
Supplementary Information

S1 More details on Prototypical Net

Architecture

Table S1 describes the architecture of the Propotypical Net [47] we are using in this article. We use
the Pytorch convention to describe the layers of the network.

Table S1: Description of the Prototypical Net Architecture
Network Layer # params

ConvBlock(Inc, Outc)

Conv2d(Inc, Outc, 3, padding=1) Inc ⇥ Outc ⇥ 3 ⇥ 3 + Outc
BatchNorm2d(Outc) 2 x Outc

ReLU -
MaxPool2d(2, 2) -

Prototypical Net

ConvBlock(1, 64) 0.7 K
ConvBlock(64, 64) 37 K
ConvBlock(64, 64) 37 K
ConvBlock(64, 64) 37 K

Flatten -
ReLU -

Linear(576, 256) 147 K
ReLU

Linear(256, 128) 32 K

The overall number of parameters of the Prototypical Net we are using is around 292 K parameters.
The loss of the Prototypical Net is applied on the output of the last fully connected layers (of size
128). For the computation of the samples diversity, we extract the features on the first fully-connected
layer after the last convolutional layer (i.e., of size 256).

Training details

The Prototypical Net is trained in a 1-shot 60-ways setting and tested on a 1-shot 20-ways setting. The
size of the query set is always 1 for both training and testing phase. The model is trained during 80
epochs, with a batch size of 128. For training, we are using an Adam optimizer [28] with a learning
rate of 1⇥ 10�3 (all other parameters of the Adam optimizer are the default ones). We are scheduling
the learning rate such that it is divided by 2 every 20 epochs.

At the end of the training, the training accuracy (evaluated on 1000 episodes) has reached 100% and
the testing accuracy reaches a plateau at 96.55%.

S2 More details on SimCLR

S2.1 Architecture and Data Augmentation

The architecture we are using for SimCLR [10] is the exact same than the one used for Prototypical
Net (see Table S1). In SimCLR, we also extract the features on the first fully-connected layer after
the last convolutional layer (i.e., of size 256). The augmentations we use are randomly chosen among
the 3 following transformations

• Random resized crop: it crops random portion of the image and resizes it to a given size.
2 sets of parameters are used for this transformation: the scale and the ratio. The scale
parameter specifies the lower and upper bounds for the random area of the crop. The ratio
parameter specifies the lower and upper bounds for the random aspect ratio of the crop. Our
scale range is (0.1, 0.9) and our ratio range is (0.8, 1.2).

• Random affine transformation: it applies a random affine transformation of the image
while keeping the center invariant. The affine transformation is a combination of a rotation

15

(from �15� to 15�), a translation (from �5 pixels to 5 pixels), a zoom (with a ratio from
0.75 to 1.25) and a shearing (from �10� to 10�).

• Random perspective transformation: apply a scale distortion with a certain probability
to simulate 3D transformations. The scale distortion we have chosen is 0.5, and it is applied
to the image with a probability of 50%

Please see the site https://pytorch.org/vision/main/auto_examples/plot_transforms.
html for illustration of the transformations. Note that we have tried different settings for the
augmentations (varying the parameters of the augmentations), and we have observed a very limited
impact of those settings on the computation of the samples diversity (see S3.3 for more details).

S2.2 Training details

Our SimCLR network is trained for 100 epochs with a batch size of 128. We used an RMSprop
optimizer [25], with a learning rate of 10�3 (all other parameters of the RMSprop are the default
ones).

S3 Control experiments for the samples diversity computation

S3.1 Comparing the supervised and the unsupervised settings for the computation of the
samples diversity

To compare the unsupervised with the supervised setting, we have computed for all of the 150 classes
of the Omniglot testing set the samples diversity. We plot the samples diversity values for each
category and for both settings in Fig. S1. We report a linear correlation coefficient R2 = 0.74 and a
Spearman rank order correlation ⇢ = 0.85 (see Table S2, first line). It does mean that the samples
diversity, as computed with one of the setting, is strongly correlated both in terms of rank order and
explained variance, with the samples diversity as computed with the other setting.

Figure S1: Comparison of the samples diversity computed by the supervised and the unsupervised
settings. Each data point corresponds to a specific class in the Omniglot test set. Here, the samples
diversity is computed applying the standard deviation (see Eq. 2) on SimCLR features (for x-axis) or
on the features of Prototypical Net (for y-axis)

S3.2 More control experiments on the effect of the dispersion measure

To make our analysis more robust we have conducted additional control experiments with different
measures of dispersion. In Eq. 2 we have presented a classical measure of dispersion that is the
standard deviation. Another measure of data dispersion is the pair-wise cosine distance among the

16

https://pytorch.org/vision/main/auto_examples/plot_transforms.html
https://pytorch.org/vision/main/auto_examples/plot_transforms.html

Table S2: Spearman rank order correlation for different settings
Setting 1 Setting 2 Spearman correlation p value

Proto. Net + Eq. 2 SimCLR + Eq. 2 0.85 8.99⇥ 10�43

Proto. Net + Eq. 3 SimCLR + Eq. 3 0.71 1.47⇥ 10�24

Proto. Net + Eq. 2 Proto. Net + Eq. 3 0.73 1.19⇥ 10�26

SimCLR + Eq. 2 SimCLR + Eq. 3 0.63 5.21⇥ 10�18

samples belonging to the same class:

