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Abstract— Deep reinforcement learning (DRL) has been widely
adopted in various applications, yet it faces practical limitations
due to high storage and computational demands. Dynamic sparse
training (DST) has recently emerged as a prominent approach to
reduce these demands during training and inference phases, but
existing DST methods achieve high sparsity levels by sacrificing
policy performance as they rely on the absolute magnitude of
connections for pruning and randomly generating connections.
Addressing this, our study presents a generic method that can
be seamlessly integrated into existing DST methods in DRL to
enhance their policy performance while preserving their sparsity
levels. Specifically, we develop a novel method for calculating
the importance of connections within the model. Subsequently,
we dynamically adjust the sparse network topology by dropping
existing connections and introducing new connections based on
their respective importance values. Through validation on eight
widely used simulation tasks, our method improves two state-of-
the-art (SOTA) DST approaches by up to 70% in episode return
and average return across all episodes under various sparsity
levels.

Index Terms— Deep reinforcement learning (DRL), dynamic
sparse training (DST), topology adaptation strategy.

NOMENCLATURE
r Current reward.
s Current state.
a Current action.
s ′ Next state.
a′ Next action.
â Predicted action.
N Size of the mini-batch.
α Learning rate.
α′ Temperature parameter in SAC.
θµ Actor.
θ Critic.
γ Discount.
Q(s, ·) Q-value.
Q̂(s, ·) Target Q-value.
τ Coefficient of soft update.
ϵ Noise in exploration.
π(·; θµ) Action policy.
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L(θ) Loss function.
D Replay buffer.
D0 Mini-batch.
M Binary mask.
λ i Coefficient setting the sparsity level in layer

i .
ci Number of neurons in layer i .
S Importance of each connection or neuron.

I. INTRODUCTION

DEEP reinforcement learning (DRL) has demonstrated
remarkable achievements in cutting-edge fields, such as

robotics [1] and autonomous driving [2]. Nevertheless, when
DRL models are deployed in real-world applications, such as
large-scale StarCraft competitions, they often consume signif-
icant computational and storage resources, which limits their
applicability in devices without advanced hardware. Sparse
models, initially achieved through pruning techniques derived
from deep supervised learning, are an effective approach
to reducing storage requirements [3]. Although efforts have
been made to apply these pruning techniques in DRL for
model compression and training acceleration, they still require
iterative training of dense networks, leading to prohibitively
high costs.

Recently, dynamic sparse training (DST) has emerged
as the primary approach for implementing sparse models,
effectively reducing the number of model parameters and
computational resources required during both training and
inference. It involves initializing a sparse network structure
and dynamically adjusting the sparse topology throughout the
training process to achieve a refined sparse network. Several
state-of-the-art (SOTA) studies [4], [5], [6] have explored DST
in the context of DRL, offering a highly promising approach
for sparse DRL. Significantly, the process of dropping and
growing connections plays a crucial role in DST, allowing for
dynamic adaptation of the network topology. This feature sets
DST apart from static sparse training (SST). While DST effec-
tively reduces the model size of DRL, it typically introduces
a certain degree of performance trade-off at different levels
of sparsity. This trade-off becomes particularly pronounced
when the model’s sparsity reaches or exceeds 90%. In other
words, while achieving 90% sparsity can reduce 90% of the
connections in the model, it often introduces a substantial
performance decrease compared to the original dense model.
This significantly impedes the practicality of DRL methods
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that integrate DST. For instance, in DRL-based robot 2-D
navigation, when the sparsity level reaches 95%, existing DST
methods can lead to a policy performance degradation of
up to 90% compared to the dense model. This substantial
decline results in a poor robot motion planning strategy with
frequent collisions, significantly reducing the efficiency of task
completion.

This study aims to develop a generic method that can
be integrated into existing DST methods in DRL to reduce
the performance gap between sparse and dense models while
preserving high sparsity levels. To achieve this goal, we need
to address the following challenge. Existing DST methods in
the DRL community first identify the connections to drop by
evaluating the absolute value of each connection during the
connection drop stage and then randomly add new connections
during the connection growth stage. However, relying solely
on absolute values as the exclusive criterion for removing
connections is unjustifiable. This is because: 1) the importance
of a connection with the same absolute value varies across
different stages of training [7], [8]; and 2) considering the
interconnectedness of connections within the network, eval-
uating the importance of a connection should also take into
account its neighboring connections. Additionally, randomly
growing connections at arbitrary locations is suboptimal due
to the inherent randomness involved. This randomness can
lead to the creation of connections that do not significantly
contribute to improving network performance.

To tackle this challenge, we develop a novel topology adap-
tation strategy specifically for the critic. Moreover, we have
ensured consistency between the actor’s strategy and the base-
line DST method, as corroborated by prior studies [9], [10],
consistently demonstrating that prioritizing improvements in
the critic alone within DRL can yield superior performance.
During the connection drop stage, we begin by assessing
the importance of each layer of neurons, recognizing their
crucial role in processing information and influencing the
network’s output. This evaluation takes into account both
the temporal difference (TD) error and the sum of absolute
values of the neuron’s forward or subsequent connections.
Consequently, we determine the importance of each connec-
tion by considering the importance of the connected neuron
and the absolute value of the connection. In our evalua-
tion of connection importance, the TD error serves as an
indicator of variations observed during different stages of
learning. On the other hand, the sum of absolute values of
a neuron’s connections can, to some extent, represent the
importance of the neighboring connections associated with
a specific connection. Finally, we selectively drop connec-
tions that are considered less important. Similarly, during
the connection growth stage, we evaluate the importance of
each location where a connection is missing by consider-
ing the importance of its preceding and following neurons.
We then selectively add connections to locations with high
importance.

The contributions of this article are summarized as follows.
1) We develop a generic approach to enhance existing DST

methods in the DRL community, which results in higher
returns while maintaining the same level of sparsity. This

approach effectively helps bridge the performance gap
between dense models and sparse models.

2) We develop a novel topology adaptation strategy specif-
ically for critic networks. This strategy incorporates a
new method for calculating the importance of connec-
tions within the network and accordingly dropping and
growing connections based on their importance values.

3) We validate the effectiveness of our method by enhanc-
ing two SOTA DST approaches across eight diverse
simulation tasks. The experimental results demonstrate
that, at the highest level of sparsity (e.g., 95% spar-
sity), existing DST methods exhibit a certain degree of
performance degradation, with up to a 90% reduction in
return compared to regular dense models. In contrast, our
method effectively improves existing DST methods, with
improvement reaching up to 70% in terms of return. This
achievement enables our method to achieve performance
that is close to or even surpasses that of dense models.

This study is organized as follows. In Section II, a review
of related research is provided. Section III describes the back-
ground. Section IV presents the proposed method with detailed
explanations. The experimental results are demonstrated in
Section V. Finally, Section VI concludes the study.

II. RELATED WORK

This section begins with a concise review of relevant
literature on DRL. Subsequently, we will delve into the DST
technique and its current development status within the DRL
community. Furthermore, we will discuss the limitations of
the existing research on DST in the context of DRL.

