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Abstract

Symmetric Positive Definite (SPD) matrices are pervasive in machine learning, from data
features (such as covariance matrices) to optimization process. These matrices induce a
Riemannian structure, where the curvature plays a critical role in the success of approaches
based on those geometries. Yet, for ML practitioners wanting to visualize SPD matrices, the
existing (flat) Euclidean approaches will hide the curvature of the manifold. To overcome
this lack of expressivity in the existing algorithms, we introduce Riemannian versions of
two state-of-the-art techniques, namely t-SNE and Multidimensional Scaling. Therefore, we
are able to reduce a set of ¢ x ¢ SPD matrices into a set of 2 x 2 SPD matrices in order
to capture the curvature information and avoid any distortion induced by flattening the
representation in a Euclidean setup. Moreover, our approaches pave the way for targeting
more general dimensionality reduction applications while preserving the geometry of the
data. We performed experiments on controlled synthetic dataset to ensure that the low-
dimensional representation preserves the geometric properties of both SPD Gaussian and
geodesics. We also conduct experiments on various real datasets, such as video, anomaly
detection, brain signal and others.

1 Introduction

Covariance matrices are being used in a lot of different scientific areas to better understand how multiple
random variables are related to each other. Such matrices can be used in process control (Willjuice Irutha-
yarajan & Baskar) 2010), fault detection (Russell et al., [2000)), biomedical image analysis (Pennec| 2020;
Kobayashi et al., 2023) or Brain Computer Interfaces (BCI) (Lotte et al., [2018)). Unfortunately, as soon as
one manipulates a point cloud of covariance matrices each summarizing more than two random variables,
it becomes impossible to visualize the whole point cloud in a 2 or 3 dimensional space. A common way
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— Geodesic

— Euclidean path

(a) Different examples of projections of the curved two- (b) The set of 2 x 2 SPD matrices. The green path
dimensional surface of a globe on a plane. All three of these is the geodesic between two SPD matrices and the
projections distort in one way or another the surface. blue path is the usual Euclidean path.

Figure 1: Ilustration of the distortion induced by a projection and the set of 2 x 2 SPD matrices.

to overcome this issue is to use a dimensionality reduction algorithm. The goal of such algorithms is to
transform data from a high-dimensional space into a low dimensional space so that the low dimensional
representation contains some meaningful properties of the original data. The ideal case is when we reduce
sufficiently the dimension so that we are able to visualize the low-dimensional representation (for example,
the low dimensional space is R? or R3).

When dealing with covariance matrices, the natural geometry being used is the affine invariant Riemannian
geometry (Bhatia), 2007} [Pennec et all [2006). Indeed, covariance matrices have a special structure, they are
symmetric, definite and positive (SPD), therefore they live on the Riemannian manifold of SPD matrices.
This manifold is not flat, contrary to usual Euclidean spaces (see Figure to visualize the set of 2 x 2 SPD
matrices and the geodesic between two points). This curvature implies that one can not reproduce accurately
a point cloud sampled in a Riemannian space into a Euclidean one. For example, it is well known
that one can not project the Earth (the curved two-dimensional Riemannian surface of a
sphere) on a plan without distorting the surface in some way and to some extent (see Figure [la| for some
examples of projection). The same phenomenon appears when dealing with SPD matrices. A noticeable
disadvantage of considering the Euclidean geometry when dealing with SPD matrices is the swelling effect
(Arsigny et al. 2006). The swelling effect tells us that the determinant of the Euclidean mean can be strictly
larger than the original determinants. As the determinant is an important measure of the dispersion of the
associated multivariate random variable, we would like this dispersion to be correctly summarized in the
mean. This negative effect disappears when considering the correct Riemannian geometry and its associated
Riemannian mean.