�
j
p✓

=
NX

i=1

NX

k=1
k>i

q
2� 2C(f(vji), f(v

j
k)) s.t. v

j
i ⇠ p✓(·|x̃j) and C(u, v) =

u · v
kuk kvk (3)

In Eq. 3, C denotes the cosine similarity. In Fig. S2a, we plot the samples diversity for both feature
extraction networks but with a dispersion measure based on the pairwise cosine distance as formulated
in Eq. 3. We report a linear correlation of R2 = 0.57 and a Spearman rank order correlation of
⇢ = 0.71 (see second line of Table S2). This control experiment suggests that even by using a
different dispersion metric (i.e., the pairwise cosine distance), the 2 feature extraction networks
produce samples diversity values that are heavily correlated. This strengthen our observation made
in S3.1: the representations produced by the SimCLR and Prototypical Net are similar. Another
interesting control experiment is to compare the impact of the dispersion measure on the samples
diversity metric. To do so, we have compared the samples diversity computed with one feature
extractor (either Prototypical Net in Fig. S2b or SimCLR in Fig. S2c) but for 2 different dispersion
metrics (i.e., the standard deviation as formulated in Eq. 2 and the pairwise cosine distance as defined
in Eq. 3). In both cases, we have a non negligible linear correlation (i.e., R2

> 0.44) and a strong
Spearman rank order correlation (i.e., ⇢ > 0.63, see third and fourth lines of Table S2). All these
control experiments confirm that our computation of the samples diversity is robust to 1) the type of
approach we used to extract the features and 2) the measure of dispersion we are using to compute
the intraclass variability.

(a) SimCLR + cosine distance vs.
Proto Net + cosine distance

(b) Proto Net + standard deviation
vs. Proto Net + cosine distance

(c) SimCLR + cosine distance vs.
Proto Net + standard deviation

Figure S2: Control experiments when the dispersion metric is the pairwise cosine distance (as defined
in Eq. 3). Each point corresponds to a specific class of the Omniglot testing set. In a) we vary
the feature extraction network, while keeping the same dispersion metric (i.e., the pairwise cosine
distance). In b) and c), we fix the feature extraction network (Prototypical Net for b) and SimCLR
for c)) and we vary the dispersion metric (standard deviation for the x-axis or the pairwise cosine
distance for the y-axis).

S3.3 Impact of the image augmentation on the diversity measure

To test the impact of the image augmentations on the SimCLR network we have trained 3 SimCLR
networks with different augmentation levels.

17

• With moderate level of image augmentation. All the augmentations here are those described
in section S2.

• With a low level of image augmentation. Here the scale of the random resized crop is
varied from 0.05 to 0.95 and the crop ratio is ranging from 0.9 to 1.1. The rotation of the
affine transformation is ranging from �7 deg to 7 deg, the translation from �3 pixels to 3
pixels, the zoom from 0.9 to 1.1 and the shearing from�5 deg to 5 deg. The scale distortion
applied to the image is 0.25 (with a probability of 50%).

• With a high level of image augmentation. In this setting, the scale of the random resized
crop is varied from 0.2 to 0.8 and the crop ratio is ranging from 0.6 to 1.4. The rotation
of the affine transformation is ranging from �30 deg to 30 deg, the translation from �10
pixels to 10 pixels, the zoom from 0.5 to 1.5 and the shearing from �20 deg to 20 deg. The
scale distortion applied to the image is 0.75 (with a probability of 50%).

In Fig. S3, we compare the samples diversity obtains for each category of the Omniglot testing set
when we train the SimCLR network with moderate level of image augmentation and with a low level
of image augmentation (see Fig. S3a), or with a high level of image augmentation (see Fig. S3b). We
also report the Spearman correlation in Table S3.

(a) SimCLR with moderate level of image
augmentation versus SimCLR with low level of image

augmentation

(b) SimCLR with moderate level of image
augmentation versus SimCLR with high level of image

augmentation

Figure S3: Control experiment to assess the impact of the level of image augmentation on the sample
metric as evaluated as a standard deviation in the SimCLR feature space.

Table S3: Spearman rank order correlation for different settings
Setting 1 Setting 2 Spearman correlation p value

moderate augmentation light augmentation 0.79 1.7⇥ 10�33

moderate augmentation strong augmentation 0.90 1.45⇥ 10�55

We observe a high linear correlation as well as a high Spearman rank order correlation between the
tested settings. It suggests that the samples diversity is relatively independent to the level of image
augmentations used during the SimCLR training.