A. Deep Reinforcement Learning

The main objective of reinforcement learning (RL) is to
determine an optimal policy that maximizes the cumulative
discounted rewards over time [2], [11]. Traditionally, tabular
RL has been commonly used to tackle various learning tasks.
However, this approach becomes less practical in environments
with large state spaces. In 2015, Minh et al. made a significant
breakthrough in RL by introducing deep neural networks to
handle high-dimensional observations [12]. This advancement
paved the way for DRL, which has gained widespread popu-
larity and found diverse applications across multiple domains.
Among these domains, one of the most extensively explored
areas is learning-based control. Representative studies in this
field include Hamiltonian-driven adaptive dynamic program-
ming [13], cooperative finitely excited learning [14], and
model-free policy iteration [15].

Despite the application of DRL in various domains, it often
encounters challenges related to storage and computational
requirements, especially when dealing with complex learning
tasks that involve training large-scale models. These limita-
tions significantly restrict the wider adoption of DRL.

B. DST in Offline Deep Learning

In the conventional deep learning community, DST has
already been applied to numerous offline deep learning tasks.
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DST methods distinguish themselves from traditional prun-
ing approaches by incorporating sparse connectivity learning
throughout the entire training process. Instead of conduct-
ing weight pruning after training or during initialization,
DST methods dynamically adjust the network’s connectivity
by adding and removing weights based on saliency crite-
ria. Notable saliency criteria in this context include sparse
evolutionary training (SET), RigL, and its variants. For
instance, SET removes weights with the smallest magni-
tude and introduces random weight additions. On the other
hand, RigL prunes weights with the smallest magnitude
while regrowing weights with significant gradient magnitudes.
These techniques collectively enable the exploration of a
broader parameter space and contribute to overall performance
improvements. Additionally, Liu et al. [16] extended the
original RigL approach by introducing modifications to the
sparse connectivity update schedule and drop rate, leading to
enhanced outcomes compared to the initial RigL method.

Notable recent studies in this area include Powers et al.
[17], Wołczyk et al. [18], Yildirim et al. [19], Ren and
Honavar [20], and Wang et al. [21]. Recently, Yin et al. [22]
made significant advancements by identifying sparse amenable
channels in DST algorithms. Their method, Chase, achieves
SOTA generalization performance by incorporating a soft
memory constraint similar to Yuan et al. [23] and calculating
parameter saliency based on global statistics. Additionally,
various unstructured DST methods, including DeepR [24],
SNFS [25], and MEST [23], have also been proposed. Cur-
rently, DST has also been widely applied in tasks such as
federated learning [26], graph neural networks [27], image
processing [28], [29], [30], and language models [31].

However, the research on sparse training in the deep learn-
ing community primarily focuses on developing sparse training
methods for offline deep learning models. These methods are
not directly applicable to DRL models due to the interactive
and online learning nature of DRL. Consequently, the DRL
community has developed sparse training methods specifically
tailored for DRL, such as Sokar et al. [4], Tan et al. [6], and
Grooten et al. [5].

C. DST in DRL

The most promising solution currently for achieving
lightweight DRL is sparse neural networks because this
approach can effectively reduce storage requirements by train-
ing a model with sparse connections. Previous studies have
explored the integration of sparsity into DRL through pruning
techniques. Livne and Cohen [3] employed a dense teacher
network for iterative pruning and retraining of a student policy
network via knowledge distillation. Lee et al. [32] proposed an
algorithm combining connection grouping and pruning during
DRL training. Vischer et al. [33] investigated the lottery ticket
hypothesis in DRL, demonstrating the superiority of sparse
subnetworks over dense networks when trained from scratch,
along with the work by Zhao et al. [34]. However, the process
of pruning dense networks typically involves pretraining a
dense model and incurs additional computational costs due to
the iterative cycles of pruning and retraining the dense model.

Recent research in the DRL community has sparked interest
in DST for training sparse DRL models, which has emerged
as the current best approach for achieving sparse DRL models,
primarily due to the significant advantages that sparse training
has demonstrated in the field of deep learning compared
to pruning techniques. Compared to sparse training methods
for offline deep learning, there are relatively fewer solutions
tailored specifically for DRL. The most recent studies in
this area include Tan et al. [6], who have demonstrated the
ability to train a DRL model entirely on sparse networks using
sparse topology evolution. Sokar et al. [4] have dynamically
adapted the topology of a sparse network to the changing data
distribution during training. Furthermore, Grooten et al. [5]
have applied DST to filter out environmental noise for DRL.

While DST methods have proven to be effective in reducing
the size of DRL models, it is important to acknowledge that
high sparsity levels can potentially have a detrimental impact
on policy performance. Particularly when the sparsity exceeds
90%, there is often a noticeable degradation in performance
compared to the original dense models, resulting in deviations
from the desired outcome.

III. PRELIMINARIES

In this section, we present the key concepts and implemen-
tation steps of DST within the context of DRL. Furthermore,
we illustrate the problem formulation to provide the engineer-
ing background of our approach and clarify the objective we
aim to achieve. Nomenclature provides a comprehensive list
of the key notations used throughout the article. Furthermore,
within our method, we adopt twin delayed deep determin-
istic policy gradient (TD3) and soft actor–critic (SAC) as
the underlying DRL algorithms. These algorithms have been
widely utilized as the foundation for various advanced DRL
technologies, including lifelong DRL [35], sparse DRL [4],
[6], and evolutionary DRL [36]. The descriptions of TD3 and
SAC can be found in the supplementary materials. Indeed,
in addition to the SAC and TD3 algorithms, a wide range of
off-policy DRL algorithms can potentially be utilized as the
underlying algorithms for both our method and existing DST
methods.

A. Basic Concepts of DST

In this section, we introduce three fundamental concepts
that hold paramount importance in DST within the domains
of deep learning and DRL: layer density, model density, and
model sparsity.

Let us consider a neural network denoted as fθ , where
θ corresponds to the network’s parameters. The symbol θ l

represents the parameters associated with the lth layer. This
particular network undergoes training using a dataset D
with the primary objective of minimizing the loss function
L(θ;D).

1) Layer Density: The density d l of layer l is calculated by
dividing the L0 norm of θ l (which represents the number of
nonzero entries) by the latent dimension nl (which represents
the total number of connection positions). Mathematically, this
can be expressed as d l

= ∥θ l
∥0/nl .
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2) Model Density: The model density, denoted as Des,
is determined by summing the densities of all layers and
normalizing the result by the total number of dimensions.
Specifically, we calculate Des = (

∑L
l=1 d lnl)/(

∑L
l=1 nl),

where L denotes the total number of layers in the network.
3) Model Sparsity: The sparsity of the model is defined as

the complement of the density, i.e., S = 1− Des.

B. General Steps of DST

We outline the general steps for implementing established
DST approaches [4], [5], [6] within DRL.

