the Fourier transform of a positive

vector.

Moreover it follows from the (discrete) convolution theorem that
√

Θ̃∞
2

= Θ̃∞. Therefore√
Θ̃∞((k, k′), (j, j′)) is indeed the positive semi-definite matrix square root of Θ̃∞.

Thus the square root of the NTK Gram matrix can be seen as a convolution filter as well (it is invariant
by translation as a function of (k − j, k′ − j′)).

C.2 Dimension of radial embeddings

In this section we prove that feature maps associated to continuous radial kernels are either trivial or
of infinite dimension. this result is what motivates discussion in section 3.2 of the paper.

Let us first recall Bochner theorem ([6]):
Theorem C.1 (Bochner). Let (x, y) 7→ k(x − y) be a continuous shift invariant positive definite
kernel on Rd. Then it is the Fourier transform of a finite positive measure Λ on Rd:

k(r) =

∫
Rd
eiω·rdΛ(ω).

The function k appearing in the above theorem will be called a positive definite function, according
to the following definition:
Definition C.1. Let k : Rd −→ R, then k is a positive definite function when for all n, all
p1, . . . , pn ∈ Rd and all c1, ..., cn ∈ R we have:∑

1≤i,j≤n

cicjk(xi − xj) ≥ 0.

Moreover we will denote SO(d) the set of rotations matrices of dimension d and the Fourier transform
(for an integrable function ψ):

Fψ(ω) =

∫
Rp
ψ(p)e−iω·pdp.

Let us now recall the result that we want to prove:
Proposition C.2 (Proposition 3.2 in the paper). Let ϕ : Rd → Rm for d > 2 and any finite m. If ϕ
satisfies

ϕ(x)Tϕ(x′) = K(‖x− x′‖) (4)
for some continuous function K then both ϕ and K are constant. We will denote k(x − x′) :=
K(‖x− x′‖).

Proof: We procede in the following way: We consider an embedding ϕ as described above and we
are going to show that, when K is not constant, one can construct arbitrarily big linearly independent
families ϕ(p1), . . . , ϕ(pn).

For now let us take pairwise distinct p1, . . . , pn ∈ Rd and c1, . . . , cn ∈ R such that:
n∑
k=1

ckϕ(pk) = 0.

A clever choice for p1, . . . , pn will be done later.

For any p ∈ Rd and any rotation R ∈ SO(d) we can write:

0 = ϕ(p)T
n∑
k=1

ckϕ(pk) =

n∑
k=1

ckK(‖p− pk‖) =

n∑
k=1

ckK(‖Rp−Rpk‖)

= ϕ(Rp)T
n∑
k=1

ckϕ(Rpk).
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Since this is true for all p′ = Rp we can deduce that for all p ∈ Rd and all R ∈ SO(d) we have:

n∑
k=1

ckk(p−Rpk) = 0.

We denote by Λ the finite measure on Rd given by Bochner’s theorem applied on k.

Let us take a test function ψ ∈ S(Rp) in the Schwartz space, we can write successively that for all
rotation R ∈ SO(d):

0 =

∫
Rd
Fψ(p)

n∑
k=1

ckk(p−Rpk)dp

=

∫
Rd
Fψ(p)

n∑
k=1

ck

∫
Rd
eiω·(p−Rpk)dΛ(ω)dp, (Bochner’s theorem)

=

∫
Rd

( n∑
k=1

cke
−iω·(Rpk)

)∫
Rd
Fψ(p)eiω·pdp dΛ(ω), (Fubini’s theorem)

= (2π)d
∫
Rd
ψ(ω)

n∑
k=1

cke
−iω·(Rpk)dΛ(ω), (Fourier inversion)

As K is not constant, we can find ω0 ∈ Rd\{0} such that for all ε > 0 small enough we have
Λ
(
B(ω0, ε)

)
> 0 (otherwise the finite positive measure Λ would be concentrated on 0 and k would

be constant).

