
Supplementary Material

A Proofs and Derivations

A.1 Proof of Propositions

We first clarify the behavior of local CGMs (see Def. 1) under interventions. In particular, the local
CGM induced by X = x on P (V) under an intervention do(V := v) is defined to be the local CGM
induced by X = x on the joint distribution P do(V :=v)(V).

Proof of Prop. 1. “if”: If it holds that S′j 6⊥⊥ A | S = s, then by the Markov property [3, Def. 6.21],
there must be an unblocked path from A to S′j in GS=s. Because the path over S is blocked by
observing S = s, and we assume no instantaneous effects, the only possible such path is the direct
edge A→ S′j .
“only if”: If there is an edge A→ S′j in GS=s, then causal minimality of the local causal graph says
that S′j must be dependent on each parent given its other parents, meaning S′j 6⊥⊥ A | S = s.

Proof of Prop. 2. To show the first part, note that the dependence S′j 6⊥⊥ A | S = s under
do(A := π(a|s)) implies that there exists some s′j and a1, a2 with π(a1 | s) > 0, π(a2 | s) > 0 for
which

pdo(A:=π)(s′j | s, a1) = p(s′j | s, a1) 6= p(s′j | s, a2) = pdo(A:=π)(s′j | s, a2). (9)

Any π′ with full support would also have π′(a1 | s) > 0, π′(a2 | s) > 0, and so

pdo(A:=π′)(s′j | s, a1) = p(s′j | s, a1) 6= p(s′j | s, a2) = pdo(A:=π′)(s′j | s, a2), (10)

implying the dependence under do(A := π′). To show that the agent is in control of S′j in S = s,
there needs to be an edge A→ S′j in GS=s under all interventions do(A := π′) with π′ having full
support. This is the case, because as shown, for all interventions do(A := π′) with π′ having full
support it holds that S′j 6⊥⊥ A | S = s, and by Prop. 1, there is an edge A→ S′j in GS=s under any
such intervention.

To show the second part, we show that if S′j ⊥⊥ A | S = s under any intervention do(A := π) with

π having full support, for any intervention do(A := π′) it holds that P do(A:=π′)(S′j | S = s,A) =

P do(A:=π′)(S′j | S = s). This follows from the fact that for any π′, it holds that

P do(A:=π′)(S′j | S = s,A) = P (S′j | S = s,A) (11)

= P (S′j | S = s) = P do(A:=π′)(S′j | S = s) (12)

where the first equality is due to the autonomy property of causal mechanisms [3, Eq. 6.7], and the
second equality because of the independence S′j ⊥⊥ A | S = s. Note that if π had not had full support,
we would not be allowed to use the second equality as then P (S′j | S = s,A = a) = P (S′j | S = s)
only for a with π(a) > 0. The agent is not in control of S′j in S = s, as for all interventions
do(A := π′) with π′ having full support, there is no edge A→ S′j in GS=s by Prop. 1.

A.2 CMI Formula

Cj(s) = I(S′j ;A | S = s) = DKL

(
PS′

j ,A|s
∥∥∥ PS′

j |s ⊗ PA|s
)

(13)

= ES′
j ,A|s

[
log

p(s′j , a | s)
p(s′j | s)π(a | s)

]
(14)

= ES′
j ,A|s

[
log

p(s′j | s, a)

p(s′j | s)

]
(15)

= EA|s
[
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(
PS′
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j |s
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(16)
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A.3 Proof that CAI is a Pointwise Version of Janzing et al.’s Causal Strength

Janzing et al.’s [18] measure of causal strength quantifies the impact that removing a set of arrows
in the causal graph would have. As it is the relevant case for us, we concentrate here on the single
arrow version, for instance, between random variables X and Y . The idea is to consider the arrow as
a “communication channel” and evaluate the corruption that could be done to the signal that flows
between X and Y by cutting the channel. To do so, the distribution that feeds the channel is replaced
with P (X), i.e. the marginal distribution of X . The measure of causal strength then is equal to the
difference between the pre- and post-cutting joint distribution as given by the KL divergence.