S3.4 T-SNE of the SimCLR and Prototypical Net latent space

In Fig. S4a and Fig. S4b, we show a t-SNE analysis of the feature space of Prototypical Net and
SimCLR respectively. In Fig. S4a, the t-SNE analysis of the Prototypical Net feature space reveals

18

(a) t-SNE of the Prototypical Net feature space (b) t-SNE of the SimCLR feature space

Figure S4: In these 2 figures the t-SNE analysis has been conducted on the 150 classes of the testing
set of Omniglot. For the sake of clarity we show here a randomly selected subset of those classes
(i.e., 20 classes).

a strong clustering of the samples belonging to the same class. Note that this phenomenon is not
surprising as the loss of the Prototypical Net forces the samples belonging to the same class to be
close in the feature space. More surprisingly, we also observe a clustering effect in the SimCLR
t-SNE analysis (see Fig. S4b). Note that SimCLR is a fully unsupervised algorithm: there is no class
information given to the algorithm. Consequently, the strong clustering effect we observe suggests
that forcing the proximity between a sample and its augmented version is enough to retrieve the class
information. This observation might explain why contrastive learning algorithms are in general so
efficient in semi-supervised (or even unsupervised) classification tasks.

19

S4 Concepts ranked by diversity for the unsupervised setting

Figure S5: Concepts of the Omniglot test set, ranked by their diversity as computed with the
unsupervised setting (i.e., SimCLR as a feature extractor and standard deviation for the dispersion
measure). Here we linearly sub-sampled 30 of out of 150 concepts of the test set. Concepts are ranked
in a increasing order (from low to high diversity). The samples in the red box are the prototypes, the
rest of the line is composed with samples belonging to the same category.

20

S5 Concepts ranked by diversity for the supervised setting

Figure S6: Concepts of the Omniglot test set, ranked by their diversity as computed with the
supervised setting (i.e., Prototypical Net as a feature extractor and standard deviation for the dispersion
measure). Here we linearly sub-sampled 30 of out of 150 concepts of the test set. Concepts are ranked
in a increasing order (from low to high diversity). The samples in the red box are the prototypes, the
rest of the line is composed with samples belonging to the same category.

21

S6 MAML architecture and training details

The architecture we have used for the MAML classifier is exactly the same used for the Prototypical
Net (see Table S1). The only difference is the last fully-connected layer that is : Linear(256, 20).
Indeed, as the MAML network is directly predicting the logits (and not a distance metric), the last
layer needs to have the same dimension than the number of class of the experiment. In a 1-shot
20-way classification experiment, the number of classes is 20.

We have used a 2nd order meta-learning scheme [18]. The outer-loop optimizer is an Adam optimizer
with a learning rate of 10�3, and the inner-loop optimizer is a simple Stochastic Gradient Decent with
a learning rate of 10�2. The number of inner loops is set to 5 during the training and to 10 during the
testing. The number of tasks for each outer-loop is set to 4.

S7 Control experiments: Comparing Prototypical Net and MAML

To rigorously compare MAML and Prototypical Net, we have conducted 2 types of control experi-
ments. First we have verified whether the classification accuracy obtained for each class were ranked
in the same order for both MAML and Prototypical Net. To do so, we have presented the same series
of categorization tasks to both algorithms. The high Spearman rank coefficient (⇢ = 0.60) indicates
that both classifiers rank each category’ classification accuracy similarly (see section S4).

To confirm this result, we have computed the correlation between the logits generated by both models.
In the case of the MAML model, extracting the logits is straightforward. For Prototypical Net, we
use the distance to prototypes as logits. This explain why both model’s logits are anti-correlated:
the MAML logits are the (un-normalized) probability of belonging to a given classes whereas the
Prototypical Net logits correspond to the distance to the category (so the lower the distance, the
higher the probability). We report a strong negative correlation (r = �0.62) between the logits of the
MAML network and those of Prototypical Net (see section S4).

Table S4: Spearman rank order correlation for different settings
Comparison correlation type correlation value p value

MAML vs. Proto. Net (accuracy) Spearman 0.60 4.24⇥ 10�15

MAML vs. Proto. Net (logits) Pearson -0.62 2.63⇥ 10�19

22

S8 Architecture and training details of the VAE-STN

S8.1 Architecture of the VAE-STN

The VAE-STN is a sequential VAE that allows for the iterative construction of a complex image [42].
A pseudo-code of the algorithm is described in Algo 1. At each iteration, the algorithm focuses its
attention on a specific part of the image (x), the prototype (x̃) and the residual image (x̂) using the
Reading Spatial Transformer Network (STNr). Then the extracted patch is passed to an encoding
network (EncBlock) to transform it into a latent variable. This latent variable is concatenated to a
patch extracted from the prototype and then passed to the RecBlock network. The produced hidden
state is first passed to DecBlock to recover the original patch, and then to the STNw to replace and
rescale the patch into the original image. The LocNet network is used to learn the parameter of the
affine transformation we used in the STN. Note that the affine parameters used in STNw are simply
the inverse of those used in STNr.

Algorithm 1 Pseudo-code of the VAE-STN
Input: image: x, prototype: x̃
c 0
✓1 [[1, 0, 0], [0, 1, 0]]
h1 0
for i = 1 to Nsteps do

x̂ = x� sigmoid(c)
r, r̂, r̃ = STNr(✓t,x), STNr(✓t, x̂), STNr(✓t, x̃)
r [r, r̂, r̃,ht]
µ,� = EncBlock(r)
z = µ+ ✏� with ✏ ⇠ N (0, 1)
z [z, r̃]
p = DecBlock(ht)
c c+ STNw(✓

�1
t ,p)

ht+1 RecBlock(z,ht)
✓t + 1 LocNet(ht+1)

end for

The STN modules take 2 variables in input: an image (or a patch in the case to the STNw) and a
matrix (3⇥2) describing the parameters of the affine transformation to apply to the input image [26].
All other modules are made with MLPs networks, and are described in Table S5. In the Table S5 we
use the following notations:

• sz: This the size of the latent space. In the base architecture, we set sz = 80.
• sLSTM : This is the size of the output of the Long-Short Term Memory (LSTM) unit. In the

base architecture, we set sLSTM = 400

• sr: This is the resolution of the patches extracted by the Spatial Transformer Net (STN)
during the reading operation. In the base architecture we set sr = 15.