Let R ∈ SO(d), if we assume that S :=
∑n
k=1 cke

−iω0·(Rpk) 6= 0 then we can find a small enough
open ball B(ω0, ε) on which Re(S)) and Im(S) have constant sign and such that: |Re(S)| ≥ c1 > 0
or |Im(S)| ≥ c1 > 0.

We choose ψ such that ψ ≥ 0, ψ has compact support in B(ω0, ε) and ψ ≥ c2 > 0 on B(ω0,
ε
2 ).

Then we obtain a contradiction by writing 0 ≥ (2π)d)c1c2Λ(B(ω0,
ε
2 )). (We separate real and

imaginary parts).

This implies that:

∀R ∈ SO(d),

n∑
k=1

cke
−i(Rω0)·pk = 0, (5)

Now we take a particular choice of (pi), let pk = (k, 0, . . . , 0) ∈ Rd.

Up to rotations, we can assume without loss of generality that ω0 = (w, 0, . . . , 0) with w 6= 0.
Moreover, we consider the particular case of rotations in the 2D plane generated by (1, 0, . . . , 0) and
(0, 1, 0, . . . , 0).

Therefore, equation 5 implies that:

∀θ ∈ R,
n∑
k=1

ck
(
e−iw cos(θ)

)k
= 0,

So that the polynomial
∑
k ckz

k has an infinite number of roots. Thus c1 = · · · = cn = 0.

C.3 Random features embedding

In this section we give some details about the way we define random embeddings, which is very
similar but slightly different than in [5].

If the kernel is properly scaled (i.e. k(0) = 1) then Λ defines a probability measure. That’s why we
introduce a probability measure Q and write:

k(r) = k(0)

∫
Rd
eiω·rdQ(ω) = k(0)Eω∼Q[eiω·r].
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Now, following the reasoning in [5] we consider:

ϕ(p)i =
√

2k(0) sin(ω · p+
π

4
+ b)

With ω ∼ Q and b a random variable with a symmetric law (note that Q is also symmetric). Then we
have:

E[ϕ(p)iϕ(p′)i] = 2k(0)E
[(

eiω.p+
π
4 +b − e−iω.p−π4 − b

2i

)(
eiω.p

′+π
4 +b − e−iω.p′−π4 − b

2i

)]
= −k(0)

2

(
ei
π
2 E[eiω.(p+p

′)+2b] + e−i
π
2 E[e−iω.(p+p

′)−2b]

− E[eiω.(p−p
′)]− E[e−iω.(p−p

′)]

)
= k(0)E[eiω.(p−p

′)]

= k(p− p′).

Therefore we reduce the variance by drawing i.i.d. samples ω1, . . . , ωn0
and b1, . . . , bn0

as described
in section 3 and computing the mean 1

n0
ϕ(p)Tϕ(p′). By the strong law of large numbers we have the

almost sure convergence:
1

n0
ϕ(p)Tϕ(p′) −→

n0→∞
k(p− p′),

Now we can obtain Gaussian embedding by drawing the bias from δ0 and weights from N (0, 1
`2 Id).

from the above formulas we immediately get:

k(p− p′) = e−
‖p−p′‖22

2`2 .

D Precise computations of the Neural Tangent Kernel

We now give more details about the computation of the limiting NTK and detail how we obtain the
limiting kernels used in Figures 6 and 7 of the paper.

D.1 Limiting NTK

For this purpose, following several authors ([3], [7], [4]), we need to introduce some gaussian
processes and their associated kernels. For a symmetric positive kernel Σ let us define:{
T (Σ)(z, z′) = E(X,Y )∼N (0,Σz,z′ )

[
µ(X)µ(Y )

]
Ṫ (Σ)(z, z′) = E(X,Y )∼N (0,Σz,z′ )

[
µ̇(X)µ̇(Y )

] With : Σz,z′ =

(
Σ(z, z) Σ(z, z′)

Σ(z, z′) Σ(z′, z′)

)
.