Formally, let V denote the set of variables in the causal graph, let X → Y be the arrow of interest
withX,Y ∈ V , and let Pa

\X
Y be the set of parents of Y withoutX . Then, the post-cutting distribution

on Y is defined as

pX→Y
(
y | pa

\X
Y

)
=

∫
p
(
y | x,pa

\X
Y

)
p(x)dx. (17)

The new joint distribution after such an intervention is defined as

pX→Y
(
v1, . . . , v|V|

)
= pX→Y

(
y | pa

\X
Y

) ∏
j

vj 6=y

p(vj | Pa(vj)). (18)

Finally, the causal strength of the arrow X → Y is defined as

CX→Y = DKL(P (V ) ‖ PX→Y (V )). (19)

To show the correspondence to our measure, we first restate Lemma 3 of [18]. For a single arrow
X → Y , causal strength can also be written as the KL between the conditionals on Y :

CX→Y = DKL

(
P (Y | PaY ) ‖ PX→Y

(
Y | Pa

\X
Y

))
(20)

=

∫
DKL

(
P (Y | paY ) ‖ PX→Y

(
Y | pa

\X
Y

))
P (paY )dpaY (21)

We rewrite this further:

=

∫
P
(

pa
\X
Y

)
P
(
X | pa
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DKL

(
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dxdpa

\X
Y (22)

= E
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\X
Y

[∫
P
(
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[
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(24)

And we see that the inner part corresponds to our measure Cj(s) (cmp. Eq. 2) for the choices of
variables X =̂ A, Y =̂ S′j , and Pa

\X
Y =̂ S, provided that P (X) =̂ π(A) is not dependent on S.

Thus, CAI is a pointwise version of causal strength for policies independent of the state:

CA→S′
j

= Es
[
Cj(s)

]
�

A.4 Approximating the KL Divergence Between a Gaussian and a Mixture of Gaussians

In this section, we give the approximation we use for the KL divergence in Eq. 4. We first state the
approximation for the general case of the KL between two mixtures of Gaussians, and then specialize
to our case when the first distribution is Gaussian distributed. Here, we use the notation of Durrieu
et al. [52].

Let f be the PDFs of a multivariate Gaussians mixture with A components, mixture weights ωfa ∈
(0, 1], means µfa ∈ Rd and covariances Σfa ∈ Rd×d, where a ∈ {1, . . . , A} is the index is of the a’th
component. Then,

f(x) =

A∑
a=1

ωfafa(x) =

A∑
a=1

ωfaN
(
x;µfa ,Σ

f
a

)
, (25)
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where fa(x) = N
(
x;µfa ,Σ

f
a

)
is the PDF of a multivariate Gaussian with mean µfa and covariance

Σfa . Analously, let g be the PDF of a multivariate Gaussians mixture with B components. We are
interested in the KL divergence DKL(f ‖ g) =

∫
Rd f(x) log f(x)

g(x)dx, which is intractable.

There are several ways to approximate the KL based on the decomposition DKL = H(f, g)−H(f),
where H(f, g) is the cross-entropy between f and g and H(f) is the entropy of f . We will state the
so-called product approximation Dprod and the variational approximation Dvar [63]. Starting with
Dprod:

H(f, g) ≥ −
∑
a

ωfa log

(∑
b

ωgb tab

)
(26)

H(f) ≥ −
∑
a

ωfa log

(∑
a′

ωfa′zaa′

)
(27)

Dprod :=
∑
a

ωfa log

(∑
a′ ω

f
a′zaa′∑

b ω
g
b tab

)
, (28)

where tab =
∫
fa(x)gb(x)dx, zaa′ =

∫
fa(x)fa′(x)dx are normalization constants of product of

Gaussians, and the inequalities in (26), (27) are based on Jensen’s inequality. For the variational
approximation:

H(f, g) ≤
∑
a

ωfaH(fa)−
∑
a

ωfa log

(∑
b

ωgb e
−DKL( fa ‖ gb)

)
(29)

H(f) ≤
∑
a

ωfaH(fa)−
∑
a

ωfa log

(∑
a′

ωfa′e
−DKL( fa ‖ fa′ )

)
(30)

Dvar :=
∑
a

ωfa log

(∑
a′ ω

f
a′e
−DKL( fa ‖ fa′ )∑

b ω
g
b e
−DKL( fa ‖ gb)

)
, (31)

where (29), (30) are based on solving variational problems. It can be shown that the mean between
Dprod and Dvar is the mean of a lower and upper bound to DKL, with better approximation qualities [52].
Consequently, we use Dmean :=