1) Initialization of Sparse Topology: Begin by creating the
initial sparse topology from scratch using methods like the
Erdös-Rényi random graph. Set the network’s sparsity and
prune specific connections to zero. This initial sparse structure
serves as the starting point for training.

2) Training of Current Networks: Follow the general train-
ing procedure of DRL, adapting it to the specific training
approach of the chosen DRL algorithm, such as TD3.

3) Update of Target Networks: Employ target networks
with delayed updating, as commonly used in off-policy DRL
algorithms like TD3. For DRL algorithms that do not have a
target network, this step can be omitted.

4) Dynamic Adaptation of Sparse Topology: The dynamic
adaptation of the sparse topology is a critical step in DST,
distinguishing it from SST methods. Unlike SST, which lacks
dynamic topology adaptation, DST dynamically adjusts the
sparse topology in the current actor and critics. This involves
selectively dropping and growing connections within the net-
work using a topology adaptation strategy.

Next, we present the SET method, which serves as the topol-
ogy adaptation strategy employed by current DST methods [4],
[5], [6] in DRL. SET involves a two-step “remove-and-add”
cycle, as shown below.

First, we initiate the process by sorting all connections
according to their absolute values in descending order. Con-
nections with smaller absolute values are considered less
important. Our goal is to remove 10% of the connections in
the current model, specifically those identified as the least
important. Let n p denote the number of connections with
the smallest positive values, and nq denote the number of
connections with the largest negative values. The sum of n p

and nq is set to 10% of the total number of connections in the
current model. Next, we identify the nq -th largest negative
connection, denoted as θ̃ ′q , and the n p-th smallest positive
connection, denoted as θ̃ ′p. For each connection θ j , it will
be removed if (0 < θ j < θ̃ ′p) ∨ (0 > θ j > θ̃ ′q), where ∨
represents the logical OR operator.

Second, we randomly introduce additional connections to
positions where no connections currently exist in each layer.
The total number of connections added in this process is n p+

nq , and these newly added connections are initialized to zero.
The procedure for adding connections to each layer is the
same, which is outlined below. For layer i , we generate a
random integer x from a discrete uniform distribution in the
interval [1, c(i−1)

× ci
], where ci−1 represents the number of

neurons in layer i−1, and ci represents the number of neurons

in layer i . For each connection θ j , it will be added if (θ j
==

0)∧ ( j == x), where ∧ represents the logical AND operator.
The aforementioned analysis highlights a limitation of the

SET method, as it relies solely on the absolute value of
connections to determine their retention or removal. However,
the absolute value alone cannot fully capture the importance of
a connection [7], [8]. Furthermore, the SET method introduces
new connections at random positions, which is suboptimal.
This limitation leads to a noticeable degradation in perfor-
mance when the model has high sparsity, as observed in the
existing DRL community’s DST methods.

C. Problem Formulation

The objective of sparse training in DRL is fundamentally
the same as DRL itself, which is to learn an optimal policy
π(s;φ) that maximizes the cumulative long-term reward

J = max
φ

Eπ(φ)

[
T∑

i=0

γ i−tri

∣∣∣∣∣s0, a0

]
. (1)

Here, φ represents the policy in DRL. This objective is pursued
within the framework of a Markov decision process M =

⟨S,A, r, P, γ ⟩, where S denotes the state space, A represents
the action space, r is the reward function, P is the transition
matrix, and γ is the discount factor. During each time step t ,
the agent operates within the environment by observing the
current state st ∈ S and selecting an action at ∈ A based on
its policy π : S → A. The action taken by the agent leads to
a corresponding reward rt .

For regular DRL, dense models (e.g., dense actor–critic
architectures) are usually employed to learn a policy that
achieves the aforementioned objective. In contrast, sparse
training in DRL utilizes sparse models (e.g., sparse actor–critic
architectures) to learn a policy that achieves the same objec-
tive. However, when the sparsity level is high (e.g., removing
95% of model parameters), existing sparse training methods
can only learn a suboptimal policy. As a result, the cumulative
long-term reward J is noticeably lower compared to what
a dense model would achieve, which leads to performance
degradation. Our goal is to learn a better policy and increase
the cumulative long-term reward J while maintaining the same
sparsity level as the existing sparse training methods.

IV. METHODOLOGY

In this section, we first introduce the framework of our
method. Then, we present our approach for calculating con-
nection importance, the topology adaptation strategy, and the
complexity analysis. Finally, we outline the overall training
workflow to demonstrate how our approach seamlessly inte-
grates into existing DST methods, thereby enhancing their
performance.

A. Framework for the Proposed Method

The framework of our method is illustrated in Fig. 1.
Our approach involves several steps. First, we sample a
mini-batch of data from the replay buffer. Then, we compute
the current Q-value and target Q-value using the current
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Fig. 1. Framework of our approach. In the figure, “policy” refers to the
“actor.”

critic and target critic networks, respectively. Subsequently,
we calculate the discrepancy between the current Q-value and
the target Q-value. This discrepancy, along with the absolute
values of the connection itself and its neighboring connections,
is aggregated to determine the importance of the neuron.
Based on the importance of neurons, we further calculate the
importance of connections. Finally, we perform connection
deletion and growth based on the importance of connections,
resulting in the topology adaptation of sparse networks.

B. Calculating the Importance of Connections

Let (θµ, θ) represent the network parameters for DRL.
In this case, θµ corresponds to the actor, and θ corre-
sponds to the critic. Let (s, a, r, s′) represent a transition.
The current Q-value is denoted as Q(s, a), while the target
Q-value is represented as Q̂(s, a) = r(s, a)+ γ Q(s′, a′). Let
L(Q(s, a), Q̂(s, a)) be the TD error for DRL. Through the
process of learning, DRL gradually minimizes the TD error.

As mentioned earlier, our efforts focus specifically on the
critic while maintaining consistency in the actor’s topological
adaptation strategy with the baseline DST. Below, we out-
line the specific steps involved in computing connection
importance.

1) Calculating the Discrepancy Between the Current
Q-Value and the Expected Value: We begin by examining
the impact of change in the Q-value Q(s, a) on the TD
error L(Q(s, a), Q̂(s, a)). As we know, in off-policy DRL,
the collected samples during the training process are stored
in a replay buffer, and a mini-batch of samples is taken
from this replay buffer to calculate the loss and update
the network. Let N be the number of samples in the
mini-batch. The alteration in TD error that arises from a
small perturbation δ = {δ1, δ2, . . . , δN } in the output Q =
{Q(s1, a1), Q(s2, a2), . . . , Q(sN , aN )} for the N transitions
can be approximated using a first-order Taylor expansion,
as follows:

L( Q + δ)− L( Q) ≈

N∑
i=1

∂Li
(
Q(si , ai ), Q̂(si , ai )

)
∂ Q(si , ai )

δi . (2)

Fig. 2. Forward and subsequent connections of neurons. This figure employs
a yellow neuron as an example to illustrate the forward connections and
subsequent connections.

