A  Proofs

Section[A.T| presents the lemmas used to prove the main results. Section[A.2]presents the main results
and their detailed proofs.

A.1 Preliminaries
Lemma A.1 ([53]], Theorem 26.5). With probability of at least 1 — 0, forall h € ‘H ,

leu(h) — €a(h)| < 2R (T) + 4c %_

Lemma A.2 ([53]], Theorem 26.5). With probability of at least 1 — 6, for all h € H,

eu(f) — eu(hy) < 2RY (@) + 5c @

Lemma A.3 ([44], Talagrand’s contraction lemma). For any L-Lipschitz loss function l(-,-), we
obtain,
R(loHou) < LR(Hou),

where RY (1) = 55 Eora1y2y [SUDpey Dopen 0il(@s)] -
Lemma A.4 ([18]], Theorem 1). Let H be the class of real-valued networks of depth D over the
domain X. Assume the Frobenius norm of the weight matrices are at most My, ..., M,. Let the

activation function be 1-Lipschitz, positive-homogeneous, and applied element-wise (such as the
ReLU). Then,

N D
Epep1}v [sup Zaih(xi)] <VNB(V2DIn2+1) ][ M.
heH

i=1 i=1

A.2 Main Results

Theorem 4.1. Forany x € X, h € H and a € A, assume we have |l(h(zx),a(x))| < c. Then, with
probability at least 1 — §, we can derive the following general bound,

De(pll0) ~ BePld)] < 2P0 pla) + 2R, () + 2RY (@) + 1201/ X

Proof. We observe that
IDr(pllq) — Dr(B17)
leq () — ep(h)] = [67(hu) — & ()
eq(h) = ep(hy,) — E(hu) + Ep(hu)
eq(h}) = ep(h}) + Ep(hu) = €p(hu) + €p(hu) — eq(hu) + €q(hu) — E5(hu)
ep(hu) — eq(hu)

gﬁ(hu) - ep(hu) eq(hU) - gﬁ(hu) .

<

)

<leq(hy,) — ep(hy)] + + 16

<2D.(pllq) + +

The first two inequalities are owing to the triangle inequality, and the third inequality is due to
the definition of L-divergence Eq.(3). We comte the proof by applying Lemma to bound
h u

gﬁ(ﬁu) — €p(hu) . ]

o~

and [e, () — ()

in Eq.
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Corollary 4.2. Following the conditions of Theorem the upper bound of | Var [ﬁR (ﬁHqA)] is

34c

N V2m (2D (pllg) + 2R% () + 2R3, (@) -

Proof. For convenience, we assume C = 2Dy (p||q) + 2R, (p) + 2R, (q). Following to proof of
Corollary 1 in [62], we have O

Var [Be(710)] <& | (P(plle) - Be(s10)) |

= [ e [[oetsllo) - Bl = vi] ae
t=0
s=vi [7

s=0

C oo
g/ 25d3+/ Pr HDR(;?\@ —DR(qu)‘ > c+s] 2(C + 5)ds
s=0 s=0

Pr [|D(plla) — Dr(pl0)| = 5| 25ds

[e%} _Ns2
<C*+16 / (C + s)eTaacz ds (8)
s=0

a9 —N522
=C* +16C e14acz ds + 16

s=0
t=5,/D S
‘=% 4+ 16Cc, / g/ e tdt +
N Ji—o

e [ 11522
=C* 4 96Cc N+ N

(2o

where the third inequality is due to

o0 —Ns2
se1aac? ds
0

2304¢2 [
¢ / te~tdt
N s=0

_ »
Pr || De(pll) — De(@lld)| = € +s] < seTone, o

obtained from the results of Theorem F.1]

Proposition 4.3. Based on the conditions of Theorem[{_1| we assume H is the class of real-valued
networks of depth D over the domain X. Let the Frobenius norm of the weight matrices be at most
My, ..., Mp, the activation function be 1-Lipschitz, positive-homogeneous and applied element-wise
(such as the ReLU). Then, with probability at least 1 — §, we have,

i i n
Dr(pll9) ~ De(FlD)] < 2P1(pllg) + 4LB(\/WH2¢§ DL ey 1800

Proof. We complete the proof by applying Lemma and Lemma[A4]to bound the Rademacher
complexity of deep neural networks in Theorem O