Then we set Σ1(z, z′) = Θ1
∞(z, z′) = β2 + α2

n0
zT z′ and we define recursively:

σl+1 = β2 + α2T (Σl), Σ̇l+1 = α2Ṫ (Σl), Θl+1
∞ = Σ̇l+1Θl

∞ + Σl+1. (6)

Using those formulas it is clear that the limiting NTK is invariant under rotation.

When neurons have constant variance, the following notion of dual activation function is often very
useful:

Definition D.1. Let µ : R −→ R be a function such that EX∼N (0,1)[µ(X)2] < +∞, then its dual
function µ̂ : [−1, 1] −→ R is defined by:

µ̂(ρ) = E(X,Y )∼N (0,Σρ)[µ(X)µ(Y )], With : Σρ =

(
1 ρ

ρ 1

)
.

We will use some properties of the dual function, which are described in [1].
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D.2 Another way of seeing Gaussian embedding

As explained above (Section 3.2.2), the Gaussian embedding can be seen as the first hidden layer of
a neural network, with the first layer untrained. Thus it actually corresponds to Σ2 with the above
notations.

Let us consider the activation function µ : a 7−→ λ sin(ωa+ π
4 ) and denote:

∀x, y ∈ Rn0 , Σ1
x,y =

(β2 +
1− β2

n0
‖x‖22 β2 +

1− β2

n0
xT y

β2 +
1− β2

n0
xT y β2 +

1− β2

n0
‖y‖22

)
,

We are looking at:

Σ2(x, y) = β2 + (1− β2)E
(X,Y )∼N (0,Σ

(1)
x,y)

[µ(X)µ(Y )].

Let (X,Y ) ∼ N (0,Σ1
x,y), then X − Y and X + Y are normal random variables and V(X − Y ) =

1−β2

n0
‖x− y‖22. Thus, using properties of characteristic functions we get:

E[µ(X)µ(Y )] = λ2E
[(

eiωX+π
4 − e−iωX−π4

2i

)(
eiωY+π

4 − e−iωY−π4
2i

)]
= −λ

2

4

(
ei
π
2 E[eiω(X+Y )] + e−i

π
2 E[e−iω(X+Y )]− E[eiω(X−Y )]− E[e−iω(X−Y )]

)
=
λ2

2
E[eiω(X−Y )]

=
λ2

2
exp

{
− 1

2
ω2 1− β2

n0
‖x− y‖22

}
.

D.3 Computation of the NTK used for Figure 7 in the paper

In this section we show how one can derived analytically the function Φ∞ described in Section
4.3. This kind of computation can be used to derive numerically the filter radius R̂1/2 and tune the
hyperparameters.

We use here a Gaussian embedding ϕ of size n0 with lenghtscale ` followed by one hidden linear
layer (activation function x→

√
2 max(0, x)) of size n1 and the output layer n2 = 1. We also take

α2 + β2 = 1 in those experiments, to ensure constant variance of the neurons.

By the strong law of large numbers we have for the limiting NTK of the first layer:

Θ1
∞(ϕ(p), ϕ(p′)) = β2 +

1− β2

n0
ϕ(p)Tϕ(p′) −→

n0→∞
β2 + (1− β2)e−

‖p−p′‖22
2l2 =: G(‖p− p′‖).

For the second layer, we use the notion of dual function defined above. In the case of the standardized
ReLu it is computed in [1]:

r̂(ρ) = ρ− ρ arccos(ρ)−
√

1− ρ2

π
, ρ ∈ [−1, 1],

and:
ˆ̇r(ρ) = ˙̂r(ρ) = 1− arccos(ρ)

π
.

So that we can write, with d = ‖p− p′‖:

Φ∞(d) = r̂(G(d)) +G(d) ˙̂r(G(d)).

Therefore Φ∞ only depends on ` and β. From this expression we can use standard Python libraries
to approximate R̂1/2 for given values of the hyperparameters.
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D.4 Computation of the NTK used for Figure 6 in the paper

Now we derive an approximate of the quantity R̂1/2 used in Figure 6 of the paper. This is a little
bit more difficult than with Gaussian embedding because the rotation invariance is now only an
approximation, even in the infinite-width limit.