• sloc: This is the number of neurons used at the input of the localization network. In the base
architecture, we set sloc = 100

• sw: This is the resolution of the patch passed to the the STN network for the writing
operation. In the base architecture sw = 15.

For the base architecture we used Nsteps = 60. The base architecture of the VAE-STN has 6.2
millions parameters. For more details on the loss function, please refer to [42].

S8.2 Training details of the VAE-STN

The VAE-STN is trained for 500 epochs, with batches of size 128. We use an Adam optimizer with a
learning rate of 1⇥ 10�3 and �1 = 0.9. All other parameters are the default Pytorch parameters. To
avoid training instabilities we clip the norm of the gradient to 5. The learning rate was divided by 2
when the evaluation loss has not decreased for 10 epochs (reduce on plateau strategy).

23

Table S5: Description of the VAE-STN architecture
Network Layer # params

EncBlock(sr, sLSTM , sz)

Linear(3 ⇥ s2r + sLSTM , 1024) (3 ⇥ s2r + sLSTM) ⇥ 1024)
+ 1024

ReLU
Linear(1024, 1024) 1050 K

ReLU
Linear(1024, 512) 524 K

ReLU -
Linear(512, 128) 65 K

ReLU -
Linear(128, 2⇥ sz) 256⇥sz + 2⇥sz

LocNet(sloc)

Linear(sloc, 64) sloc ⇥ 64 + 64
ReLU -

Linear(64, 32) 2 K
ReLU -

Linear(32, 6) 0.2 K

DecBlock(sLSTM , sloc, sw)

Linear(sLSTM - sloc, 1024) (sLSTM - sloc)⇥1024 + 1024
ReLU -

Linear(1024, 512) 525 K
ReLU -

Linear(512, 256) 131 K
ReLU -

Linear(256, s2w) 256⇥s2w+s2w

RecBlock(sz , sr, sLSTM) LSTMCell(sz + s2r , sLSTM) 4⇥
�
sz + s2r)⇥sLSTM

+ s2LSTM + sLSTM

�

VAE-STN

EncBlock(15 , 800, 80) 3, 172 K
RecBlock(80, 15, 800) 1, 600 K

DecBlock(400, 100, 15) 1, 431 K
LocNet(100) 8.7K

S8.3 VAE-STN samples

24

Figure S7: Sampled generated by the VAE-STN. All the prototypes used to condition the generative
model are in the red frame. The 30 concepts has been randomly sampled (out of 150 concepts)
from the Omniglot test set. The lines are composed with 20 samples that has been generated by the
VAE-STN.

25

S9 Architecture and training details of the Neural Statistician

Architecture

Figure S8: Left: basic hierarchical model, where the plate encodes the fact that the context variable c

is shared across each item in a given dataset. Center: full neural statistician model with three latent
layers z1, z2, z3. Each collection of incoming edges to a node is implemented as a neural network, the
input of which is the concatenation of the edges’ sources, the output of which is a parameterization of
a distribution over the random variable represented by that node. Right: The statistic network, which
combines the data via an exchangeable statistic layer. The above figures were obtained from [15]

Table S6 describes the base architecture of the Neural Statistician model adopted from [19] which is
a close approximation of [15]. We make minor changes in the network architecture to accommodate
the higher input image size of 50 ⇥ 50 of the Omniglot dataset. The Neural Statistician model is
composed of the following sub-networks:

• Shared encoder x 7! h: An instance encoder E that takes each individual datapoint xi to a
feature representation hi = E(xi).

• Statistic network q(c|D,�) : h1, ..., hk 7! µc,�
2
c: A pooling layer that aggregates the

matrix (h1, ..., hk) to a single pre-statistic vector v. [15] uses sample mean for their
experiments. Which is followed by a post-pooling network that takes v to a parametrization
of a Gaussian.

• Inference network q(z|x, c,�) : h, c 7! µz,�
2
z: Inference network gives an approximate

posterior over latent variables.
• Latent decoder network p(z|c; ✓) : c 7! µz,�

2
z

• Observation decoder network p(x|c, z; ✓) : c, z 7! µx

The overall number of parameters of the base model (which has the same architecture as used in
[15]) for the Neural Statistician we are using is around 7.48M parameters.

Training details

The Neural Statistician is trained for 300 epochs, with batch size of 32 and learning rate of 1⇥ 10�3.
We adopt the same setting of the Neural Statistician as used in [15] for the omniglot dataset.
We constructed context sets by splitting each class into datasets of size 5 while training, and
use a single out-of-distribution exemplar while testing. As discussed in the paper, we create
new classes by reflecting and rotating characters. We based our implementation from https://
github.com/georgosgeorgos/hierarchical-few-shot-generative-models and https:
//github.com/comRamona/Neural-Statistician.