Certain domains rely profoundly on covariance matrices such as BCI, where the goal is to translate brain
signals into computer commands. In this context, the covariance matrices of ElectroEncephaloGraphy (EEG)
brain signals are used as EEG representations to classify BCI users’ mental commands. In BCI, it has been
shown that using the Riemannian geometry is the correct way to deal with SPD matrices, and geometry
aware classifiers have greatly improved the state of the art (Yger et all) 2017} Lotte et al., 2018; Barachant|
let all [2013; [Chowdhury & Andreu-Perez, [2021} Roy et all |2022)). However, for visualizing a set of SPD
matrices coming from a BCI experiment, we may be tempted to use Euclidean tools such as the Euclidean
t-SNE (Nishimoto et al., 2020} [Zanini et all, [2018]). Unfortunately, by doing so, the obtained visualizations
do not take into account the Riemannian geometry that works so well for classification.

In this paper, we adapt two Euclidean algorithms: the Multidimensional Scaling (MDS) and the t-SNE to
a Riemannian setting. We want to reduce a set of ¢ X ¢ SPD matrices while preserving the curvature of
the original space into a lower dimension embedding, with 2 x 2 SPD matrices as an ideal candidate for
visualization purpose. After adapting MDS and t-SNE to reduce matrices of the SPD manifold, we show
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that the properties of the high-dimensional point cloud stay true in the small dimensional space of 2 x 2
SPD matrices. Specifically, we show that the important affine-invariance propriety is preserved and that
geodesics and SPD Gaussians are correctly reproduced.

The paper is organized as follows: we start by reviewing the related works on dimensionality reduction in
Section [2} Then, we introduce the Riemannian geometry on the set of SPD matrices in Section [3] The core
of the paper is Section [4] where we describe the two Riemannian versions of the MDS and the t-SNE. We
give some theoretical results on these algorithms in Section [fland [6] In Section [7} we test our algorithms on
synthetic datasets and real-life datasets from 4 different applications. We compare the proposed Riemannian
versions of the algorithms against their Euclidean counterparts as well as against other geometry aware
dimensionality reduction methods. Finally, we argue on our choice of the affine-invariant metric on the
manifold of SPD matrices in section

2 Related works

Dimension reduction (DR) is not a new topic in data analysis and machine learning. DR methods can be
classified into two main categories: linear and non-linear methods.

Linear methods: The most famous linear method is probably the Principal Component Analysis (PCA)
(Hastie et al.,|2009) which seeks directions that best explain the original data. Another linear method is the
Independent Component Analysis (ICA) (Hastie et al.| 2009), that aims to separate a multivariate signal
into additive, independent components. A supervised DR technique is Linear Discriminant Analysis (LDA)
(Izenman| [2008) that seeks to find a linear combination of features that maximizes the separation between
different classes in the data.

Non-linear methods: For non-linear methods, we have the Multidimensional Scaling (MDS) (Borg &
Groenenl, [1997) and t-SNE (van der Maaten & Hinton, 2008) that will be detailed in more depth in Section
Other non-linear methods include Kernel Principal Component Analysis (KPCA) (Scholkopt et al., [1997)
which is an extension of traditional PCA that uses the kernel method to better work in high-dimensional
spaces. Locally Linear Embedding (LLE) (Roweis & Saull [2000)) seeks to preserve local relationships within
the high-dimensional data. It reconstructs each data point as a linear combination of its nearest neighbors.
Another method whose goal is to find the intrinsic structures of data from a non-linear manifold is ISOMAP
(Tenenbaum et al.,2000). It is a generalization of the MDS algorithm where the initial distances are computed
using a neighborhood graph. A well known geometry-aware method is Uniform Manifold Approximation
and Projection (UMAP) (Mclnnes et al., |2020) based on Riemannian geometry and tools from algebraic
topology. The core idea is similar to t-SNE, that is to compute similarity matrices in the high and in the
low-dimensional space and then optimize the low-dimensional one. The differences with t-SNE lie in the way
the similarities are computed and the way they are optimized (UMAP uses the cross-entropy whereas t-SNE
uses the Kullback-Leibler divergence). Finally, another method that focuses on discovering the underlying
manifold of the data by modeling diffusion processes is Diffusion Maps (Coifman & Lafon, [2006). For most
of these methods, a common assumption is that the data lies on an unknown manifold, and the goal is to
learn this unknown manifold. In our case, instead, the data lies on a known manifold, the manifold of SPD
matrices, and we leverage this information in our approaches.

