
Appendices

A. Summary of Upper and Lower Bounds.

For easy understanding, we summarize the upper and lower bounds in terms of reward and safety,
inferred by GLMs.

Table 1: Confidence bounds of reward and safety functions.

s ∈ Ψt (FEATURE AVAILABLE) s /∈ Ψt (FEATURE UNAVAILABLE)

REWARD [µ(φ>s θ̃r)± βr · ‖φs‖W−1
t

] [ 0, µ(‖θ̃r‖)± βr · λmax(W−1
t ) ]

SAFETY [µ(φ>s θ̃g)± βg · ‖φs‖W−1
t

] [ 0, µ(‖θ̃g‖) + βg · λmax(W−1
t ) ]

B. Preliminary Lemma

Lemma 5. For two arbitrary functions f1(x) and f2(x), the following inequality holds:

max
x

f1(x)−max
x

f2(x) ≥ min
x

(f1(x)− f2(x)).

Proof. For two arbitrary functions f1(x) and f2(x), the following inequalities hold:

max
x
{f2(x)− f1(x)}+ max

x
f1(x) ≥ max

x
f2

max
x

f1(x)−max
x

f2(x) ≥ −max
x
{f1(x)− f2(x)}

= min
x
{f1(x)− f2(x)}.

Then, the desired lemma is obtained.

C. Lemmas on GLMs

C.0. Preliminary lemma on GLMs

Lemma 6. Let θ∗g be the true coefficient for safety. Then, we have µg(‖θ∗g‖) ≥ h.

Proof. By Cauchy–Schwarz inequality, for all φs such that ‖φs‖ ≤ 1, the following inequality
holds:

‖θ∗g‖ ≥ φ>s θ∗g .

By Assumption 1, µg(·) is a strictly increasing function; that is,

µg(‖θ∗g‖) ≥ µg(φ>s θ∗g).

Assumption 3 implies that there exists φs such that

µg(φ
>
s θ
∗
g) ≥ h.

Therefore, we obtained the desired lemma.

C.1. Proofs of Lemma 1

Proof. See Theorem 1 in Li et al. [20].
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C.2. Proof of Lemma 2

Proof. First, we obtain the upper bound of �(s) for any s ∈ S . Let φ∗�,s be the feature for achieving
the maximum value of �. Then, the following chain of equations hold, with a probability of at least
1− δ�:

max
s∈S
�(s) = µ�(〈φ∗�,s, θ∗�〉)

≤ µ�(〈φ∗�,s, θ̃�〉) + β� · ‖φ∗�,s‖W−1
n

≤ µ�(‖θ̃�‖) + β� · ‖φ∗�,s‖W−1
n

≤ µ�(‖θ̃�‖) + β� · λmax(W−1
n ).

In the above chain of inequalities, we used Cauchy–Schwarz inequality and ‖φ∗�,s‖ ≤ 1 in the second
line and then used ‖φ∗�,s‖W−1

n
≤ λmax(W−1

n ) in the third line.

The lower bound can be simply obtained by definition; that is,

min
s∈S
�(s) ≥ 0.

Then, we have the desired lemma.

C.3. Proof of Lemma 3

Proof. By Lemma 2, with a probability of at least 1− δg , we have the following inequality in terms
of the confidence bounds of the safety function:

0 ≤ max
s∈S

g(s) ≤ µg(‖θ̃g‖) + βg · λmax(W−1
n ).

Also, by combining Lemma 6 and

µg(‖θ∗g‖) ≤ µg(‖θ̃g‖) + βg · λmax(W−1
n ),

we have
h ≤ µg(‖θ∗g‖) ≤ µg(‖θ̃g‖) + βg · λmax(W−1

n ).

Finally, we obtained the desired lemma.

C.4. Proof of Lemma 4

Proof. For all t > t∗, the following chain of inequalities hold:

min

{
ε

βg
, 1

}
≥
(
λmin(Σ)t− C1

√
td− C2

√
t log(δ−1

g )

)−1

≥ λmax(W−1
n ).

In the above calculation, we used Lemma 1 in Li et al. [20] and λmax(W−1
n ) = 1

λmin(Wn) . Therefore,
the following two statements are satisfied. First, because we have βgλmax(W−1

n ) ≤ ε, the following
inequalities hold:

|µg(φ>θ∗g)− µg(φ>θ̃g) | ≤ βgλmax(W−1
n )

≤ ε.

Second, by Lemma 2 in Li et al. [20], the following inequality holds under the condition that
λmax(W−1

n ) ≤ 1:

t+H∑
τ=t+1

‖φsτ ‖W−1
τ
≤

√
2Hd log

(
t+H

d

)
.
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D. Lemmas on Near-optimality

Lemma 7. Let J∗(st) be the value function calculated by our algorithm. Then, J∗(st) satisfies the
following inequality:

J∗(st) ≥ V ∗(st).