Intuition about context integration in the Neural-Statistician

In the Neural Statistician, the context correspond to the samples used during training, to evaluate
the statistics of a specific category (i.e. a concept). In practice, we pass to the network different
samples representing the same concept and we vary the number of these samples (from 2 to 20 in
the experiment described in section 4.2). Intuitively, with more context samples for a given category,

26

https://github.com/georgosgeorgos/hierarchical-few-shot-generative-models
https://github.com/georgosgeorgos/hierarchical-few-shot-generative-models
https://github.com/comRamona/Neural-Statistician
https://github.com/comRamona/Neural-Statistician

Table S6: Description of the Neural Statistician Architecture
Network Layer # params

ConvBlock(Inc, Outc, stride) Conv2d(Inc, Outc, stride, 3, padding=1) Inc ⇥ Outc ⇥ 3 ⇥ 3
+ Outc

BatchNorm2d(Outc), ELU 2 x Outc

FcBlock(In, Out) Linear(In, Out) In ⇥ Out
BatchNorm1d(Out), ELU -

DeConvBlock(Inc, Outc) ConvTranspose2d(Inc, Outc, 2, 2) Inc ⇥ Outc ⇥ 3 ⇥ 3
+ Outc

BatchNorm2d(Outc), ELU 2 x Outc

Shared encoder

ConvBlock(1, 32, 1)

1,958,400

ConvBlock(32, 32, 1)
ConvBlock(32, 32, 2)
ConvBlock(32, 64, 1)
ConvBlock(64, 64, 1)
ConvBlock(64, 64, 2)
ConvBlock(64, 128, 1)

ConvBlock(128, 128, 1)
ConvBlock(128, 128, 2)
ConvBlock(128, 256, 1)
ConvBlock(256, 256, 1)
ConvBlock(256, 256, 2)

Statistic network

FcBlock(256*4*4, 256)

1,445,122average pooling within each dataset
2× FcBlock(256, 256)

Linear(256, 512), BatchNorm1d(1) to µc, log �2
c

Inference network

FcBlock(256, 256) 7! h

408,610FcBlock(512, 256) 7! c

combine c and h, ELU
Residual Block{3× FcBlock(256, 256)}

Linear(256, 32), BatchNorm1d(1) to µz , log �2
z

Latent decoder network
Linear(512, 256) 7! c, ELU

342,818Residual Block{3× FcBlock(256, 256)}
Linear(256, 32), BatchNorm1d(1) to µz , log �2

z

Observation decoder network

FcBlock(512, 256) 7! z

3,324,673

FcBlock(512, 256) 7! c

combine z and c, ELU
FcBlock(256, 256*4*4)
ConvBlock(256, 256, 1)
ConvBlock(256, 256, 1)
DeConvBlock(256, 256)
ConvBlock(256, 128, 1)
ConvBlock(128, 128, 1)
DeConvBlock(128, 128)
ConvBlock(128, 64, 1)
Conv2d(64, 64, 4, 1, 0)
DeConvBlock(64, 64)
ConvBlock(64, 32, 1)

Conv2d(32, 32, 2, 1, 0)
DeConvBlock(32, 32)

Conv2d(32, 1, 1)

27

it becomes easier for the network to identify the properties and features that are crucial to define a
given handwritten letter (which results in a higher recognizability but leaves less room for diversity).

28

S9.1 Neural statistician samples

Figure S9: Sampled generated by the neural statistician network (VAE-NS). All the prototypes used
to condition the generative model are in the red frame. The 30 concepts has been randomly sampled
(out of 150 concepts) from the Omniglot test set. The lines are composed with 20 samples that has
been generated by the VAE-NS.

29

S10 Architecture and training details of the DA-GAN based on U-Net (DA-GAN-UN)

Architecture

Input Image x Gaussian Noise

Linear Projection Encoder

Projected Noise
Vector z

Low Dim.
Representation

Generator

Generated Image

Concatenate

Figure S10: DAGAN Generator: The generator is composed of an encoder projecting the input image
to a lower dimensional manifold. A random gaussian noise vector is transformed and concatenated
with the bottleneck vector. The resulting vector is passed through the decoder (generator), which
outputs the augmented image.

Table S7 describes the base architecture of the DA-GAN-UN’s Generator model adopted from [1].
We have modified the architecture of the DA-GAN-UN model such that it can accommodate a higher
input image size 50 ⇥ 50. Also, we reduced the number of trainable parameters in the original
DA-GAN-UN architecture to have a fair comparison with other few-shot models. Following are the
notations used in Table S7:

• sz: This is the size of the latent space. In the base architecture, we set sz = 128
• Generator G(x, z): A generator network that takes data points and Gaussian noise as input,

and generate new samples.

The base architecture of the DAGAN model we are using in our experiments has around 6.8 million
parameters.