Riemannian methods: Of course, some of these algorithms have been adapted to be used with data living
on a known manifold by taking into account the geometry inherited by it. The PCA algorithm has been
generalized to a manifold setting by [Fletcher et al. (2004) to build the Principal Geodesic Analysis (PGA).
Instead of seeking for the best directions to explain the data, PGA identifies the principal geodesics, which
are the curves representing the most significant directions of variation on the manifold. Other algorithms
have been extended to a Riemannian setting such as Locally Linear Embedding (LLE) (Saul & Roweis|
2003), and Hessian LLE (HLLE) (Goh & Vidal, [2008)).

Hyperbolic methods: Some works have been done to reduce data living on hyperbolic spaces, as such
spaces can be used in the representation learning of word embeddings (Nickel & Kielal |2017) or visual inputs
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(Khrulkov et al., 2020)). For example, a PCA fitted for data lying on a hyperbolic space has been proposed
by [Chami et al| (2021) called HoroPCA. The difference with the PGA is that HoroPCA looks for directions
rather than subspaces that explain the data. A similar work to ours is the adaptation of the t-SNE algorithm
to hyperbolic spaces called CO-SNE by |Guo et al.| (2022).

Methods for SPD matrices: Some algorithms have been especially designed for the manifold of SPD
matrices. InHarandi et al.[(2014)), they learn a mapping from a high-dimensional manifold to a lower dimen-
sional one without relying on tangent space approximations of the manifold. This algorithm demonstrated
good results on image and video databases. Another extension of the PCA to the SPD manifold was pro-
posed in Horev et al| (2017)). This truly Riemannian PCA takes into account the curvature of the space
and preserves the global properties of the manifold. The authors tested their algorithm on BCI data, as
we will do in part [7:4 BCI is an interesting motivation to build DR algorithms for SPD matrices as the
dimension of the covariance matrices that is dealt with grows quadratically with the number of sensors used
to record the EEG. A lot of algorithms have been built with this application in mind (Coelho Rodrigues
et al., |2017; Davoudi et al., 2017; ' Tanaka et al., [2016; |Peng et al., [2023; |Xie et al., [2017)). Some work focused
on the classification of SPD matrices (Huang & Van Gooll [2016; |Brooks et al. [2019). It is possible to use
SPDNet to perform dimensionality reduction, but it requires class information to learn the adequate low
dimension representation, hence limiting scope of applications. Moreover, the learned embedding would be
Euclidean therefore losing precious information about the geometry. The main difference between all the
above algorithms and our approach is that their final goal is to classify the SPD matrices whereas our goal is
to do visualization. Their goal is to preserve as much structure as possible, while increasing the separation
between the classes to classify the data in the low-dimensional manifold better than in the original one.
Our goal is different: we want to visualize the original dataset, with a 2D or 3D visualization reflecting the
structure of the original space. In [Lopez et al.| (2021)), the authors develop a vector-valued distance and
gyrocalculus for SPD matrices. The visualizations that they obtain are a by-product of the theory they
develop. Moreover, and unlike our work, the visualizations they produce represent distances and angles of
the high-dimensional SPD matrices. In our work, we reduce directly the SPD matrices in low-dimension and
in a Riemannian manifold corresponding to the type of data we are working with (SPD matrices).

3 A primer on SPD matrices

The Riemannian geometry of SPD matrices (Bhatia, |2007; |Pennec et al., |2006])
A ¢ x ¢ covariance matrix belongs to the set P. of symmetric, positive definite (SPD) matrices:

Pe={X eR>|X=X", Vue R\ {0}, u' Xu>0}

As P, is an open and convex set of the set of symmetric ¢ X ¢ matrices S, it is a submanifold of dimension
c(c+1)/2. Moreover, its tangent spaces Tx P, are identified with S.. Let us now define the following scalar
product on each tangent space of P,:

Definition 3.1. Let X € P.. We define the following scalar product on TxP..:
YU,V € TxP,, (U V)x =tr( X UXV). (1)

This metric is called the Affine Invariant Riemannian Metric (AIRM) as, if A is an invertible matrix,
(AUAT,AVAT) 4x a7 = (U, V) x. The application X > (-,-) x being continuous, when P, is endowed with
this metric, it becomes a Riemannian manifold. Moreover, the manifold P, is complete and therefore, each
pair of points (X,Y") can be connected by a unique minimizing geodesic:

Proposition 3.2. Let X,Y € P.. The expression of the unique geodesic ' linking them is:

t
vt € [0,1], T(t) = X/2 (X—1/2YX—1/2) X2,

This geodesic is the shortest path from X to Y on the manifold. The Riemannian distance between X and
Y, denoted 4, is the length of the geodesic I" connecting X to Y (with log being the matrix logarithm):

3(X.Y) = |[log(X 12y X~ 13). (2)
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An important property of the Riemannian distance defined above is its affine invariance property that inherits
from the affine invariance of the metric:

Proposition 3.3 (Affine invariance of the AIRM distance (Bhatial [2007)). Let X,Y € P. and R be an
invertible matriz of size ¢ x ¢, then one has S(RXRT, RYRT) = §(X,Y).

One can find more information on the Riemannian geometry of SPD matrices in appendix [A] It should be
noted that the ATRM geometry on the manifold of SPD matrices coincides (up to a factor 1/2) with the
Fisher-Rao metric on Multivariate Normal (Skovgaard) [1984). Another famous geometry used on the set P,
is the Log-Euclidean geometry (Arsigny et al.| [2006]). We argue on our choice of the ATRM metric in section
B

The special case of 2 x 2 SPD matrices
Now that we have developed the general theory of ¢ X ¢ symmetric, positive definite matrices, let us focus
on the special case of Po, the space of 2 x 2 SPD matrices. Indeed, it has a specific structure:

7322{((; ZC)> s.t. a>0, ¢>0, ac>b2}.

Therefore, one can represent in R? a 2 x 2 SPD matrix using (a, b, ¢) and, it will lie strictly inside the cone
of equation b = ++/ac where a,c > 0. We give a representation of this cone in Figure

4 Riemannian dimensionality reduction

In this section, we describe the two algorithms we studied and adapted to a Riemannian setting: the
Multidimensional Scaling (MDS) and the ¢t-SNE. The main difference between the two algorithms is that the
MDS is a distance-based method whereas the t-SNE is a similarity-based method.

4.1 Riemannian Multidimensional Scaling

The goal of the Multidimensional Scaling (MDS) algorithm (Borg & Groenen, [1997)) is to reproduce the
pairwise distances between the high-dimensional point cloud and the low-dimensional one.

Given N SPD matrices Xi,..., Xn of size ¢ x ¢, we can compute their distance matrix D where D;; =
0(X;, X;). We recall that § is the Riemannian distance defined in Eq. We are then looking for N SPD
matrices Y7, ..., Yy of size 2 X 2 that minimize the stress function

Sr(Y1,...Y,) = Z(é(Yi,Y») — Dy;)%. (3)

i<j

The goal is to find points in the low dimensional space Ps such that the pairwise distances are preserved as
well as possible. It is a natural DR problem formulation, as we want the point cloud in low dimension (Y;);
to "look" like the point cloud in high dimension (X;); as much as possible.

The stress function Si defined in Eq. goes from PJ into R so, we can apply a Riemannian gradient
descent algorithm (see Appendix [B| for more details). To be precise, we apply this Riemannian gradient
descent algorithm on the product manifold Py X -+ X Py which is also a manifold. For this algorithm,
we need to compute the gradient of our cost function, here Sg. So, having in mind the gradient of the
Riemannian distance as given in Proposition we have the following gradient:

D;;
Vy,Sr(Y1, ..., YN) = 22 ((s(yjy) - 1> Logy, (Y;)
JFi

iy L

where we recall that Logy. is the Riemannian logarithm as given in Proposition Details on the compu-
tation of the gradient can be found in Appendix [C.2]
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4.2 Riemannian t-SNE