Dprod+Dvar

2 as the basis of our approximation. We can simplify Dmean
as in our case, we know that f has only one component. This means that we can compute H(f) in
closed form, and do not need to use the inequalitities (27), (30). Approximating H(f, g) with the
mean of the lower bound (26) and upper bound (29),

Hmean(f, g) :=
1

2

(
− log

(∑
b

ωgb tab

)
+H(f)− log

(∑
b

ωgb e
−DKL( fa ‖ gb)

))
, (32)

we get the final formula we use
Dmean :=Hmean(f, g)−H(f) (33)

= −1

2
log

(∑
b

ωgb tab

)
− 1

2
log

(∑
b

ωgb e
−DKL( fa ‖ gb)

)
− 1

2
H(f). (34)

Note that this term can become negative, whereas the KL is non-negative. In practice, we thus
threshold Dmean at zero. For completeness, we also state the entropy of a Gaussian

H(f) =
1

2
log
(
(2πe)d|Σ|

)
, (35)

the log normalization constant for a product of Gaussians

log tab = −d
2

log 2π − 1

2
log|Σfa + Σgb | −

1

2
(µgb − µfa)T (Σfa + Σgb)

−1(µgb − µfa), (36)

and the KL between two Gaussians

DKL(fa ‖ gb) = −d
2

+
1

2
log
|Σfa |
|Σgb |

+
1

2
Tr
(
(Σgb)

−1Σfa
)

+
1

2
(µgb − µfa)T (Σgb)

−1(µgb − µfa). (37)

In our experiments, we assume independent dimensions, that is, we parametrize the covariance Σ as
a diagonal matrix. With this, the above formulas can be further simplified.
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B Environments

B.1 1D-Slide

Figure S1: Schematic of
1DSLIDE environment.
The agent (black square)
has to slide the object
(green square) to the tar-
get location (red zone),
but can not pass the dot-
ted line.

1DSLIDE is a simple environment that we designed to test influence
detection, as we can easily derive when the agent has influence or not. It
consists of an agent and an object positioned on a line, with both agent
and object only being able to move left and right. See Fig. S1 for a
visualization. The goal of the agent is to move the object to a goal zone.
As the agent can not cross past the center of the environment, it has to
hit the object at the appropriate speed. The state space S ⊂ R4 consists
of position and velocity of the agent and object. The agent’s action
a ∈ A ⊆ [−1, 1] applies acceleration to the agent. On contact with the
object, the full impulse of the agent is transferred to the object. We can
derive if the agent has causal influence in a state by simulating applying
the maximum acceleration in both directions and checking whether a
contact has occurred, and the object state has changed.

B.2 FetchPickAndPlace

The FETCH environments in OpenAI Gym [53] are built on top of the MuJoCo simulator [64], and
consist of a position-controlled 7 DoF robotic arm [55]. In FETCHPICKANDPLACE, the state space
S ⊂ R25 consists of position and velocity of the robot’s end effector, the position and velocity of the
gripper, and the object’s position and rotation, linear and angular velocities, and position relative to the
end effector. The action space A ⊆ [−1, 1]4 controls the gripper movement and opening/closening of
the gripper. For the experiments involving Transformer models, we split the state space into agent
and object state components, where we do not include the relative positions between gripper and
object into either component.

For our experiment in Sec. 5 evaluating the causal influence detection, we need to determine whether
the agent can potentially influence the object, i.e. whether the agent is “in control”. This is difficult
to determine analytically, which is why we designed a heuristic. The idea is to find an ellipsoid
around the end effector that captures its maximal movement range, and intersect this ellipsoid with
the object to decide whether influence is possible. As the range of movement of the robotic arm is
different depending on its position, we first build a lookup table (offline) that contains, for different
start positions, end positions after applying different actions. To do so, we grid-sample the 3D-space
over the table (50 grid points per dimension), plus a sparser sampling of the outer regions (20
grid points per dimension), resulting in 133 000 starting locations for the lookup table. Then, the
following procedure is repeated for each starting location and action: after resetting the simulator,
the end effector is manually moved to one of the starting locations, one of the maximal actions in
each dimension (i.e., −1 and 1, for a total of 6 actions) is applied, and the end position after one
environment step is recorded in the lookup table.