Corollary 4.4. Following the conditions of Proposition 4.3} with probability at least 1 — 6, we have
the following conditional bounds if Dy (pl|q) < ’eu(hZ) — €y (ﬁu)

>

~ . _8LB(vV2Dm2+1)[[2, M; In(16/9)
— < 1= S
[Dr(plle) — Dr(pl7)| < N +22¢ ~
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Proof. Following the proof of Theorem[4.1] we have

D (pllg) — Dr (P11

< Jeq(hy) = (k) +E(hu) — ()| + &

€q<h*) - Ep(h*) + Ep(/ﬁ) - 6q(;\l)
&(ha) — ep(h)| + |eq(hu) — E5(u)
eu(h’) —eu(B)]) +

o~

gﬁ(/ﬁu) — ep(hu)

:max(

)

+ +

~

& (hu) — ep(ha)

6q(/]{u) - a?(/ﬁu) .

<2max (D (plla),

o+ [eah) = E(ha)

~

<2 |eu(h*) — eu(h)’ +

+

The first two inequalities are owing to the triangle inequality, and the third inequality is due to the
eu(hy) — €u (/]%u>

eu(h*) — €, (/i\z)‘ and Lemma to bound

given condition Dy (p||q) < . We complete the proof by applying Lemma [A.2

& (hu) — ep(hu) eq(hu) — €(hy)| in
O

to bound and

Eq.(7).
Corollary 4.5. Following the conditions of Propositiond.3] as N — oo, we have,

Dr(p]|9) < 2Dv.(pllg) + Dr(pllq)-

Proof. Based on the result on Proposition for any ¢ € (0, 1), we know that

ALB(V2DW2+ 1) [[2, M; 1
( n2-+ )Hz:l + 12¢ n(8/6) N O, (11)
VN N
when N — oo. We complete the proof by applying the triangle inequality. O

B Algorithm Procedure

B.1 Training Procedure of R-Div

Algorithm 1 Estimate model-oriented distribution discrepancy by R-divergence

Input: two datasets p and g and a learning model 7" with hypothesis space H and loss function {
Generate the merged dataset: © =pU ¢
Learn the minimum hypothesis on the mixed data:

hy € inegz(h
u € arg mineg(h)
Evaluate the empirical risks: Eﬁ(ﬁg) and Ea(ﬁa)

Estimate the R-divergence as the discrepancy:

Dr(pl[a) = [65(ha) — &5(ha)l

Output: empirical estimator Dy (Pll9)

B.2 Calculation Procedure of the Average Test Power
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Algorithm 2 Calculate the average test power of R-divergence

Input: datasets p and g, empirical estimator Dg (-[|), a, K, Z
for k = 1to K do
for - =1to Z do

if 2z == 1 then
#q") = 7.9
else
Generate (p?, ¢%) by uniformly randomly swapping samples between p and ¢
endif
Calculate Dg(p*||77)
end for

Obtain G = {Dr (7 17°) } -
TR = (ZSR (pl|g) is in the top c-quantile among Q)
end for

. Sh Tk
Output: average test power <t&i—=

Table 7: Method Comparison.

Methods Discrepancy Remarks
. . Lpp(t) = [k(z,t)dp(z) 5 o
ME VIS (10(T)) = 1q(Ty)) Lk (x, ) = exp(—||lz — y||2/%?)

IIL:T" is drawn from an absolutely continuous distribution.

I:z;m(t) = [ k(=z) sin(zT t)dp(x)

) ) 2 } ) 2
SCF 2 T2, (e (my) — 550 (1)” + (2505(Ty) — 2505(Ty)) :25°%(t) = [ k() cos(z t)dp(x)
IIL:< () is the Fourier transform of a kernel.
1 1 ’ T B Bre ~ D. G, Gro ~
C2STS-S = > wesn fw (@) — = > ea fw(z) 2 Dy Pe ~ Ps qus Ge ~ 4
[Bre] —xE€Pe 7 W lde] ~o'€de °W II: fy isabinary classifier to separate Py and Gir
III: Samples from p and g are labeled with O and 1, respectively.
1 /
C2STL TPeTdTaa] Zeepe 9w (®:0) + Xorcg, w(@’, 1) V: g (z, ) =1 [H (fw(z) > %) = y]
. o/ ry — "
MMD-O E[k(x, z’) + k:(y,y/) 2k(z, )], Lk(z, y) is a simple kernal.

