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How Classification Baseline Works for Deep Metric
Learning: A Perspective of Metric Space

1. Complete proof

Lemma 1 Set d(0, 1) = M . If d(x, y) is a semi-metric on R that Lm(x,y) is also
semi-metric on Rc and by the way:

Lm(la, lb) = F (2M)

.

Proof : By the definition of semi-metric in (1,2):

Lm(la, lb) = F [d(0, 1) + d(1, 0) + (c− 2)d(0, 0)]

= F [d(0, 1) + d(0, 1) + 0] = F (2M)

Lemma 2 If F is a non-convex function, that d is a weak-metric on R contains that
Lm(x,y) is a weak-metric on Rc, d is a metric on R contains that Lm(x,y) is a metric on
Rc.

Proof : For any x,y, z ∈ Rc, firstly shows that d is semi-metric contains that F is
semi-metric:

Non-negative:

Lm(x,y) = F (

c∑
i=1

d(xi, yi)) ≥ F (0) = 0

Lm(x,y) = F (

c∑
i=1

d(xi, yi)) = 0

⇒
c∑

i=1

d(xi, yi) = 0 ⇒ d(xi, yi) = 0 i = 1, 2, ..., c

⇒ xi = yi i = 1, 2, ..., c ⇒ x = y

Symmetry:

Lm(x,y) = F (

c∑
i=1

d(xi, yi)) = F (

c∑
i=1

d(yi, xi)) = Lm(y,x)

Then in unit function, non-convex is equivalent to non-negative second derivative, that
is for any a, b ∈ [0,+∞):

F
′′
(a) ≤ 0
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By differential median theorem in unit function, set ξ1 ∈ (0, a), ξ2 ∈ (a, a+ b):

F (a)− F (0) = aF
′
(ξ1)

F (a+ b)− F (b) = aF
′
(ξ2)

F (a+ b)− F (b)− F (a) + F (0) = a(F
′
(ξ2)− F

′
(ξ1)) ≤ 0

⇒ F (a+ b) ≤ F (a) + F (b)

Thus when d satisfies triangle inequality:

Lm(x,y) =

F (

c∑
i=1

d(xi, yi)) ≤ F (

c∑
i=1

d(xi, zi) +

c∑
i=1

d(yi, zi))

≤ F (

c∑
i=1

d(xi, zi)) + F (

c∑
i=1

d(yi, zi))

≤ Lm(x, z) + Lm(y, z)

Lemma 3 If Lm(x,y) is a weak-metric with uniform point l or a metric, a, b ∈ Rc

are two samples with same label l ∈ Rc, that:

Lm(a, b) ≤ Lm(a, l) + Lm(l, b) ≤ 2ϵ

Proof : By the definition of weak-metric in (1,2):

Lm(a, b) ≤ Lm(a, l) + Lm(l, b)

≤ 2supa∈f(P )Lm(a,L (a)) = 2ϵ

Lemma 4 If Lm(x,y) is a metric, a, b ∈ Rc are two samples with different labels
la, lb ∈ Rc respectively, that:

Lm(a, b) ≥ F (2M)− 2ϵ

Proof : By the definition of metric in (3):

Lm(a, b) + Lm(a, la) ≥ Lm(b, la)

Lm(a, b) ≥ Lm(b, la) + Lm(b, lb)− Lm(a, la)− Lm(b, lb)

≥ Lm(la, lb)− 2supa∈f(P )Lm(a,L (a))

= F (2M)− 2ϵ.

Example L1
CE′ is a weak-metric. L2

CE′ is a metric iff.:

2p+1 − 22p ≥ b

a+ 1

Proof : L1
CE′ is weak-metric with label as its uniform point, that is: for any labels and

any x, z ∈ [0, 1]c:

c∑
i=1

log(1− |xi − zi|) ≥
c∑

i=1

log(1− |xi|) +
c∑

i=1

log(1− |zi|)

⇐ |xi − zi| ≤ |xi|+ |zi| − |xizi|
⇐ |xi − zi| ≤ |xi|+ |zi| −min{|zi|, |xi|} = max{|xi|, |zi|}
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which is obvious for xi, zi are both positive. And:

−
c∑

i=1

log(1− |xi − zi|) ≤

−
c∑

i=1

log(1− |xi − 1|)−
c∑

i=1

log(1− |1− zi|)

⇐ |xi − zi| ≤ |xi − 1|+ |zi − 1| − |xi − 1||1− zi|
⇐ |1− xi − (1− zi)| ≤ |1− xi|+ |1− zi| − |1− xi||1− zi|

which is similar to above for 1 − xi, 1 − zi are both positive. entry in label is only 0 or
1, thus it’s down. When y is arbitrary in [0, 1]c, L1

CE′ is not a metric for when x, y, z are

respectively 0, 1/2, 1 triangle inequality is broken, thus when we need a metric loss, L1
CE′ is

need, all we need prove is (set a′ = log(1 + a)):

− log(1 + a− b|xi − zi|p) + a′ ≤
− log(1 + a− b|xi − yi|p)− log(1 + a− b|yi − zi|p) + 2a′

1 + a− b|xi − zi|p ≥
(1 + a− b|xi − yi|p)(1 + a− b|yi − zi|p)

1 + a

set k = b
a+1 , it’s:

⇐ |xi − zi|p ≤ |xi − yi|p + |yi − zi|p − k|xi − yi|p|yi − zi|p

i. when yi is between xi, zi(i.e. xi ≤ yi ≤ zi, zi ≤ yi ≤ xi is similar), set u = yi − xi, v =
zi − yi, that:

|u+ v|p ≤ |u|p + |v|p − k|u|p|v|p s.t. 0 ≤ u+ v ≤ 1

It’s easy to derive that there’s an only extremum for u = v = 1/2:

1 ≤ (1/2)p + (1/2)p − k(1/2)p(1/2)p

⇒ 2p+1 − 22p ≥ k

ii. when y is out of range between x and z(i.e., x ≤ z ≤ y, or similarly y ≤ x ≤ z), set
u = z − x, v = y − z, that:

|u|p ≤ |u+ v|p + |v|p − k|u+ v|p|v|p s.t. 0 ≤ u+ v ≤ 1

≤ |u+ v|p + |v|p − |v|

for both k and |u+ v| is less than 1.
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