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How Classification Baseline Works for Deep Metric
Learning: A Perspective of Metric Space

1. Complete proof

Lemma 1 Set d(0,1) = M. If d(z,y) is a semi-metric on R that L, (x,y) is also
semi-metric on R° and by the way:

Lm(laalb) = F(2M>

Proof : By the definition of semi-metric in (1,2):

Lin(la,lp) = F[d(0,1) 4 d(1,0) + (¢ — 2)d(0, 0)]
= F[d(0,1) 4+ d(0,1) + 0] = F(2M)

Lemma 2 If F is a non-convex function, that d is a weak-metric on R contains that
Ly (x,y) is a weak-metric on R, d is a metric on R contains that L,,(x,y) is a metric on
Re.

Proof : For any x,y,z € R firstly shows that d is semi-metric contains that F' is
semi-metric:

Non-negative:

=1

=1

C

= Zd(ﬂﬁi,yé) =0=d(z;,y)=0 i=12.c

i=1
=z,=y (=12.,c=>Tx=y
Symmetry:
& C
L(z,y) = F(Z d(zi, yi)) = F(Z d(yi, xi)) = Lm(y, @)
i=1 i=1

Then in unit function, non-convex is equivalent to non-negative second derivative, that
is for any a,b € [0, +00):
F(a) <0
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By differential median theorem in unit function, set &; € (0,a),&2 € (a,a + b):
F(a) = F(0) = aF (&)
Fla+b) — F(b) = aF (&)
F(a+b) = F(b) — F(a) + F(0) = a(F (&) — F'(¢1)) <0
= F(a+b) < F(a) + F(b)

Thus when d satisfies triangle inequality:

Ly (x,y) =
FOY d(wi,y)) < FOQ_d(wiz:) + Y d(yi, 20))
=1 i=1 i=1

< F(Z d(zi, %)) + F(Z d(yi, zi))

< Lin(z,2) + Lim(y, 2)

Lemma 3 1If L, (x,y) is a weak-metric with uniform point [ or a metric, a,b € R°
are two samples with same label [ € R, that:

Ly, (a,b) < Lp(a,l) 4+ Lpy(l,b) < 2
Proof : By the definition of weak-metric in (1,2):
Ly (a,b) < Ly (a,l)+ Ly,(l,b)
< 2supgef(p)Lm(a, £ (a)) = 2¢

Lemma 4 1If L, (x,y) is a metric, a,b € R are two samples with different labels
la, ly € R respectively, that:
Ly (a,b) > F(2M) — 2¢

Proof : By the definition of metric in (3):
Ly (a,b) + Ly(a,l,) > Ly(b,1,)
Ly (a,b) > Ly, (b,l,) + Ly (b, 1) — Ly (a,ly) — Lin(b, 1)
> Lin(la; ) — 25upaespyLm(a, £(a))

=F(2M) — 2e.
1 . . 2 . . . .
Example LCE, is a weak-metric. LCE, is a metric iff.:
2p+1 _ 22p > b
T a+1

Proof : LéE, is weak-metric with label as its uniform point, that is: for any labels and
any x,z € [0, 1]

D log(1—Jzi = 2if) = ) log(1 —|ail) + Y log(1 — |zi])
i=1 i=1 i=1

< |wi — zi] < x| + |zi] — |xizil

= |z — 2| < | + |zi] — main{|z)|, |2} = maz{|z;], |2}
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which is obvious for x;, z; are both positive. And:

= log(1— |z — z|) <
=1

=) log(1 — | — 1) = > log(1 — |1 — z)
i=1 i=1

<oy — 2| <o — 1+ |z — 1] — |z — 1|1 — 2]
<:‘1—:L‘Z'—(1—Zi)|S|1—l’i|—|—|1—zi|—’1—.%‘Z'H1—Zi|

which is similar to above for 1 — x;,1 — z; are both positive. entry in label is only 0 or
1, thus it’s down. When y is arbitrary in [0, 1]€, LéE/ is not a metric for when x,y, z are
respectively 0,1/2, 1 triangle inequality is broken, thus when we need a metric loss, Lé o 18
need, all we need prove is (set a' = log(1 + a)):

—log(1+a—blx; — zP) +d <
—log(1+a —blz; — yi|P) — log(1 + a — bly; — z|P) + 2d
(I1+a—Dblz; —yP)(1 4+ a — bly; — zi|P)

14+a—bla; — P >
+a |z; — 2P > T+a

set k= chrp it’s:
<oy — 2P <o —yil? + |y — 2| — klos — yilPlys — 2zl?

i. when y; is between x;, z;(i.e. z; < y; < z;,2; < y; < x; is similar), set u = y; — x;,v =
z; — v;, that:

lu+vP < |ulf + [vfP — klulPlo]P st 0<u4v<1
It’s easy to derive that there’s an only extremum for u =v =1/2:

1< (1/2)7 + (1/2)7 — k(1/2)P(1/2)P
= 2p+1 _ 22p >k

ii. when y is out of range between z and z(i.e., z < z < y, or similarly y < = < 2), set
u=z—x,v=y — z, that:

[ulP < |u+vlP + [P —klu+vPlv]P st 0<u+v<1
<fu+tof + o = vl

for both k and |u + v| is less than 1.
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