Training details

The DA-GAN-UN model was trained for 30 epochs, with batches of size 32. We use an Adam
optimizer with a learning rate of 1 ⇥10�4 and �1 = 0.9. We update our generator after every 5
updates of discriminator. We based our implementation from https://github.com/amurthy1/
dagan_torch

30

https://github.com/amurthy1/dagan_torch
https://github.com/amurthy1/dagan_torch

Table S7: Description of the Data Augmentation GAN Architecture
Network Layer # params

ConvBlock(Inc, Outc, sl)
Conv2d(Inc, Outc, 3, stride=sl, padding=1) Outc ⇥ (Inc ⇥ 3 ⇥ 3 + 1)

LeakyReLU(0.2), BatchNorm2d(Outc) 2 x Outc

DeConvBlock(Inc, Outc, sl)
ConvTranspose2d(Inc, Outc, 3, stride=sl, padding=1) Outc ⇥ (Inc ⇥ 3 ⇥ 3 + 1)

LeakyReLU(0.2), BatchNorm2d(Outc) 2 x Outc

EncoderBlock(Inp, Inc, Outc)

ConvBlock(Inp, Inp)
ConvBlock(Inc + Inp, Outc)

Conv2d(Inc+ Outc, Outc)
Conv2d(Inc+ 2 ⇥ Outc, Outc)

DecoderBlock(Inp, Inc, Outc)

DeConvBlock(Inp, Inp, 1)
ConvBlock(Inc+Inp, Outc, 1)

DeConvBlock(Inp, Inp, 1)
ConvBlock(Inc + Inp + Outc, Outc, 1)

DeConvBlock(Inc + 2 ⇥ Outc, Outc, 1)

Generator(sz)

ConvBlock(1, 64, 2)

6,813,857

EncoderBlock(1, 64, 64)
EncoderBlock(64, 64, 128)

EncoderBlock(128, 128, 128)
Linear(sz , 4⇥4⇥8)

DecoderBlock(0, 136, 64)
Linear(sz , 7⇥7⇥4)

DecoderBlock(128, 260, 64)
Linear(sz , 13⇥13⇥2)

DecoderBlock(128, 194, 64)
DecoderBlock(64, 128, 64)
DecoderBlock(64, 65, 64)

ConvBlock(64, 64, 1)
ConvBlock(64, 64, 1)

Conv2d(64, 1, 3, stride=1, padding=1)

S10.1 DA-GAN-UN samples

31

Figure S11: Sampled generated by the Data Augmentation GAN with U-Net architecture (DA-GAN-
UN). All the prototypes used to condition the generative model are in the red frame. The 30 concepts
has been randomly sampled (out of 150 concepts) from the Omniglot test set. The lines are composed
with 20 samples that has been generated by the DA-GAN-UN.

32

S11 Architecture and training details of the DA-GAN based on ResNet (DA-GAN-RN)

Architecture

We use the same base architecture of DA-GAN-UN, except we remove the skip connections between
the contracting path (encoder) and the expansive path (decoder). [1] used a combination of UNet
and ResNet in their results, in DA-GAN-RN we consider only a ResNet type architecture.

Training details

Refer S10 for training details.

33

S11.1 DA-GAN-RN samples

Figure S12: Sampled generated by the Data Augmentation GAN with ResNet architecture (DA-
GAN-RN). All the prototypes used to condition the generative model are in the red frame. The 30
concepts has been randomly sampled (out of 150 concepts) from the Omniglot test set. The lines are
composed with 20 samples that has been generated by the DA-GAN-RN.

34

S12 Effect of the number of context samples on the diversity/recognizability framework

a) b) c)

Figure S13: Effect of the number of context samples on the diversity/recognizability framework for 3
different runs. (a) Effect of the number of context samples on the diversity. (b) Effect of the number
of context samples on the recognizability. (c) Simultaneous evolution of diversity and recognizability
when ones varies the number of context samples from 2 to 20.

We observe a monotonic decrease of the diversity and a monotonic increase of the recognizability
when the number of context samples increases. We vary the number of context samples from 2 to
20. This experiment has been conducted with 3 different seeds (i.e., different network initialization),
represented with red, green and blue data points, respectively. For each seed, we report 19 data
points. To highlight the trend in the diversity-recognizability space, we have smoothed the curves in
Fig. S13a and Fig. S13b, using a Savitzky-Golay filter (second order, window size of 7).

S13 Effect of the number of attentional steps on the diversity/recognizability framework

a) b) c)

Figure S14: Effect of the number of attentional steps on the diversity/recognizability framework for 3
different runs. (a) Effect of the number of attentional steps on the diversity. (b) Effect of the number
of attentional steps on the recognizability. (c) Simultaneous evolution of diversity and recognizability
when one varies the number of attentional steps from 20 to 90

In this experiment, we have varied the number of attentional steps from 20 to 90. Note that we
could not go below 20 attentional steps to make sure the attentional process is fully covering the
entire image. We did not go over 90 attentional steps because we faced some training instabilities
beyond this point. We observe a non-monotonic evolution of the diversity and the recognizability
with the increase of the number of attentional steps. This experiment has been conducted with 3
different seeds (i.e., different network initialization), represented with red, green and blue data points,
respectively. For each seed we report 8 data points. In order to properly assess the type of parametric
curves that govern the evolution of the diversity-recognizability space when one varies the number of
attentional steps, we have used a least curve fitting method [21]. This method involves finding the

35

best polynomial fit (second order in our case) for the 3 curves (Fig. S14a, b and c) simultaneously.
This method is iteratively refining all the fits to minimize the sum of all least square error.