T, ~p,Y, Yy ~4q

Lky (2, y) = [(1 — ©)k1(dw (), duw (¥)) + e]k2(z, y)
\/]E lkw (@, ") + kw(y,y") — 2kw (=, y)]. II: ¢4y is deep network withlparameters w :

- ~ 4 ~
MMD-D TE Py Y~ a ks (2, 9) = exp(— [l — v)2/7])
Wik (2, y) = exp(—lz — ylI?/~3)

) Lk} € argminycyy €y (h)
H-Div ¢(eu(hy,) — Ep(h;)7 eu(hy) — eq(hz)) II:th € argminp ey €q(h)
ey (h) = Epmnl(h(z), a(z))
V:eq(h) = Ezngl(h(z), a(x))

Vip(0, ) = % or max(60, \)

R-Div lep(h}) — eq(h})]

C Compared Methods

Mean embedding (ME) [[11]] and smooth characteristic functions (SCF) [30] are the state-of-the-art
methods using differences in Gaussian mean embeddings at a set of optimized points and frequencies,
respectively. Classifier two-sample tests, including C2STS-S [43] and C2ST-L [10], apply the
classification accuracy of a binary classifier to distinguish between the two distributions. The binary
classifier treats samples from one dataset as positive and the other dataset as negative. These two
methods assume that the binary classifier cannot distinguish these two kinds of samples if their
distributions are identical. Differently, C2STS-S and C2ST-L apply the test error and the test error
gap to evaluate the discrepancy, respectively. MMD-O [20] measures the maximum mean discrepancy
(MMD) with a Gaussian Kernel [19], and MMD-D [41] improves the performance of MMD-O
by replacing the Gaussian Kernel with a learnable deep kernel. H-Divergence (H-Div) [62] learns
optimal hypotheses for the mixture distribution and each individual distribution for the specific model,
assuming that the expected risk of training data on the mixture distribution is higher than that on
each individual distribution if the two distributions are identical. The equations of these compared
methods are presented in Figure[7]
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D.1

Additional Experimental Results

Benchmark Dataset
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Figure 3: The average test power on HDGM with the significant level v = 0.05. Left panel: results
with the same sample size (4,000) and different feature dimensions. Right panel: results with the
same feature dimensions (10) and different sample sizes.
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Figure 4: The average test power on Blob at the significant levels v = 0.05 and o = 0.01.

Table 8: The average test power + standard error with the significant level a = 0.05 on MNIST. N
represents the number of samples in each given dataset, and boldface values represent the relatively
better discrepancy estimation.

N 200 400 600 800 1000 Avg.

ME 0.41440.050 0.92140.032 1.000%0.000 1.000+0.000 1.000-+0.000 0.867
SCF 0.10740.018 0.15240.021 0.29440008 0.317+0017 0.346+0019 0.243
C2STS-S  0.19340.037 0.646+0039 1.000+0.000 1.000+0.000 1.00040.000 0.768
C2ST-L  0.23440.031 0.70640.047 0.977x0012 1.000+0.000 1.000+0.000 0.783
MMD-O 0.188+0010 0.36340017 0.61940.021 0.797+0.015 0.894+0016 0.572
MMD-D 0.55540.044 0.996+0004 1.000+0.000 1.000+0.000 1.00040.000 0.910
H-Div 1.000+0.000 1.000Lo0.000 1.000+0.000 1.000%0.000 1.000%0.000 1.000
R-Div 1.000+0.000 1.000+0.000 1.000-+0.000 1.000+0.000 1.000+0000 1.000
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D.2 PACS Dataset
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Figure 5: The average test power at the significant level o = 0.05 on the art painting and cartoon
domains of PACS.

D.3 Learning with Noisy Labels
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Figure 6: Results on CIFAR10 with pair flipping. All values are averaged over five trials. Left:
Classification accuracy of pretrained and retrained networks. Middle: Precision and recall rates of
detecting clean and noisy samples. Right: Discrepancy between predicted clean and noisy samples.
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