Now, while the environment runs, for each step, we find the sampling point closest to the position of
the robotic arm in the lookup table using a KD-tree, and find the corresponding end positions. From
the end positions, we build the ellipsoid by taking the maximum absolute deviation in each dimension
to be the length of the ellipsoid axis in this dimension. The ellipsoid so far does not take into account
the spatial extents of object and gripper. Thus, we extend the ellipsoid by the sizes of the object and
gripper fingers in each dimension. Furthermore, we take into account that the gripper fingers can
be slid in y-direction by the agent’s action by extending the ellipsoid’s y-axis correspondingly. The
label of “agent in control” is then obtained by checking whether the object location lies within the
ellipsoid. Last, we also label a state as “agent in control” when there is an actual contact between
gripper and object in the following step. We note that the exact procedure described above is included
in the code release.

B.3 FetchRotTable

FETCHROTTABLE is an environment designed by us to test CAI prioritization in a more challenging
setting. In FETCHROTTABLE, the table rotates periodically, moving the object around. This creates a
confounding effect for influence detection, as there is another source of object movements besides

18
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Figure S2: Causal influence detection performance, complementing Fig. 2 in the main part. (a, b)
Precision-recall curves on 1DSLIDE and FETCHPICKANDPLACE environments. (c) Area-under-ROC
curve for FETCHPICKANDPLACE depending on added state noise. Noise level is given as percentage
of one standard deviation over the dataset.
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Figure S3: Causal influence detection performance on a test dataset of 250k transitions from a random
policy. This dataset only has 3.3% transitions with influence (i.e. labeled as positive), which is why
the detection task is considerably harder. Left, center: ROC and PR curves. Right: PR curves for
CAI when varying the number of actions K.

the agent’s own actions. This means that CAI needs to differentiate between different causes for
movements.

FETCHROTTABLE is based on FETCHPICKANDPLACE, but the rectangular table is replaced with
a circular one (see Fig. 8). The table rotates with inertia by 45 degrees over the course of 25
environment steps, and then pauses for 5 steps. To make the resulting environment Markovian, the
state space of FETCHPICKANDPLACE is extended to S ⊂ R29, additionally including sine and
cosine of the table angle, the rotational velocity of the table, and the amount the table will rotate in
the current state in radians. The task of the agent is the same as in FETCHPICKANDPLACE, i.e. to
move the object to a target position. If the target position is on the table, the agent thus has to learn to
hold the object in position while the table rotates. In contrast to FETCHPICKANDPLACE, the goal
distribution is different, with 90% of goals in the air and only 10% on the table. This makes the task
more challenging, as the agent has to master grasping and lifting before 90% of the possible positive
rewards can be accessed.

C Additional Results for Influence Evaluation

In this section, we include additional results for the empirical evaluation of influence detection in
Sec. 5. Figure S2a and Fig. S3b show precision-recall (PR) curves for the experiment in Sec. 5, while
Fig. S2c shows how area-under-ROC curve varies while increasing the observation noise level.

For FETCHPICKANDPLACE, we also evaluated on a test dataset obtained from a random policy. On
this dataset, the detection task is considerably harder: it contains only 3.3% transitions where the
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agent has influence (i.e. labeled as positive), and it does not contain samples where the agent moves
the object in the air, which are easier to detect as influence. We show ROC and PR curves for this
dataset in Fig. S3a and Fig. S3b. As expected, the detection performance drops compared to the
other test dataset, which can in particular be seen in the PR curve. But overall, the performance is
still quite good when taking into account the low amount of positive samples. In Fig. S3c, we also
plot the impact of varying the number of sampled actions K on this dataset. As one can see, the
method is relatively robust to this parameter, giving decent performance even under a small number
of sampled actions. However, we think that a higher number of sampled actions is important in
edge-case situations, which are overshadowed in such a quantitative analysis.