Because δ represents a very small perturbation, we can
assess the disparity between L( Q + δ) and L( Q) by cal-
culating

∑N
i=1 |(∂Li (Q(si , ai ), Q̂(si , ai )))/(∂ Q(si , ai ))|. Here,

|(∂Li (Q(si , ai ), Q̂(si , ai )))/(∂ Q(si , ai ))| is the absolute value
of the gradient of the TD error Li (Q(si , ai ), Q̂(si , ai )) with
respect to the output Q(si , ai ), given by∣∣∣∣∣∂Li

(
Q(si , ai ), Q̂(si , ai )

)
∂ Q(si , ai )

∣∣∣∣∣
≡
∣∣r(si , ai )+ γ Q

(
s′i , a′i

)
− Q(si , ai )

∣∣. (3)

Therefore, according to (3), we evaluate the disparity between
L( Q + δ) and L( Q) by utilizing the difference between the
current Q-value Q(si , ai ) and the target value r(si , ai ) +

γ Q(s′i , a′i ). In the context of DRL, modifications in Q-values
are a direct result of changes in the connections and neurons
within the critic network. In other words, the connections and
neurons in the critic network are directly associated with the
variations in TD error. Therefore, it is essential to consider the
magnitude of |(∂Li (Q(si , ai ), Q̂(si , ai )))/(∂ Q(si , ai ))| when
assessing the importance of neurons and connections.

2) Calculating the Importance of Neurons in Each Layer:
At this step, we calculate the importance of each neuron in
each layer. When assessing the importance of neurons, we con-
sider both |(∂Li (Q(si , ai ), Q̂(si , ai )))/(∂ Q(si , ai ))| and the
magnitudes of their subsequent or forward connections. This
consideration is necessary because the magnitude of these
connections plays a direct role in transmitting information
from these neurons or directly influencing the input to these
neurons. The forward and subsequent connections of neurons
in the network are depicted in Fig. 2.

We first compute the importance SOi of i th neuron Oi in
the output layer as follows:

S(t)
Oi
= S(t−1)

Oi

+
1
2

 N∑
i=1

∣∣∣∣∣∂Li
(
Q(si , ai ), Q̂(si , ai )

)
∂ Q(si , ai )

∣∣∣∣∣+
h∑

j=1

∣∣ω j i
∣∣. (4)

Here, t is the current step. |ω j i | denotes the magnitude of the
forward connection from neuron j to neuron i . h denotes the
number of the forward connections for neuron Oi .

Next, we proceed to compute the importance of each neuron
in the input layer. The importance SIi of the neuron Ii in the
input layer is calculated in a similar manner as that of the
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output layer, as demonstrated below

S(t)
Ii
= S(t−1)

Ii

+
1
2

 N∑
i=1

∣∣∣∣∣∂Li
(
Q(si , ai ), Q̂(si , ai )

)
∂ Q(si , ai )

∣∣∣∣∣+
h∑

j=1

∣∣ωi j
∣∣ (5)

where |ωi j | represents the magnitude of the subsequent con-
nection from neuron Ii . h denotes the number of subsequent
connections for neuron Ii .

Finally, we calculate the importance of neurons in each
hidden layer. The importance of each neuron in the first hidden
layer is consistent with that of the second layer. We start the
calculation from the second hidden layer, applying the same
method used for the neurons in the output layer [as shown
in (4)], to sequentially compute the neuron importance of each
hidden layer. The importance SHi of the i th neuron Hi in the
hidden layer is determined as follows:

S(t)
Hi
= S(t−1)

Hi

+
1
2

 N∑
i=1

∣∣∣∣∣∂Li
(
Q(si , ai ), Q̂(si , ai )

)
∂ Q(si , ai )

∣∣∣∣∣+
h∑

j=1

∣∣ω j i
∣∣. (6)

Here, we utilize the forward connection ω j i instead of ωi j ,
as each neuron in the hidden layer is tasked with processing
the information received from its forward connections. Using
the aforementioned approach, we can calculate the importance
of each neuron in the network.

3) Calculating the Importance of Connections: After deter-
mining the importance of each neuron, we employ distinct
approaches to assess the importance of connections during the
connection dropout and growth stages.

Specifically, during the connection dropout stage, we esti-
mate the importance S(t)

ω of a connection ω by considering
both its magnitude |ω| and the importance of its connected
neuron S(t)

i , as shown in

S(t)
ω = |ω|S

(t)
i . (7)

Here, for the connections of neurons in the input and output
layers, S(t)

i represents the importance of the neurons in the
input and output layers, respectively. In the case of connec-
tions within the remaining hidden layers, S(t)

i denotes the
importance of the subsequent neurons. Connections with low
importance will be removed.

During the connection growth stage, new connections are
established in locations where there were previously no con-
nections, based on the importance of the connections. The
importance S(t)

ω of each connection ω is determined by

S(t)
ω = S

(t)
i + S

(t)
i−1 (8)

where S(t)
i−1 and S(t)

i are the two neurons that are connected
prior to and subsequent to the connection ω. Connections with
high importance are grown.

C. Topology Adaptation Strategy

In this section, we discuss the topology adaptation strategy
using the importance of connection defined above. This strat-
egy dynamically adjusts the sparse topology of the critic while

keeping the actor’s topology adjustment strategy consistent
with the baseline. It involves a “drop and grow” procedure
in two steps, utilizing the computed importance to determine
connections for dropping and growing.

1) Drop: In the first step, we calculate the importance
of each connection, and then a set of the least important
connections (low Sθ i ) is dropped from each layer. The dropped
connections are assigned a value of 0 using a mask Mθ ,
specifically θ = θ⊙Mθ . The mask Mθ is computed to reflect
the dropped connections as illustrated below

Mθ = Mθ − 1
(
−Sθ i , Ndrop

)
, for all i ∈ {1, . . . , ∥θ∥0}.

(9)

Here, Ndrop represents the number of connections that will
be dropped. θ i represents the i th connection. The function 1
serves as an indicator, where the first parameter specifies the
condition for converting a value to 1, and the second parameter
determines the count of values to be converted. ∥·∥0 denotes
the standard L0 norm. −Sθ i indicates the lower importance.

2) Grow: In the second step, we compute the importance
of connections at each location without existing connections,
then sort them in descending order, and select the top Ngrow
important positions for growing connections with Mθ . The
computation for Mθ is as follows:

Mθ = Mθ + 1
(
Sθ i ∧ (θ i == 0), Ngrow

)
for all i ∈ {1, . . . , ∥θ∥0}. (10)

Here, Ngrow = Ndrop and ∧ represents the logical AND
operator. Sθ i indicates the larger importance. The values of
the newly added connections are initialized to zero. At this
stage, we have presented our topology adaptation strategy. The
remaining steps and modules, including the initialization of
sparse topology, align with the baseline DST method.

Remark 1: As demonstrated in (9) and (10), our topology
adaptation strategy offers two advantages compared to existing
DST methods.