S14 Mathematical formulation of the ELBO

Let us consider a dataset X = {x(i)}Ni=1 composed of N i.i.d samples of a random variable x. We
assume that x is generated by some random process involving an unobserved random variable z. The
latent variable z is sampled from a Gaussian distribution (see Eq. 5). The mean of the likelihood is
parametrized by µ✓ (in which ✓ denotes the parameters) and its variance is considered constant.

x ⇠ p✓(x | z) s.t p✓(x | z) = N
�
x;µ✓(z),�

2
x

�
(4)

z ⇠ p(z) s.t p(z) = N
�
z;µp,�

2
p

�
(5)

The Variational Auto Encoder is optimized by maximizing the Evidence Lower Bound (ELBO), as
formalized in its simplest form in Eq. 6:

ELBO(x, ✓,�) = Eq�(z|x)[log p✓(x | z)]� �KL
�
q�(z | x)kp(z)

�
(6)

One could observe that the � coefficient is tuning the importance of the prior (through the KL). If
� > 1, then the latent space will be forced to be closer to the prior distribution but will attenuate the
weight of the reconstruction loss. Such a scenario tends to improve the disentanglement of the latent
space [24]. On the contrary, if � is low, then the reconstruction loss (i.e., Eq�(z|x)[log p✓(x | z)])
will take over, and then the latent space will be less regularized. Note that in the extreme case where
� = 0, the VAE becomes an auto-encoder.

The ELBO loss can be updated to include a latent variable encoding for the context c as in the
VAE-NS. In this formulation, the context corresponds to a dataset D (see Eq. 7):

ELBO(x, ✓,�) = Eq�(c|D)

h X

x2D

Eq�(z|c,x)[log p✓(x | z)]� �KL
�
q�(z | c,x)kp(z | c)

�i
(7)

�KL
�
q�(z | D)kp(c)

�

The ELBO could also be extended to include a sequential generative process as in the VAE-STN. In
this case, the latent variable z is time-indexed and is now a sequence of random variables denoted
(z1, .., zT). In Eq. 8, z<k indicates the collection of all latent variables from step t = 1 to t = k.

ELBO(x, ✓,�) = Eq�(z1,..,zT |x)[log p✓(x | z1, .., zT)]� �KL
TX

k=1

�
q�(zk | z<k,x)kp(zk)

�

(8)

S15 Effect of the beta coefficient on the diversity/recognizability framework

In this experiment, we have varied the value of the � coefficient from 0.25 to 4 for the VAE-STN and
from 0.25 to 5 for VAE-NS model. This experiment has been conducted with 3 different seeds
(i.e., different network initialization), represented with red, green and blue data points, respectively.
For the VAE-STN and for each seed, we have collected 16 data points (see Fig. S15), and 20 for
the VAE-NS (see Fig. S16). We use a similar method than in S13 to find a polynomial fit (second
order in our case) of the curves shown in Fig. S15a, b, and c and Fig. S16a, b, and c. We report
a quasi-monotonic decline of the diversity when the beta value is increased (see Fig. S15a and
Fig. S16a). In contrast, the recognizability follows a parabolic relationship when the beta value is
increased. For the VAE-STN, the maximum recognizability (⇡ 80%) is reached for a � value of 2.25
(see Fig. S15b). For the VAE-NS, the maximum recognizability (⇡ 91%) is reached for a � value of
3 (see Fig. S16b). Even if the change of amplitude in recognizability and in diversity is larger for the
VAE-STN than for VAE-NS, the shapes of the curves are very similar.

36

a) b) c)

Figure S15: Effect of varying � in the VAE-STN on the diversity/recognizability framework for 3
different runs. (a) Effect of � on the diversity. (b) Effect of � on the recognizability. (c) Parametric
curve recognizability versus diversity when one varies � from 0.25 from to 4.

a) b) c)

Figure S16: Effect of varying � in the VAE-NS on the diversity/recognizability framework for 3
different runs. (a) Effect of � on the diversity. (b) Effect of � on the recognizability. (c) Parametric
curve recognizability versus diversity when one varies � from 0.25 from to 5.

S16 Effect of the size of the latent space on the diversity/recognizability framework

a) b) c)

Figure S17: Effect of varying the size of the latent vector (z) in the VAE-NS on the diver-
sity/recognizability framework for 3 different runs. (a) Effect of latent size on the diversity. (b) Effect
of the latent size on the recognizability. (c) Parametric curve recognizability versus diversity when
one varies � from 5 from to 100.

37

a) b) c)

Figure S18: Effect of varying the size of the latent vector (z) in the VAE-STN on the diver-
sity/recognizability framework for 3 different runs. (a) Effect of latent size on the diversity. (b) Effect
of the latent size on the recognizability. (c) Parametric curve recognizability versus diversity when
one varies � from 5 from to 400.

a) b) c)

Figure S19: Effect of varying the size of the latent vector (z) in the DA-GAN-UN on the diver-
sity/recognizability framework for 3 different runs. (a) Effect of latent size on the diversity. (b) Effect
of the latent size on the recognizability. (c) Parametric curve recognizability versus diversity when
one varies � from 10 from to 1000.