Finally, in Fig. S4, we give a qualitative analysis of CAI. Here, we plot the trajectory in three different
situations: no contact of agent and object, briefly touching the object, and successfully manipulating
the object. As desired, CAI is low and high in the “no contact” and “successful manipulation”
trajectories. In the “brief touch” trajectory, CAI spikes around the contact. However, in steps 8-11,
when the agent hovers near the object, the heuristical labeling (see Sec. B.2) still detects that influence
of agent on object is possible, which CAI does not register. These are difficult cases which show that
our method still has room for improvement; we think that these failure cases could be resolved by
employing a better model. However, we also note that the “ground truth” label is only based on a
heuristic, which will make mispredictions at times as well.
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Figure S4: Visualizing CAI score Cj(s) over first 20 steps of an episode on FETCHPICKANDPLACE.
The red dots mark states where the agent has causal influence on the object (according to the ground
truth label as described in Sec. B.2). Yellow stars mark that the agent makes contact with the object
between this state and the next state (as derived from the simulator), which also includes that the
agent has causal influence. Plotted are episodes with no contact (first row), briefly touching the object
(second row), and successful manipulation of the object (third row).

D Additional Results for Reinforcement Learning

In this section, we include additional results to the RL experiments in Sec. 6. First of, in Fig. S5,
we analyse CAI’s behavior using one the runs from the intrinsic motivation experiment in Sec. 6.1.
To this end, we plot a heatmap visualising the score distribution in the replay buffer after 5 000
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Figure S5: Analyzing the behavior of CAI. Plotted is one run of the intrinsic motivation experiment
from Sec. 6.1. Left: heatmap showing score Cj(s) per step, as stored in replay buffer after 5 000
episodes. Score is averaged in groups of 100 episodes and normalized by 95th percentile. Center:
heatmap showing ground truth label derived for causal influence, as described in Sec. B.2. CAI
approximates the ground truth well. Right: behavior of the agent in this run.

episodes, a corresponding heatmap with ground truth labels, and the fraction of steps where the
object was moved or held in the air by the agent. It can be seen that CAI’s distribution approximates
the ground truth label’s distribution well. It also becomes visible that CAI measures the strength of
causal influence, as the score is highest after the agent learns to lift the object in the air (episode 3 000
onwards). In comparison, the binary ground truth distribution assigns high scores more uniformly.

In Fig. S6, we analyse the impact of combining our different proposed improvements, namely
prioritization, exploration bonus, and active action selection. On its own, prioritization brings the
largest benefit. Combining either exploration bonus or active action selection with prioritization leads
to similar further improvements. Both are complementary however; combining all three variants
together results in the best performing version. Compared to not using CAI, combining two or all
three improvements leads to a 4–10× increase in sample efficiency.

In Fig. S5, we plot different versions of the VIME baseline. For VIME, there is the choice of which
parts of the state space the information gain should be computed on. We compared the variants of
using the full state, only the position of the agent and the object, and only the position of the object
(which would be similar to CAI). The variant of using agent and object position performed best, and
thus we use it for comparison in Fig. 6 in the main part.

Finally, in Fig. S8, we plot different versions of the ensemble disagreement baseline. Similarly to
VIME, we also have the option of choosing parts of the state space the disagreement should be
computed on. We compared the variants of using the full state, only the position of the agent and the
object, and only the position of the object (which would be similar to CAI). The variant of using just
object position performed best, and thus we use it for comparison in Fig. 6 in the main part.

Preliminary Experiments with Negative Results In preliminary work, we also experimented with
other variants, which we list here for completeness. For prioritization, we tested using a proportional
distribution over episode scores (as in [59]) instead of the ranked distribution. While the proportional
distribution also worked, it resulted in slower learning and performance did not converge to 100%
success rate. We also briefly tried shaping the ranking distribution by raising the score by a power
before ranking (as in [59]), but this did not result in notable improvements, so we dropped this line for
simplicity. Further, Schaul et al. [59] use importance sampling to correct for the bias in state sampling
introduced by the prioritization. We found this not to be necessary for the tasks we experimented with,
but note that it could be required to converge for other environments. Last, we also experimented
with prioritizing states within an episode, and prioritized selection of goals for HER, but could not
achieve any improvements from this.

For the exploration bonus, we tested adding a flat bonus when the score is over a certain threshold,
and a bonus that interacts multiplicative with the reward. Both variants performed worse than the
additive bonus. Linearly annealing the bonus to zero over the course of training did also not result in
improvements. For active action selection, we experimented with sampling actions according to a
ranked or proportional distribution over the CAI score instead of taking the action with a maximum
score. Both versions performed worse than maximum score action selection.
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Figure S6: Performance when combining our
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PICKANDPLACE. The versions differ in the
state components used for information gain.
VIME-Object: object coordinates. VIME-
Object+Agent: object and robotic gripper coordi-
nates. VIME-Full: full state, including velocities
and rotation state.
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Figure S8: Comparing different variants of the Ensemble Disagreement baseline [58]. The versions
differ in the state components used for computing the disagreement, and the weight of the exploration
bonus λbonus. Left: use full state, including velocities and rotation state, take bonus from time of
collecting rollout. Right: use only object coordinates, recompute bonus after model updates.