1) During the connection dropout phase, we consider not
only the absolute value of the connection itself but also
the absolute values of neighboring connections and the
TD error to assess the importance of connections. This
approach is more reasonable and comprehensive than
existing DST methods that solely rely on the absolute
value of the connection itself to determine importance
and hence can identify and remove unimportant connec-
tions more effectively.

2) During the connection growth phase, we evaluate the
importance of each location where a connection does
not exist to decide whether to grow a connection at
that location. Unlike existing DST methods that generate
connections randomly, our method can identify and
grow connections at important locations, thus avoiding
randomness.

D. Complexity Analysis

This section analyzes the complexity of the proposed
method. Given that our method presents a novel approach for
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evaluating connection importance without excessively altering
the topological adaptation strategy, we will focus our analysis
solely on the computational complexity of computing connec-
tion importance. The analysis is outlined as follows.

1) Time Complexity: In Step 1, computing the gradient of
TD error requires calculations for each sample. With N sam-
ples, the gradient needs to be computed N times. Therefore,
the time complexity of Step 1 is O(N ).

In Step 2, computing the importance of neurons in each
layer. Let us assume there are m neurons in the output layer, n
neurons in the input layer, and k neurons in the hidden layers.
The calculation of importance for each neuron requires at most
H connections. Since the computation of importance involves
several simple addition operations, the time complexity of
Step 2 is O(m · H + n · H + k · H).

In Step 3, computing the importance of connections. Let
us assume that there are p connections in the output layer,
q connections in the input layer, and r connections in the hid-
den layer. Since calculating the importance of each connection
involves a simple multiplication operation, the time complexity
of Step 3 is O(p + q + r).

Overall, the total time complexity of the method is O(N +
m · H + n · H + k · H + p + q + r).

2) Space Complexity: Since our method does not increase
network parameters or the mini-batch size, the space complex-
ity remains the same as the original DST methods.

3) Network Size and FLOPs: In the field of DST, network
size and floating-point operations (FLOPs) are commonly
utilized as metrics for evaluating complexity [4], [5], [6].
Specifically, network size represents the scale of the network
by measuring the number of parameters it contains, while
FLOPs quantify the computational burden of the network.
Empirically, these metrics are dependent on the network
structure, i.e., the number of neurons in each layer [4], [5],
[6]. As our approach solely focuses on calculating connec-
tion importance and the topology adaptation strategy without
altering the network structure. Moreover, while integrating
our method into existing DST methods may introduce some
additional computational overhead, it is important to note that
the computational cost associated with topology adaptation
is often overlooked when evaluating FLOPs in the existing
literature [4], [5], [6]. Taking these two points into considera-
tion, the network size and FLOPs of our method are the same
as those of the original DST methods. Therefore, we solely
compare the returns of our method and the baseline methods.

E. Overall Training Procedure

In this section, we present the training process of our
method using SAC and TD3 as examples, which are com-
monly employed underlying algorithms in previous DST
literature [4], [5], [6]. Specifically, our method follows a
systematic procedure that includes several key steps: sparse
topology initialization, training, target network updates, and
dynamic topology adaptation. These steps align with the
standard DST approach, as illustrated in Fig. 3. However,
it is important to acknowledge that different DRL algorithms
employ unique methods for model updates. Consequently,
when applying our method and existing DST techniques to

Fig. 3. Training procedure of our method.

other underlying DRL algorithms, it becomes imperative to
make appropriate modifications to align our method with the
training process of those specific algorithms. The specific
training steps of our method are as follows.

1) Initialization: Let θµ be actor. Let θ Q1 , θ Q2 be the
two critics. Let L be the number of layers in each net-
work. Let θµ′, θ Q1

′
, θ Q2

′ be the target actor and target critics,
respectively. The target networks have the same initial sparse
topology as the current network.

To sparsity our networks, we initialize them with a sparse
topology that applies a binary mask M = {M i

}|
L
i=1 to indicate

the locations where sparse connections exist between layers.
For M i j

∈ {0, 1}, M i j
= 1 indicates that connection j exists

in layer i − 1 to layer i . Let ci−1 and ci be the number of
neurons in layer i−1 and layer i , respectively. Sparse training
introduces a coefficient, denoted by λ i , to set the sparsity level
in layer i . For example, when λ i is 64 and ci

= ci−1
= 256,

the sparsity level for layer i is 0.5. Consistent with existing
DST approaches in DRL [4], [5], [6], we use the Erdös-Rényi
random graph to initialize a sparse topology in each layer i ,
where the mask probability p(M i ) in layer i is computed using

p
(
M i)
= λ

i ci
+ ci−1

ci × ci−1 . (11)

Here, 1− p(M i ) represents the sparsity level of the i th layer.
Let Mθµ be the binary mask for the actor and Mθ Q1 , Mθ Q2 be
the binary mask for each critic. With the introduction of the
binary mask and the mask probability, the sparse topology of
each actor and critic is given by

θµ
= θµ

⊙ Mθµ

θ Ql = θ Ql ⊙ Mθ Ql ∀l ∈ {1, 2}. (12)

Here, ⊙ is the element-wise multiplication operator.
2) Training: Our approach involves training two compo-

nents: the actor and the critics. We will now outline the training
process for each of these components. To update the actor and
critic, we utilize a mini-batch D0 consisting of N samples
{(s, a, r, s ′)} from the replay buffer D.

a) Update of critics: The critic θ Qi is updated as follows:

θ Qi ← argmin
θ Qi

N−1
∑

(s,a)∈D0

(
Q̂(s, a)− Qθ Qi (s, a)

)2
(13)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on September 24,2024 at 07:10:09 UTC from IEEE Xplore.  Restrictions apply. 



8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

where Q̂(s, a)← r+γ mini=1,2 Qθ Qi ′(s ′, ã), ã← πθµ ′(s ′)+ϵ;
ϵ ∼ N (0, 0.2) is a noise incorporated to the actions selected
by the target actor, which are then clipped to the range of
(−0.5, 0.5).

b) Update of the actor: In this context, we utilize TD3
and SAC as examples to illustrate the actor update process.
Specifically, in the case of TD3, the actor update involves the
utilization of Qθ Q1 (s, πθµ(s)) and πθµ(s). The update rule can
be expressed as follows:

∇θµ J (θµ) = N−1
∑

(s,a)∈D0

∇a Qθ Q1

(
s, πθµ(s)

)
∇θµπθµ(s). (14)

On the other hand, in the case of SAC, the actor update method
differs. The actor is updated based on the following expression:

∇θµ J (θµ) = ∇θµ

− 1
N

∑
(s,a)∈D0

(∑2
i=1 Qθ Qi (s, a)

2
+ α′H

).

(15)

Here, H = πθµ(a|s) log πθµ(a|s). The temperature parameter
α′ determines the degree of entropy regularization H.