With Torus embedding, we have n0 = 4. The embedding is followed by two hidden linear layers
with standardised cosine activation function, and then the last linear layer. We used here r =

√
2

δ = π
80 (which is the formula suggested in the paper with nx = ny = 40). As in the case of Gaussian

embedding, we set α2 = 1− β2. This ensures that neurons have constant variance and allows easy
analytical computations.

Thanks to the Torus embedding described above, we get for the first layer:

Θ1
∞(ϕ(p), ϕ(p′)) = β2 +

1− β2

n0
ϕ(p)Tϕ(p′)

= β2 +
1− β2

2

(
cos(δ(p1 − p′1)) + cos(δ(p2 − p′2))

)
As rotation invariance is not analytically correct here, we look at the limiting NTK in the direction
p1 = p2. which gives:

Σ1(ϕ(p), ϕ(p′)) = Θ1
∞(ϕ(p), ϕ(p′)) = β2 + (1− β2) cos(δr),

with r = |p1 − p′1| = |p2 − p′2|.
For the next layers, we use the dual function of the standardised cosine (see [1]) given by:

µ̂(ρ) =
cosh(ω2ρ)

cosh(ω2)
,

and its derivative:
ˆ̇µ(ρ) = ω2 sinh(ω2ρ)

cosh(ω2)
,

Then the limiting NTK is simply given by the following formulas:

Σl+1(ϕ(p), ϕ(p′)) = β2 + (1− β2)µ̂(Σl(ϕ(p), ϕ(p′))),

Σ̇l+1(ϕ(p), ϕ(p′)) = (1− β2)µ̂(Σ̇l(ϕ(p), ϕ(p′))),

Θl+1
∞ (ϕ(p), ϕ(p′)) = Σl+1(ϕ(p), ϕ(p′)) + Σ̇l+1(ϕ(p), ϕ(p′))Θl

∞(ϕ(p), ϕ(p′)).

This way we construct a function Φ∞(r) with r an approximation of the radius and we can use it to
compute numerically an approximation of R̂1/2 as before.

E Square root of the NTK in the case of random embedding

We now prove that we can define a notion of a square root of the NTK. First we need a technical
lemma:
Lemma E.1. Let µ be a continuous function such that EX∼N (0,1)[µ(X)2] = 1, C ∈ [0, 1] a constant
and f ≥ 0 a positive definite function (in the sense of definition C.1) such that C + f(p) ≤ 1. Then
the function

F : p 7−→ µ̂(C + f(p))− µ̂(C),

is positive definite, where µ̂ denotes the dual function of µ (see definition D.1).

Proof:

Let us take p1, ..., pm ∈ Rd and c1, ..., cm ∈ R. We introduce the Hermite expansion
∑
k akhk of µ

and write its dual function as (see [1]):

µ̂(ρ) =

+∞∑
k=0

a2
kρ
k, ρ ∈ [−1, 1],

8



Then by Bernoulli’s formula:

µ̂(C + f(pi − pj))− µ̂(C) =

+∞∑
k=1

a2
kf(pi − pj)

k−1∑
s=0

Ck−1−s(C + f(pi − pj))s.

Thus by polynomial combination with positive coefficients of positive semi-definite kernels:

m∑
i,j=1

cicjF (pi − pj) =

+∞∑
k=1

k−1∑
s=0

a2
kC

k−1−s
m∑

i,j=1

cicjf(pi − pj)(C + f(pi − pj))s ≥ 0,

Which achieves the proof.

Let us recall the statement that we want to prove:
Proposition E.1 (Proposition 3.4 in the paper). Let ϕ be an embedding as described in section 3.2.2
of the paper, for a positive radial kernel k ∈ L1(Rd) with k(0) = 1. Then there is a filter function
g : R→ R and a constant C such that for all p, p′:

lim
n0→∞

Θ∞(ϕ(p), ϕ(p′)) = C + (g ? g)(p− p′), (7)

where Θ∞ is the limiting NTK of a network with Lipschitz, non constant, and standardized activation
function µ.