E Settings of Influence Detection Evaluation

Code is available under https://github.com/martius-lab/cid-in-rl.

Datasets For the experiment in Sec. 5, we use separate training, validation and test datasets. For
1DSLIDE, training and validation set consist of 1 000 episodes (30 000 samples) collected from two
separate training runs of a DDPG+HER agent. The test set consists of 4 000 episodes (120 000
samples), where 2 000 episodes were collected by a random policy, and 2 000 by a DDPG+HER
agent. For FETCHPICKANDPLACE, training and validation set consist of 5 000 episodes (250 000
samples) collected from two separate training runs of a DDPG+HER agent. The test set consists of
7 500 episodes (375 000 samples) collected from training a DDPG+HER agent for 30 000 epochs.
The test set was subsampled by selecting 250 random episodes from every 1 000 collected episodes
(subsampling was performed to ease the computational load of evaluation). The test set has 45.3%
samples that are labeled positive, i.e. the agent has influence. We note that it is not strictly necessary
to train on data collected from a training RL agent, as we also trained on data from random policies
and obtained similar results. In Sec. 5, we also analyse the behavior when adding observation noise,
which is given as a percentage level. To determine an appropriate level of noise, we recorded the
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standard deviations over the different state dimensions on a dataset with 10 000 episodes collected
from training a DDPG+HER agent. We then add Gaussian noise to each dimension of the state with
standard deviation equal to a percentage of the dataset standard deviation.

In Fig. S3, we also give results for FETCHPICKANDPLACE on a different test set. This test set
consists of 5 000 episodes (250 000 samples) collected from a random policy. It only has 3.3%
samples that are labeled positive, i.e. there is considerably less interaction with the object than on the
other test set.

Methods The classification scores for the different methods were obtained as follows. For CAI, we
use Ĉj(s) as given in Eq. 4, with K = 64 actions for sampling. For entropy, we use the same model
as trained for CAI, and estimate conditional entropy as H(S′j | S = s) ≈ 1

K

∑K
i=1H

[
p(s′j | s, a(i))

]
with {a(1), . . . , a(K)} iid∼ π, using the formula given in Eq. 35 for the entropy of a Gaussian. For
attention, we use the attention weights of a Transformer, where the score is computed as follows. As
the Transformer requires a set as input, we split the input vector into components for the agent state,
the object state, and the action. The Transformer is trained to predict the position of the object, that is,
we discard the Transformer’s output for the other components. Then, letting Ai denote the attention
matrix of the i’th of N layers, the total attention matrix is computed as

∏N
i=1Ai. The score is the

entry of the total attention matrix corresponding to the input position of the action component, and
the output position of the object component. We refer to Pitis et al. [24] for more details.

We list the model hyperparameters for CAI in Table S1 and for the Transformer in Table S2. Training
was performed for a maximum of 3 000 epochs on 1DSLIDE and 2 000 epochs on FETCHPICKAND-
PLACE. The training was stopped early when the mean-squared-error (MSE) did not improve for 10
evaluations on the validation set, where evaluations were conducted every 20 training epochs. We
trained all models using the Adam optimizer [65], with β1 = 0.9, β2 = 0.999 if not noted otherwise.
All models were trained to predict the relative difference to the next state instead of the absolute next
state, i.e. the target was S′j − Sj . For FETCHPICKANDPLACE, we rescaled the targets by a factor of
50, as it resulted in better performance.

We used a simple multi-layer perceptron (MLP) for the model in CAI, with two separate output layers
for mean and variance. To constrain the variance to positive range, the variance output of the MLP
was processed by a softplus function (given by log(1 + exp(x))), and a small positive constant of
10−8 was added to prevent instabilities near zero. We also clip the variance to a maximum value
of 200. For weight initialization, orthogonal initialization [66] was used. We observed that training
with the Gaussian likelihood loss (Eq. 5) can be unstable. Applying spectral normalization [67]
to some of the layers decreased the instability considerably. Note that we did not apply spectral
normalization to the mean output layer, as doing so resulted in worse predictive performance. For
FETCHPICKANDPLACE, the inputs were normalized by applying batch normalization (with no
learnable parameters) before the first layer.