3) Updating the Target Networks: The update of target
networks involves the actor (in the case of TD3, not SAC)
and two critics, which are updated using a soft method with
a delay. The update process is given by

θµ′
← τθµ

+ (1− τ)θµ′

θ Qi
′
← τθ Qi + (1− τ)θ Qi

′
, i = 1, 2 (16)

where τ = 0.005 is the coefficient.
4) Dynamic Adaptation of Sparse Topology: The key dis-

tinction between SST and DST is that the former does not
incorporate dynamic adaptation of the sparse topology for the
current networks. The details of this step refer to the topol-
ogy adaptation strategy discussed in Section IV-B. Therefore,
we will refrain from reiterating it here.

Algorithm 1 serves as an illustrative example, providing a
demonstration of the training process employed by our method
within the context of TD3. However, the true strength of our
approach lies in its exceptional adaptability, encompassing a
broad spectrum of DST technologies and underlying DRL
algorithms. This inherent flexibility allows for seamless inte-
gration into various existing DST frameworks and underlying
DRL algorithms, resulting in a substantial expansion of its
applicability beyond the limitations imposed by TD3.

V. EXPERIMENTS

This section commences by offering a comprehensive
overview of the experimental preparations, encompassing
the baseline, benchmarks, evaluation criteria, implementation
specifics, and other pertinent details. Subsequently, we present
the results and analysis obtained from the experiments con-
ducted across various tasks. Regarding software, we utilized
Torch 1.2.0, gym 0.16.0, and mujoco-py 1.50.0.1. In terms of
hardware, our setup consisted of an Intel Core i7-9700 proces-
sor, 64 GB RAM, and NVIDIA RTX 2080 GPU. Each method
was executed five times with different random seeds, following
prior work [4]. The plot illustrates the average performance

Algorithm 1 Training Procedure of Our Method
1: Initialize actor θµ and critics θ Q1 , θ Q2 with random

weights
2: Generate Mθµ and Mθ Q1 , Mθ Q2 with the Erdös-Rényi

random graph
3: Create initial sparse models: θµ

= θµ
⊙Mθµ , θ Ql = θ Ql⊙

Mθ Ql , ∀l ∈ {1, 2}
4: Initialize target networks θ Q′1 , θ Q′2 with weights θ Q′1 ←

θ Q1 , θ Q′2 ← θ Q2

5: Initialize replay buffer D
6: Initialize the maximum number of episodes M
7: episode = 1
8: repeat
9: Initialize a random process for action exploration

10: Receive initial observation state s1
11: for t = 1 to T do
12: Select action at = clip(µ(st |θ

µ)+ ϵ)

13: Execute action at and observe reward rt and new state
st+1

14: Store transition (st , at , rt , st+1) in D
15: Sample a random mini-batch D0 of N transitions

(si , ai , ri , si+1) from D
16: Compute the target Q value: Q̂(si , ai ) = ri +

γ min j=1,2 Q′j (si+1, µ
′(si+1|θ

µ′)|θ Q′j )

17: Update critics by minimizing the TD error: L =
1
N

∑N
i=1 (Q̂(si , ai )− Q j (si , ai |θ

Q j ))2, for j = 1, 2
18: Update Mθ Q1 , Mθ Q2 with our topology adaptation

strategy
19: Update the sparse topology of critics: θ Ql = θ Ql ⊙

Mθ Ql , ∀l ∈ {1, 2}
20: Update actor using the sampled policy gradient:

∇θµ ≈
∑N

i=1 ζ∇µ(si ) Q(si , µ(si )|θ
Q1)∇θµµ(si |θ

µ)

21: Update Mθµ with baseline methods’ topology adap-
tation strategies

22: Update the sparse topology of the actor: θµ
= θµ

⊙

Mθµ

23: Every d steps, update target networks: θ Q′j ← τθ Q j+

(1− τ)θ Q′j , θµ′
← τθµ

+ (1− τ)θµ′ , for j = 1, 2
24: end for
25: episode++
26: until M − episode

(depicted by the bold curve) and the corresponding standard
deviation (represented by the shaded region) across five runs.
The implementation details of our method can be found in the
supplementary materials.

A. Experiment Preparation

1) Baselines: We employed three SOTA sparse training
methods as baselines: SST [4], DST [5], and rigged rein-
forcement learning lottery (RLx2) [6]. These methods were
chosen as baselines due to their status as the most recent
research in this field. DST and RLx2 are SOTA DST methods,
whereas SST is a static method. Meanwhile, we conducted a
comparison with the SAC and TD3 algorithms implemented
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Fig. 4. Experimental scenes. (a) HalfCheetah. (b) Hopper. (c) Walker2d.
(d) Ant. (e) 2DNav-v1. (f) 2DNav-v2. In this case, the white circle represents
an obstacle. The initial position is denoted by S, while the desired position
is represented by G. (g) ReacherNav. (h) AntNav.

using dense models. Detailed descriptions of these methods
can be found in the supplementary materials.

2) Benchmarks: In order to assess the effectiveness of
each method, we conducted an evaluation following the
SOTA DST studies [4], [5], [6]. The evaluation was per-
formed on four standard MuJoCo continuous control tasks:
HalfCheetah-v2, Hopper-v2, Walker2d-v2, and Ant-v2. Addi-
tionally, we included four navigation tasks commonly used in
the DRL literature as supplementary validation tasks: 2DNav-
v1 [37], 2DNav-v2 [37], reacher navigation (ReacherNav)
[37], and ant navigation (AntNav) [37]. Notably, ReacherNav
and AntNav are derived from the standard MuJoCo tasks
(Ant-v2 and Reacher-v2, respectively) and involve guiding
a two-joint torque-controlled robot arm or an ant robot to a
specific target point from an initial position. Brief descriptions
of 2DNav-v1 and 2DNav-v2 are provided below:

2DNav-v1 and 2DNav-v2 are tasks where a point agent is
required to navigate to a target position in a 2-D environment.
In 2DNav-v1, the robot is trained to navigate in an obstacle-
free environment, with different initial conditions achieved by
changing the target position. On the other hand, 2DNav-v2
focuses on training the robot to navigate in an environment
with obstacles, where the different initial conditions include
variations in both the target position and the position of the
obstacles. The eight simulation task scenes are shown in Fig. 4.

3) Metrics: Since our method does not modify the
network size or FLOPs of the original DST methods,
we primarily focus on analyzing the episode return and
the average return across all episodes as the key evaluation
metrics for each method. These two metrics are commonly
utilized in previous literature [37] to assess the performance
of DRL approaches. In the main text, we present the average
return across all episodes for each method, while the detailed
training process of each method in terms of the episode return
is provided in the supplementary material.

Specifically, the episode return represents the average
reward obtained over a certain number of episodes (e.g.,
ten episodes), which is visualized as a curve that changes
with each episode. The average return R̂ across all episodes
represents the average reward obtained throughout the training
episodes for a specific task. Mathematically, it is given by
R̂ = (1/m)

∑m
i=1 ri . Here, m corresponds to the number of

TABLE I
AVERAGE RETURN FOR THE VERIFICATION UNDER TD3

TABLE II
AVERAGE RETURN FOR THE VERIFICATION UNDER SAC

episodes tested for each seed, and ri denotes the cumulative
reward obtained in the i th episode. R̂ is a specific numerical
value that quantifies the average performance. Both of these
metrics are considered better when they are larger.