Before writing the proof, let us make some remarks on the assumptions of this proposition and their
immediate implications:

• We recall that the fact that µ is "standardised" means here: EX∼N (0,1)[µ(X)2] = 1.

• As mentioned before (Section 2.3 of the paper) we assume for simplicity that α2 = 1− β2

to ensure constant variance of the neurons (we consider β ∈ [0, 1)).
• We denote by A the Lipschitz constant of µ. By Rademacher theorem, we know that µ is

almost everywhere differentiable and ‖µ̇‖∞ ≤ A. The fact that µ is not constant ensures
that µ̂ is (strictly) increasing on [0, 1).

• Moreover, the Lipschitz assumption also implies that | ˆ̇µ(1)| ≤ A2 < +∞ and therefore ˆ̇µ
is continuous on [−1, 1] by Abel’s theorem on entire series.

• The procedure to approximate the kernel k in Section 3.2.2 of the paper assumes that k is
continuous (to be able to apply Bochner’s theorem). It is therefore also the case in this proof.

Proof of the proposition:

Step 1: We want to show by recursion that for all l ≥ 1 there exists some constant Cl ∈ [0, 1) such
that for all p, p′ ∈ Rd we have in probability:

Σl(ϕ(p), ϕ(p′)) −→
n0→∞

Cl + fl(p− p′), (8)

With fl a radial positive definite function such that fl ≥ 0 and fl ∈ L1(Rd).

For l = 1, we know that this is true by the law of large numbers:

Σ1(ϕ(p), ϕ(p′)) = Θ1
∞(ϕ(p), ϕ(p′)) = β2 +

1− β2

n0
ϕ(p)Tϕ(p′)

−→
n0→∞

β2 + (1− β2)k(p− p′),
(9)

We just set f1 = (1− β2)k. Now we assume l ≥ 2:

We have by our normalisation assumptions Σl(ϕ(p), ϕ(p)) = Cl + fl(0) = 1. Using the continuity
of µ̂ (see [1] for the properties of µ̂), we have:

Σl+1(ϕ(p), ϕ(p′)) = β2 + (1− β2)µ̂(Σl(ϕ(p), ϕ(p′)))

−→
n0→∞

β2 + (1− β2)µ̂(Cl + fl(p− p′)).
(10)
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Using properties of the dual function given in [1], we know that µ̂ is positive, increasing and convex
in [0, 1]. Moreover as fl is radial positive definite we have fl ≤ fl(0) = 1− Cl. Then by convexity:

µ̂(Cl + fl(p− p′)) = µ̂

(
fl(p− p′)

1− Cl
+

(
1− fl(p− p′)

1− Cl

)
Cl

)
≤ fl(p− p′)

1− Cl
µ̂(1) +

(
1− fl(p− p′)

1− Cl

)
µ̂(Cl).

Using that µ̂ is increasing:

|µ̂(Cl + fl(p− p′))− µ̂(Cl)| ≤
µ̂(1)− µ̂(Cl)

1− Cl
fl(p− p′),

So that we can rewrite equation 10 in the following form:

Σl+1(ϕ(p), ϕ(p′)) −→
n0→∞

β2 + (1− β2)µ̂(Cl) + fl+1(p− p′),

With fl+1(p− p′) = (1− β2)(µ̂(Cl + fl(p− p′))− µ̂(Cl)) and Cl+1 = β2 + (1− β2)µ̂(Cl).

The previous inequality, lemma E.1 and the fact that µ̂ is increasing in [0, 1) ensure the properties of
fl+1 and Cl+1.

Step 2: As ˆ̇µ is also positive, continuous, increasing and convex in [0, 1], we can obtain a convergence
in probability similar to equation 8 but for Σ̇l:

Σ̇l(ϕ(p), ϕ(p′)) −→
n0→∞

Bl + hl(p− p′),

With Bl ≥ 0, and hl a positive definite function such that hl ∈ L1(Rd) and hl ≥ 0.