Table S1: Settings for CAI on Influence Evaluation.

(a) 1DSLIDE settings.

Parameter Value
Batch Size 1000
Learning Rate 0.0003
Network Size 4× 128
Activation Function ReLU
Spectral Norm on σ Yes
Spectral Norm on Layers Yes
Normalize Input No

(b) FETCHPICKANDPLACE settings.

Parameter Value
Batch Size 500
Learning Rate 0.0008
Network Size 3× 256
Activation Function ReLU
Spectral Norm on σ Yes
Spectral Norm on Layers Yes
Normalize Input Yes

F Settings of Reinforcement Learning Experiments

Our RL experiments are run in the goal-conditioned setting, that is, each episode, a goal is created
from the environment that the agent has to reach. An episode counts as success when the goal
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Table S2: Settings for Transformer on Influence Evaluation.

(a) 1DSLIDE settings.

Parameter Value
Batch Size 1000
Learning Rate 0.0003
Embedding Dimension 16
FC Dimension 32
Number Attention Heads 1
Number Transformer Layers 2
Normalize Input No

(b) FETCHPICKANDPLACE settings.

Parameter Value
Batch Size 500
Learning Rate 0.0001
Embedding Dimension 128
FC Dimension 128
Number Attention Heads 2
Number Transformer Layers 3
Normalize Input Yes

is reached upon the last step of the episode. On the FETCH environments we use, the goal are
coordinates where the object has to be moved to. For goal sampling, we use the settings as given by
the environments in OpenAI Gym (described in more detail by Plappert et al. [55]). We use the sparse
reward setting, that is, the agent receives a reward of 0 when the goal is reached, and −1 otherwise.
Practically, goal-conditioned RL is implemented by adding the current goal to the input for policy
and value function. For evaluating the RL experiments, we run the current RL agent 100-times every
200 episodes, and average the outcomes to obtain the success rate.

For the RL experiments, we use the same base settings for all algorithms, listed in Table S3. These
settings (for DDPG+HER) were borrowed from Ren et al. [68], as they already provide excellent
performance compared to the original settings from Plappert et al. [55] (e.g. on FETCHPICKAND-
PLACE, 4× faster to reach 90% success rate). Before starting to train the agent, the memory buffer is
seeded with 200 episodes collected from a random policy. The input for policy and value function is
normalized by tracking mean and standard deviation of inputs seen over the course of training.

All experiments can be run on a standard multi-core CPU machine. Training a CAI model with
prioritization for 20 000 epochs on FETCHPICKANDPLACE takes roughly 8 hours using 3 cores on
an Intel Xeon Gold 6154 CPU with 3 GHz. Training a DDPG+HER agent takes roughly 4 hours.

CAI Implementation For CAI, we list the settings in Table S4. After an episode is collected by the
agent, the CAI score Cj is computed for the episode and stored in the replay buffer. The model for
CAI was trained every 100 episodes by sampling batches from the replay buffer. For online training,
we designed a training schedule where the number of training batches used is varied over the course
of training. We note that the specific schedule used appeared to be not that important as long as
the model is sufficiently trained initially. We mostly chose our training schedule to make training
computationally cheaper. After every round of model training, the CAI score Cj is recomputed on
the states stored in the replay buffer. With larger buffer sizes, this can become time consuming. We
observed that it is also possible to fully recompute scores only every 1 000 epochs, and otherwise
recompute scores only on the newest 1 000 epochs, at only a small loss of performance.

Exploration Bonus For the exploration bonus experiments, we clip the scores at specific values
(reported in the settings tables under “Maximum Bonus”) to restrict the influence of outliers before
multiplying with λbonus and addition to the task reward. Moreover, the total reward is clipped to a
maximum value of 0 to prevent making states more attractive than reached-goal states.

Baselines We list specific hyperparameters for the baselines VIME [33], ensemble disagree-
ment [58], and PER [59] in Table S5. For VIME [33], we adapted a Pytorch port2 of the official
implementation3. For PER, we used the hyperparameters as proposed in Schaul et al. [59] and
implemented it ourselves. For EBP [60], we adapted the official implementation4.