B. Evaluation on the Standard MuJoCo Tasks

This section aims to validate the effectiveness of our method
in enhancing existing DST methods on four standard MuJoCo
tasks. Given that the highest sparsity levels verified by the
SOTA DST literature [6] on the SAC network and TD3
network are 0.9 and 0.95, respectively, we have also chosen
these two maximum sparsity levels in our evaluation.

1) Experimental Results: We calculated the mean and stan-
dard deviation of the returns for the final 125 000 steps of
the training phase for each method, and additional training
details for each method pertaining to episode returns are
provided in the supplemental material. The mean and standard
deviation of the returns achieved by the methods are presented
in Tables I and II. These results offer valuable insights into
the performance of the policy learned at the conclusion of
training, thereby demonstrating the effectiveness of the final
policy obtained.
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Fig. 5. Average return across five different runs on TD3. The average return across all episodes is indicated on the y-axis, while the x-axis represents the
sparsity levels ranging from 0.15 to 0.95. (a) 2DNav-v1, (b) 2DNav-v2, (c) ReacherNav, and (d) AntNav.

Upon careful examination of the outcomes presented in
Tables I and II, it is evident that our method (Our DST and
Our RLx2) consistently achieved higher returns compared to
the original DST methods (DST and RLx2) in the majority of
the test cases. Remarkably, our method even outperformed the
dense model in certain tasks, such as Ant, in terms of returns.
These experimental findings serve as compelling evidence of
the effectiveness of our method in enhancing the performance
of the SOTA DST techniques.

2) Analysis of Results: The observed improvement in the
above experiments can be attributed to the introduction of
a novel topology adaptation strategy in our method. The
topology adaptation strategy in our approach incorporates the
evaluation of the TD error, the significance of neighboring
connections, and the absolute value of the connection itself
in determining the importance of a connection for removal.
Furthermore, our approach assesses the significance of each
position by considering the importance of both preceding
and subsequent neurons, as opposed to randomly increasing
connections. As a result, our method outperforms the previous
approach, which solely relies on the absolute value of the
connections to determine whether to add or remove them.

C. Evaluation on the Navigation Tasks

In this section, we present an evaluation of the performance
of our method across different sparsity levels on four dis-
tinct navigation tasks: ReacherNav, AntNav, 2DNav-v1, and

2DNav-v2. Specifically, for the TD3 algorithm, we conducted
tests with our method and baselines at sparsity levels rang-
ing from 0.15 to 0.95. For the SAC algorithm, tests were
conducted with our method and baselines at sparsity levels
ranging from 0.1 to 0.9. The methods evaluated in this section
are consistent with those discussed in Section V-B.

1) Experimental Results: Figs. 5 and 6 depict the average
return across all episodes (referred to as the average return) of
each method on the four navigation tasks at various sparsity
levels. The experimental results reveal distinct performances
for DST, RLx2, and SST across varying sparsity levels.
However, when the sparsity reaches 0.9 (for SAC) or 0.95 (for
TD3), the returns are generally significantly weaker than those
of the original dense model. Nevertheless, our method (Our
DST, Our RLx2) achieves notably higher returns compared to
the original methods (DST, RLx2), effectively reducing the
performance gap with dense models. In fact, in certain cases,
our method even surpasses the original dense model when the
sparsity is set to 0.9, as demonstrated in Fig. 6(a), (b), and (d).

Similarly, we showcase the average return of all methods
at the highest sparsity levels (TD3: 0.95, SAC: 0.9), along
with the corresponding training details, in terms of episode
return, which are presented in the supplementary material.
The corresponding results are shown in Tables III and IV.
The experimental results from Tables III and IV highlight
the effectiveness of our method (Our DST, Our RLx2) in
significantly improving the performance of the original DST
approach (DST, RLx2) across these four challenging tasks.
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Fig. 6. Average return across five different runs on SAC. The average return across all episodes is indicated on the y-axis, while the x-axis represents the
sparsity levels ranging from 0.1 to 0.9. (a) 2DNav-v1, (b) 2DNav-v2, (c) ReacherNav, and (d) AntNav.

TABLE III
AVERAGE RETURN EVALUATION OF FOUR

NAVIGATION TASKS USING TD3

In particular, on the 2DNav-v2 task shown in Table III, the
DST method exhibits a significant performance degradation
of 90% compared to the original dense model, representing
the most substantial performance decline among all the results
we have presented. Conversely, on the same 2DNav-v2 task
shown in Table III, our DST method outperforms the previous
DST approach by an impressive 70% in terms of return,
demonstrating the highest improvement among the results
we have presented. Furthermore, our method demonstrates

TABLE IV
AVERAGE RETURN EVALUATION OF FOUR NAVIGATION

TASKS USING SAC

superior performance compared to the SST method and,
in certain cases, even outperforms the original dense model,
as demonstrated in Table IV.

2) Analysis of Results: Through rigorous validation, our
method has consistently showcased substantial performance
enhancements for two SOTA DST methods across four dis-
tinct navigation tasks, even under varying levels of sparsity.
Notably, it outperforms existing DST methods in terms of
returns, thereby demonstrating its effectiveness in enhancing
policy performance.
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TABLE V
AVERAGE RETURN EVALUATION OF THREE NAVIGATION

TASKS USING SAC

Likewise, the remarkable impact of our method can be
primarily attributed to the introduction of a novel topology
adaptation strategy, as discussed in Section V-B. Furthermore,
our approach demonstrates its versatility as a general method
that seamlessly integrates with various existing DST methods
to enhance their performance across different sparsity levels,
further emphasizing its broad applicability.

D. Analysis of Hyperparameter Sensitivity

This section focuses on the hyperparameters of our method.
Specifically, we analyze the number of connection drops and
growths in the topology adaptation strategy stage, denoted as
Ngrow = Ndrop. This hyperparameter is unique to DST and
distinguishes it from regular DRL. On the other hand, other
hyperparameters, such as the coefficient of soft update and the
temperature parameter in SAC, are standard hyperparameters
in regular DRL. Therefore, we do not provide a detailed
analysis of these regular DRL hyperparameters in this section.

Our experimental configuration is identical to Section V-C,
and we compare our results across three tasks: ReacherNav,
2DNav-v1, and 2DNav-v2. We utilize the RLx2 sparse training
method, as it currently demonstrates the best performance.
We set the sparsity level to 95% and employ the SAC
algorithm as the underlying DRL algorithm. To observe the
impact of the Ngrow parameter on the performance of our
approach (referred to as Our RLx2), we set Ngrow to be 10%,
20%, 30%, and 40% of the connections in the current model.