Now we want to show by recursion that for a fixed l:

∀p, p′ ∈ Rd, Θl
∞(ϕ(p), ϕ(p′)) −→

n0→∞
Cµ,β,l + θl(p− p′). (11)

With θl a positive definite function such that θl ∈ L1(Rd) and Cµ,β,l ≥ 0. Again we know that this
is true for l = 1 by equation 9.

We have:

Θl+1
∞ (ϕ(p), ϕ(p′)) −→

n0→∞
(Cµ,β,l + θl(p− p′))Σ̇(l+1)(p, p′) + Cl+1 + fl+1(p− p′).

So that we can set:

θl+1(ϕ(p), ϕ(p′)) = Cµ,β,lhl+1(p− p′) + θl(p− p′)Σ̇l+1(ϕ(p), ϕ(p′)) + fl+1(p− p′),

and:
Cβ,µ,l+1 = Cl+1 + Cβ,µ,lBl.

Using that |θl(p− p′)Σ̇l+1(ϕ(p), ϕ(p′))| ≤ A2|θl(p− p′)| and all the previous results, the recursion
works automatically and we have equation 11 for all l ≥ 2.

Moreover (p, p′) 7−→ θl(p − p′)Σ̇1+l(p, p′) is positive semi-definite as a product of two positive
semi-definite kernels. By sum we deduce that θl+1 is positive semi-definite and by recursion we have
the result for all θl.

Step 3: Now, using integrability of θl, we know that its Fourier transform defines a function
q ∈ L∞(Rd).

From dominated convergence theorem we deduce that q is continuous.

Therefore in the sense of distributions, the Fourier transform of θL is given by a finite positive
measure (Bochner’s theorem) and also by q ∈ L∞(Rd). We deduce that q is the density of this finite
positive measure (the Radon-Nikodym derivative with respect to the Lebesgue measure).

From those arguments we get q ≥ 0 and q ∈ L1(Rd). We then have the Fourier inversion formula for
θL:
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θL(p− p′) =
1

(2π)d

∫
Rd
q(ω)eiω.(p−p

′)dω, with: q ≥ 0

Hence it makes sense to define:
g = F−1(

√
q),

In the sense of the Fourier transform of a L2 function. Then the convolution theorem ensures:

θL = g ? g.

Remark: Here we used lemma E.1 and the dual activation function to show that both fl and θl are
positive definite. If we only show that θl ∈ L1(Rd) it is still possible to show the same properties of
the function q by using positive definiteness of C + θL and take the Fourier transform in the sense
of distributions, which leads to (2π)dCδ0 + q = (2π)dM with M a finite positive measure. Then
arguments based on test functions and the continuity of q give the result. The advantage of lemma
E.1 is that it is a bit more general.

F Additional experimental results

F.1 Plots of the Neural Tangent Kernel

Here are some additional experimental results regarding the comparison between the theoretical
(limiting) NTK Θ̃∞ and the empirical NTK Θ̃θ(t). Here again the "lines" of the Gram matrices are
reshaped as images.

Figure 1 represents the comparison between the limiting NTK and the emprirical NTK with a
Gaussian embedding. We can observe that the infinite-width limit seems to be well-respected.

Figure 1: Comparison between one line of the Gram matrix of the empirical NTK Θ̃θ(t) and and of
the corresponding limiting NTK Θ̃∞. Here we use a Gaussian embedding as described in the paper

Figure 2 shows the evolution of the NTK during the optimisation process. While the NTK begins to
change at the end of training (it is due to the alignment of descent directions, because of the sigmoid
we use to control the volume, pre-densities (xi)1≤i≤N tend to infinity) the NTK stays close to Θ∞
during the part of training where the final shape is created. This justifies even more that it is pertinent
to study the effect of the NTK on the final geometry.

11



Figure 2: Evolution of the NTK of a network with a Gaussian embedding with hyperparameters as
described in Section 4.1. We can see a relative stability of the NTK
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