Proof. Let IZ : S → {0, 1} denote the following safety indicator function:

IZ(s) :=

{
1 if s ∈ Z̄εg (S0),
0 otherwise. (6)

Then, the following chain of equations and inequalities holds:

J∗(st)− V ∗(st)
= max

st+1∈X+
t

[ R(st+1) + γJ∗(st+1) ]− max
st+1∈Z̄εg (S0)

[ r(st+1) + γV ∗M(st+1) ]

≥ max
st+1∈Z̄εg (S0)

[ R(st+1) + γJ∗(st+1) ]− max
st+1∈Z̄εg (S0)

[ r(st+1) + γV ∗M(st+1) ]

= max
st+1

[ IZ(st+1){R(st+1) + γJ∗(st+1)} ]−max
st+1

[ IZ(st+1){r(st+1) + γV ∗M(st+1)} ]

≥ min
st+1

[ IZ(st+1){R(st+1)− r(st+1)}+ γIZ(st+1){J∗(st+1)− V ∗(st+1)} ] .

The second line follows from X+
t ⊇ Z̄εg (S0), and the third line follows from the definition of IZ .

Also, the fourth line follows from Lemma 5. By definition of R(s), the following equation holds
with a probability of at least 1− δr:

min
st

[ J∗(st)− V ∗(st) ] ≥ γ ·min
st+1

[ IZ(st+1){J∗(st+1)− V ∗(st+1)} ]

Repeatedly applying this equation proves the desired lemma. Therefore, we have

J∗(st) ≥ V ∗(st)

with high probability.

Lemma 8. (Generalized induced inequality) Let φ, r, g and φ̂, r̂, ĝ be the feature and reward
function (including the exploration bonus) and safety function that are identical on some set of states
Ω — i.e., φ = φ̂, r = r̂, and g = ĝ for all s ∈ Ω. Let P (AΩ) be the probability that a state not in Ω
is generated when starting from state s and following a policy π. Assume value is bound in [0, Vmax],
then

V π(r, s,φ, g) ≥ V π(r̂, s, φ̂, ĝ)− VmaxP (AΩ),

where we now make explicit the dependence of the value function on the reward.

Proof. The lemma follows from Lemma 8 in Strehl and Littman [30].

Lemma 9. Suppose that the agent optimizes the policy based on our SPO-LF. After T ∗ time step,
let AΩ be the event in which the agent escapes from Ω. Then, for all t > T ∗, we have

P (AX−
t

) ≤ δg.

Proof. Hereinafter, let q̄t be the sequence of states planed by the policy πt obtained by the algorithm
at time t: that is,

q̄t := { s̄t, s̄t+1, . . . , s̄t+H },
where s̄t = st and s̄t+τ+1 = f(s̄t+τ , πt(s̄t+τ )) for all τ ∈ [0, H − 1].

First, let us consider the case that prediction of the safety function values are collect, which occurs
with a probability of at least 1− δg (we call EVENT A). While the agent optimizes its policy, one of
the following two events happens.

• EVENT A-1: q̄t ⊆ X−t .
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• EVENT A-2: q̄t * X−t .

When EVENT A-1 occurs, the optimal policy calculated based on the current information can be
obtained only in X−t . Hence, the agent will not go outside X−t as far as it follows the current policy.
The worse-case for the agent is when EVENT A-2 continues to occur and the ETSE algorithm
is triggered at every time step. Even under this worst condition, however, after t∗ time steps, the
confidence interval on safety is bounded by ε and then the agent can identify whether or not a state is
safe immediately on the basis of far-sighted observations. After the agent learns the safety function
model up to ε-accuracy, it takes at most T ∗ − t∗ = |R0(S0)| time steps until X−t is sufficiently
expanded.

Second, if the prediction of safety is wrong, we cannot avoid the situation that the agent escapes from
X−t , which occurs with a probability of at most δg .

In summary, for all t > T ∗, only if the prediction of safety is inaccurate, the agent may go outside
of X−t . This event (i.e., Event B) happens with a (small) probability at most δg. Hence, the desired
lemma is now proved.

E. Main Theorems

E.1. Proof of Theorem 1

Proof. By Lemma 1 and Lemma 3, for all s ∈ S, with a probability of at least 1− δg , we have
g(s) ≥ l(s).

Our SPO-LF requires the agent to visit only the state satisfying l(s) ≥ h; hence, the safety constraint
g(s) ≥ h

is satisfied with a probability of at least 1− δg .

E.2. Proof of Theorem 2

Proof. Define r̃ and g̃ as the reward function (with the exploration bonus) and safety function, which
are used by the SPO-LF. Let r̂ be a reward function equal to r on Ω and equal to r̃ elsewhere.
Furthermore, let π̃ be the policy followed by the SPO-LF at time t, that is, the policy calculated on
the basis of the feature φ and predicted reward r̃ and safety g̃ inferred by the predicted coefficients,
(i.e., θ̃r and θ̃g). Finally, let AΩ be the event in which π̃ escapes from Ω. Then, by Lemma 8, we have

V πt(r, st,φst , g) ≥ V π̃(r̂, st,φst , g)− VmaxP (AΩ).