Ensemble disagreement [58] was implemented by ourselves. We experimented with two variants.
The first variant (Full State + Direct Bonus in Table S5) is close to the original, that is, we use
the full state prediction for the bonus computation, train the model every 10 collected rollouts and

2Alec Tschantz. https://github.com/alec-tschantz/vime. MIT license.
3OpenAI. https://github.com/openai/vime. MIT license.
4Rui Zhao. https://github.com/ruizhaogit/EnergyBasedPrioritization. MIT license.
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compute the bonus for each state using the current model when collecting that state. The second
variant (Object Position + Recompute Bonus in Table S5) is closer to CAI, that is, we only use the
position of the object for bonus computation, train the model every 100 collected rollouts, and fully
recompute the bonus for each collected state every 1 000 epochs (see CAI implementation above).
For both variants, we use the same neural network architectures as CAI and train the models using
the mean squared error loss.

Table S3: Base settings for DDPG+HER. Also used for CAI, VIME, EBP, and PER.

(a) General settings.

Parameter Value
Episode Length 50
Batch Size 256
Updates per Episode 20
Replay Buffer Warmup 200
Replay Buffer Size 500 000
Learning Rate 0.001
Discount Factor γ 0.98
Polyak Averaging 0.95
Action L2 Penalty 1
Action Noise 0.2
Random ε-Exploration 0.3
Observation Clipping [−5, 5]
Q-Target Clipping [−50, 0]
Policy Network 3× 256
Q-Function Network 3× 256
Activation Function ReLU
Weight Initialization Xavier Uniform [69]
Normalize Input Yes
HER Replay Strategy Future
HER Replay Probability 0.8

(b) Environment/task-specific settings.

FETCHROTTABLE
Parameter Value
Learning Rate 0.0003
Discount Factor γ 0.95
Polyak Averaging 0.99

FETCHPICKANDPLACE
Intrinsic Motivation

Parameter Value
Replay Buffer Warmup 100
Learning Rate 0.003
Discount Factor γ 0.95
Polyak Averaging 0.99
Q-Function Network 2× 192
Q-Target Clipping None
HER Replay Strategy No HER

Table S4: Settings for CAI in RL experiments.

(a) General settings.

Parameter Value
Batch Size 500
Train Model Every 100 Episodes
Training Schedule

Initial (200 Episodes) 40 000 Batches
≤ 5 200 Episodes 10 000 Batches
≤ 10 200 Episodes 5 000 Batches
> 10 200 Episodes No Training

Adam β2 0.9
Learning Rate 0.0008
Network Size 4× 256
Activation Function Tanh
Spectral Norm on σ Yes
Normalize Input Yes
CAI Number of Actions K 32

(b) Environment/task-specific settings.

FETCHROTTABLE
Parameter Value
Network Size 4× 386

FETCHPICKANDPLACE
Intrinsic Motivation

Parameter Value
Training Schedule
≤ 5 200 Episodes 20 000 Batches

Maximum Bonus 10

Exploration Bonus
Parameter Value
Maximum Bonus 2
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Table S5: Settings for Baselines in RL experiments.

VIME [33]
Parameter Value
Batch Size 25
Train Model Every 1 Episode
Batches per Update 100
Learning Rate 0.003
Bayesian NN Size 2× 64
Number of ELBO Samples 10
KL Term Weight 0.05
Likelihood σ 0.5
Prior σ 0.1
Normalize Input Yes
Batch Size Info Gain 10
Update Steps Info Gain 10
Bonus Weight 0.3
Maximum Bonus 10

Ensemble Disagreement [58]
Parameter Value
Number of Ensembles 5
Batch Size 500
Adam β2 0.9
Learning Rate 0.0008
Network Size 4× 256
Activation Function Tanh
Normalize Input Yes

Full State + Direct Bonus
Train Model Every 10 Episodes
Train For 500 Batches
Maximum Bonus 5

Object Position + Recompute Bonus
Train Model Every 100 Episodes
Train For 5 000 Batches
Maximum Bonus 0.1

Prioritized Experience Replay [59]
Parameter Value
α 0.6
β Linearly Scheduled from 0.4

to 1.0 over 20 000 Epochs
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