1) Experimental Results: Similar to Section V-C,
we present the average return in Table V to compare
the performance of different methods. From Table V, it is
evident that when Ngrow is greater than 10%, the performance
is weaker compared to when Ngrow is set to 10%, across the
three tasks in terms of return.

2) Analysis of Results: The experimental results indicate
that as the value of Ngrow increases from 10% to 40%, the
performance of Our RLx2 differs; however, it consistently
remains lower than when Ngrow is set to 10%. This observation
suggests that increasing the number of connections that are
deleted or grown during the topology adaptation stage is not
beneficial for performance improvement and also results in
increased computational overhead. Conversely, when Ngrow is
set to 10%, the performance is optimal, and the computational
requirements are relatively low. Therefore, we have determined
that setting the Ngrow hyperparameter to 10% of the current

connections is the optimal choice for our method, which we
have utilized in this work.

3) Guidance on Hyperparameter Design: Based on the
experimental results presented in Section V-D, we have derived
the following guidelines for hyperparameter design. First, the
regular hyperparameters in DRL, such as discount factors,
temperature parameters, and soft update coefficients should
be set based on established design experience in regular DRL
methods. Second, regarding the hyperparameter Ngrow in our
method and existing DST methods, we have determined that
the optimal value for Ngrow is 10% of the total number of
connections in the current model.

E. Limitations of Our Approach

While our method effectively bridges the performance gap
between dense and sparse models, it is important to acknowl-
edge its limitations.

First, it is worth noting that in many scenarios, sparse
training methods can still result in some performance sacri-
fices compared to the original dense models. Thus, achieving
performance on par with or surpassing dense models while
maintaining a sparsity level of 90% or higher remains an
ongoing challenge. Second, we plan to extend our method to
more advanced types of DRL, such as offline DRL and Feder-
ated DRL, in the future. These approaches have showcased
exceptional performance in various practical applications.
Exploring the compatibility and potential synergies between
these methods and our approach would be valuable. At last,
our method has not been validated in real-world scenarios
involving robotic devices and complex robotic manipulation
tasks. The inclusion of physical robotic platforms and intri-
cate manipulation tasks introduces additional complexities and
challenges, such as sensor noise, environmental dynamics,
complex robot behaviors, and hardware limitations. Validating
our method in such scenarios would provide a more compre-
hensive understanding of its practicality and robustness.

VI. CONCLUSION

This study addresses the observed performance degradation
in existing DST methods, particularly when faced with high
levels of sparsity. To overcome this challenge, we propose
a generic method that can be seamlessly integrated into the
existing DST methods within the framework of DRL, aiming
to enhance their performance. Our approach involves the
development of a novel method to evaluate the significance
of connections within the model. Subsequently, we dynam-
ically adjust the network topology by selectively removing
and adding connections based on their respective importance
values. Experimental results demonstrate significant improve-
ments in two SOTA DST approaches across multiple tasks.
In the future, we have plans to extend our method to more
complex DRL algorithms and apply it to real-world tasks, such
as autonomous driving.

REFERENCES

[1] M. Xu, X. Chen, and J. Wang, “Policy correction and state-conditioned
action evaluation for few-shot lifelong deep reinforcement learning,”
IEEE Trans. Neural Netw. Learn. Syst., early access, Apr. 30, 2024,
doi: 10.1109/TNNLS.2024.3385570.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on September 24,2024 at 07:10:09 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TNNLS.2024.3385570


XU et al.: NOVEL TOPOLOGY ADAPTATION STRATEGY FOR DST IN DRL 13

[2] M. Xu and J. Wang, “Learning strategy for continuous robot visual
control: A multi-objective perspective,” Knowl.-Based Syst., vol. 252,
Sep. 2022, Art. no. 109448.

[3] D. Livne and K. Cohen, “PoPS: Policy pruning and shrinking for deep
reinforcement learning,” IEEE J. Sel. Topics Signal Process., vol. 14,
no. 4, pp. 789–801, May 2020.

[4] G. Sokar, E. Mocanu, D. C. Mocanu, M. Pechenizkiy, and P. Stone,
“Dynamic sparse training for deep reinforcement learning,” in Proc.
31st Int. Joint Conf. Artif. Intell., Jul. 2022, pp. 3437–3443.

[5] B. Grooten et al., “Automatic noise filtering with dynamic sparse training
in deep reinforcement learning,” 2023, arXiv:2302.06548.

[6] Y. Tan, P. Hu, L. Pan, J. Huang, and L. Huang, “RLx2: Training a
sparse deep reinforcement learning model from scratch,” in Proc. Int.
Conf. Learn. Represent., 2023, pp. 1–13.

[7] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural net-
works,” in Proc. 14th Int. Conf. Artif. Intell. Statist., 2011, pp. 315–323.

[8] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson,
“Understanding neural networks through deep visualization,” 2015,
arXiv:1506.06579.

[9] W. Zhou, Y. Li, Y. Yang, H. Wang, and T. Hospedales, “Online meta-
critic learning for off-policy actor-critic methods,” in Proc. Adv. Neural
Inf. Process. Syst., vol. 33, 2020, pp. 17662–17673.

[10] I. Kostrikov, R. Fergus, J. Tompson, and O. Nachum, “Offline reinforce-
ment learning with Fisher divergence critic regularization,” in Proc. Int.
Conf. Mach. Learn., 2021, pp. 5774–5783.

[11] M. Xu and J. Wang, “Deep reinforcement learning for parameter tuning
of robot visual servoing,” ACM Trans. Intell. Syst. Technol., vol. 14,
no. 2, pp. 1–27, Apr. 2023.

[12] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, pp. 529–533, Feb. 2015.

[13] Y. Yang, Y. Pan, C. Z. Xu, and D. C. Wunsch, “Hamiltonian-driven
adaptive dynamic programming with efficient experience replay,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 35, no. 3, pp. 3278–3290,
Mar. 2024.

[14] Y. Yang, H. Modares, K. G. Vamvoudakis, and F. L. Lewis, “Cooperative
finitely excited learning for dynamical games,” IEEE Trans. Cybern.,
vol. 54, no. 2, pp. 797–810, Feb. 2024.

[15] Y. Yang, B. Kiumarsi, H. Modares, and C. Xu, “Model-free λ-policy
iteration for discrete-time linear quadratic regulation,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 34, no. 2, pp. 635–649, Feb. 2023.

[16] S. Liu, L. Yin, D. C. Mocanu, and M. Pechenizkiy, “Do we actually need
dense over-parameterization? In-time over-parameterization in sparse
training,” in Proc. 38th Int. Conf. Mach. Learn., vol. 139, 2021,
pp. 6989–7000.

[17] S. Powers, E. Xing, E. Kolve, R. Mottaghi, and A. Gupta, “CORA:
Benchmarks, baselines, and metrics as a platform for continual rein-
forcement learning agents,” in Proc. Conf. Lifelong Learn. Agents, 2022,
pp. 705–743.

[18] M. Wołczyk, M. Zajac, R. Pascanu, L. Kucinski, and P. Miłoś,
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