In addition, note that, for all t ≥ t∗ and st ∈ X−t , because r̂ and r̃ differ by at most βg ‖φst‖W−1 at
each state,

|V π̃(r̂, st,φst , g̃)− V π̃(r̃, st,φst , g̃) | ≤
H∑
τ=1

βr ‖φst+τ ‖W−1

= βr ·
H∑
τ=1

‖φst+τ ‖W−1

≤ βr ·
√

2Hd log ((t+H)/d). (7)

Here, consider the case of Ω = X−t∗ . Once the safe region is fully explored, P (AX−
t∗

) ≤ δg holds
after T ∗ time steps. Then, the following chain of equations and inequalities holds:

V πt(r, st,φst , g) ≥ V π̃(r̂, st,φst , g)− Vmax · P (AΩ)

= V π̃(r̂, st,φst , g)− Vmax · P (AX−)

≥ V π̃(r̂, st,φst , g)− Vmax · δg
≥ V π̃(r̃, st,φst , g)− Vmax · δg − βr ·

√
2Hd log ((t+H)/d)

= J∗X (r̃, st,φst , g)− Vmax · δg − βr ·
√

2Hd log ((t+H)/d)

≥ V ∗(r, st,φst , g)− Vmax · δg − βr ·
√

2Hd log ((t+H)/d)
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In this derivation, the second line follows from the assumption of Ω = X−, the third line follows
from P (AX−) ≤ δg, the fourth line follows from (7), the fifth line follows from the fact that π̃ is
precisely the optimal policy for R̃ and b, the sixth line follows from Lemma 7, and the final line
follows from the definition of εV .

F. Additional Information on Experiments

Note that the source code we used for our experiment is in the supplemental material. Also, a video
to illustrate how our SPO-LF works is in the supplementary material.

F.1. Grid World

The source code for this experiment is contained in “grid_world” directory. In this experiment, we
used Intel(R) Xeon(R) Gold 6248 CPU with 512 GB RAM. The number of iteration was 400. We
used the following parameters as mentioned in the main paper, which are same throughout every
method: γ = 0.999, δr = 0.05, δg = 0.05, h = 0.1, d = 5. For getting the results in Figure 2, we
ran the simulation 100 times and calculated the mean and standard error for every method. When
obtaining the Figure 3, due to the computational cost, we reduced γ and number of simulation to 0.98
and 5, respectively. Example screen shot of our simulation environment is shown in Figure 5.

Figure 5: Example screenshot of our grid world experiment.

F.2. Safety-Gym

We present the detailed information regarding our experiments using Safety-Gym [25]. In this
experiment, we used Intel(R) Xeon(R) Platinum 8180 CPU with 1 TB RAM. We conducted an
experiment using Safety-Gym environment with a goal and multiple hazards. The objective of the
agent is to reach the goal without visiting hazards using a LiDAR sensor with 16 bins around a full
circle for sensing.

For fair comparison, we used as many same parameters as possible for every method. The followings
are the examples of the common parameters.

• Number of (different) environments for Monte-Carlo simulation: 200

• Discount factor: γ = 0.99

• Number of samples for initialization: 40

Reward and safety samples for initialization were created by letting agents observe “test environment”
with only one goal and one hazard. This (small number of) samples are particularly significant for
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our proposed method to initialize the GLM and enable the agent to guarantee safety. Note that, for
fair comparison, we also provided prior information for other methods.

Implementation of CPO, PPO-Lagrangian, and TRPO-Lagrangian. Our baseline implementa-
tions are heavily dependent on the safety-starter-agent repository (https://github.com/openai/
safety-starter-agents.git) as mentioned in the main paper. We used the following parameters.

• Number of epochs: 600
• Max. length of episode: 1000
• Optimizer: Adam
• hidden size: (64, 64)

Implementation of SPO-LF. Safety-Gym is a benchmark originally developed for deep RL
algorithms. Unlike the three baselines, our algorithm is basically based on dynamic programming
methods such as policy iteration to solve Bellman equations. Hence, when we test our proposed
method, we discretized the state space into 50× 50 = 2, 500 grids and the action space into five (i.e.,
go north, go east, go south, go west, and stay). We converted discrete actions to a series of continuous
actions to navigate the agent in Safety-Gym environment.

We constructed the feature vector using LiDAR observations for the goal and hazards. Specifically,
the feature vector concatenate such observations and bias constant of 1, which is represented as

φ = [ ogoal, ohazard, 1 ],

where ogoal and ohazard are respectively the LiDAR observations for the closest goal and hazards. We
used the following parameters in our experiment.

• Algorithm to solve Bellman equation: Approximate Modified Policy Iteration [27]
• Link function: sigmoid function
• Safety threshold: h = 0.7
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