S17 Overfitting of standard classifier in low-data regime

Omniglot is a dataset composed of images representing 1,623 classes of handwritten letters and
symbols (extracted from 50 different alphabets) with just 20 samples per class. This low number of
samples per class makes Omniglot very different from other datasets (e.g. MNIST, CIFAR10...). In
such a low-data regime, standard deep learning classifiers are known to overfit to the training data [7]
resulting in poor generalization performance. In this section we provide experimental confirmation of
such a phenomenon.

We have trained 3 different classifiers, all having a similar architecture (the architecture is described
in Table S1):

• A standard classifier. For this classifier, the last linear layer has been changed to have
an output activation of size 1623. Said differently, the layer entitled "Linear(256, 128)"
in Table S1 has been replaced by "Linear(256, 1623)". We have trained this classifier
using 18 samples per class of the Omniglot dataset. The testing set is composed of the 2
remaining samples per class. To summarize, the training set is composed of 29, 214 samples
(1623⇥ 18) and the training set is composed of 3246 samples (1623⇥ 2). This classifier is
trained using a standard back-propagation on a cross-entropy loss (same learning parameters

38

a) b) c)

Figure S20: Effect of varying the size of the latent vector (z) in the DA-GAN-RN on the diver-
sity/recognizability framework for 3 different runs. (a) Effect of latent size on the diversity. (b) Effect
of the latent size on the recognizability. (c) Parametric curve recognizability versus diversity when
one varies � from 10 from to 500.

than those described in Section S1). Train/test loss and classification accuracy are reported
for all training epochs in Fig S21a and Fig S21d, respectively.

• A one-shot classifier. Both the architecture and the training procedure of this classifier
are described in Section S1. We remind the reader that we use a weak generalization split
to train the few-learning networks (i.e. 1473 classes in the training set and 150 classes of
testing set). Train/test loss and classification accuracy are reported for all training epochs in
Fig S21b and Fig S21e, respectively.

• A five-shot classifier. This network is the exact same than the one-shot Prototypical Net de-
scribed before, except that it is trained in a 5-shots settings. Train/test loss and classification
accuracy are reported for all training epochs in Fig S21c and Fig S21f, respectively.

For the standard classifier, we observe an increase of the test loss (resp. a decrease of the test accuracy)
while the train loss is still decreasing (resp. the train accuracy is still increasing), see Fig S21a and
Fig S21d. It suggests that the network becomes better at classifying the training samples but worst at
dealing with the testing samples. The standard classifier is then overfitting on the training set. Note
that the 2 other few-shots learning networks are not showing such a decrease in the test loss and
accuracy. Such an experiment suggests that standard classifiers are not adequate to extract features of
samples in a low-data regime.

S18 Computational Resources

All the experiments of this paper have been performed using Tesla V100 with 16 Gb memory. The
training time is dependent on the hyper-parameters, but varies between 4h to 24h per simulation.

S19 Broader Impact

This work does not present any foreseeable negative societal consequences. We think the societal
impact of this work is positive. It might help the neuroscience community to evaluate the different
mechanisms that allow human-level generalization, and then better understand the brain.

39

a) b) c)

d) e) f)

Figure S21: Comparison between different classifiers in low-data regime. Train and test losses at
each training epoch for (a) a standard classifier, (b) a Protypical Net in a one-shot learning setting
and (c) a Prototypical Net in a 5-shots learning setting. Train and test classification accuracy at each
training epoch for (d) a standard classifier, (e) a Protypical Net in a one-shot learning setting and (f) a
Prototypical Net in a 5-shots learning setting.

40

	Introduction
	Related work
	Metrics to evaluate generative models and their limitations for one-shot generation tasks
	One-shot generative models

	The diversity vs. accuracy framework
	Results
	GAN-like vs. VAE-like models
	VAE-NS vs. VAE-STN
	Comparison with humans

	Discussion
	More details on Prototypical Net
	More details on SimCLR
	Architecture and Data Augmentation
	Training details

	Control experiments for the samples diversity computation
	Comparing the supervised and the unsupervised settings for the computation of the samples diversity
	More control experiments on the effect of the dispersion measure
	Impact of the image augmentation on the diversity measure
	T-SNE of the SimCLR and Prototypical Net latent space

	Concepts ranked by diversity for the unsupervised setting
	Concepts ranked by diversity for the supervised setting
	MAML architecture and training details
	Control experiments: Comparing Prototypical Net and MAML
	Architecture and training details of the VAE-STN
	Architecture of the VAE-STN
	Training details of the VAE-STN
	VAE-STN samples

	Architecture and training details of the Neural Statistician
	Neural statistician samples

	Architecture and training details of the DA-GAN based on U-Net (DA-GAN-UN)
	DA-GAN-UN samples

	Architecture and training details of the DA-GAN based on ResNet (DA-GAN-RN)
	DA-GAN-RN samples

	Effect of the number of context samples on the diversity/recognizability framework
	Effect of the number of attentional steps on the diversity/recognizability framework
	Mathematical formulation of the ELBO
	Effect of the beta coefficient on the diversity/recognizability framework
	Effect of the size of the latent space on the diversity/recognizability framework
	Overfitting of standard classifier in low-data regime
	Computational Resources
	Broader Impact