We are now going to look into another DR algorithm this time based on a probabilistic framework. It was
introduced in [van der Maaten & Hinton| (2008) and is called t-SNE. SNE stands for Stochastic Neighbor
Embedding. The main difference with the MDS algorithm is that the MDS focuses on having a good low-
dimensional representation of points that are far away. Indeed, in the cost function Sg defined in Eq. [3]
if two points X; and X in the high-dimensional space are far apart, the quantity 6(X;, X;) will have a lot
of importance in the cost function, way more than the distance of two points close to each other. On the
contrary, we will see that the t-SNE algorithm focuses on retaining the local structure of the data.

Given a set of IV high-dimensional data points X7, ..., Xy in P., we want to compute conditional probabilities
that represent similarities. In the Euclidean setting, the similarity of X; to X, is the conditional probability
pji that X; would pick X; as its neighbor if they were picked in proportion to their probability density
under a Gaussian centered at X;. To generalize this definition to SPD matrices, we use the generalization
of the Gaussian to the manifold of SPD matrices introduced in [Said et al.| (2016)) (more details in Appendix
on this distribution). Thus, p;; is given by:

exp(—0(X;, X;)2/20%)
Sz OXD(—8( X1, X1)%/207)

(4)

Pjli =

where o2 is the variance of the Gaussian centered at z;. To choose o;, we perform a binary search that
produces a P; = (pj|i)j=1,..,~y With a fixed perplexity chosen by the user. The perplexity is a parameter
defined the same way as in the original t-SNE (van der Maaten & Hintonl [2008)). It is defined as Perp(P;) =
2H(Pi) where H(P;) is the Shannon entropy of P; (see[Shannon| (1948) for its definition). We then symmetrize

PjlitPilj
2N

the conditional probabilities by setting p;; = when i # j and p; = 0.

Then, the t-SNE algorithm aims at learning Y7,...,Y,, € P, that reflect the similarities p;; as well as
possible. The Euclidean setting uses a Student t-distribution with one degree of freedom as the heavy-tailed
distribution in the low-dimensional map. This way, dissimilar data points in high dimension will be modeled
far away in low dimension. We will extend this distribution to the manifold of SPD matrices and define the
joint probabilities ¢;; as:
(1+0(v, V)%~

Gii = )

Y a0V, Y2

(5)

We then want to minimize the mismatch between the two conditional probabilities p;; and ¢;;. To measure
this, the Riemannian t-SNE (as the Euclidean t-SNE) uses the Kullback-Leibler (KL) divergence and tries
to minimize it. The cost function C'g is then:

N N
Cr=)Y KL(P|IQ:)=>_> pilog oy (6)

i=1 i=1 ji ij

As for the MDS, a Riemannian gradient descent method is performed in order to minimize the KL divergence
with respect to the points Y;. The gradient of Cr with respect to Y; is given by:

N
Dij — 4ij

: =—4 —— ], Y;).

VO =2 gy vy e )

More details on this derivation are given in Appendix [C.3]

5 Affine invariance of the algorithms

In this section, we give a theoretical result on the two algorithms we proposed in Section This result
regards the affine invariance of our problem and of our algorithms. Indeed, we recall the important property
of the affine invariance of the AIRM distance [3:3] Therefore, as both the MDS and the t-SNE depend only
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on the distances between the point in high dimension, the two algorithms are also affine-invariant. We detail
only the Riemannian MDS case, the results and proof being the same for the Riemannian t-SNE.

Proposition 5.1 (Affine invariance of the algorithms). Let Xi,...Xn be points in P. and R be an invertible
matriz.

1. Let (X1,..,Xny) = (RX1R",..,RXNR"). Then, the set of solutions of the Riemannian MDS
when the initial high-dimensional points are (X1, ..., Xn) is the same as the set of solutions of the
Riemannian MDS when the initial high-dimensional points are (X1, ..., Xn).

2. Let (Y1,...,YN) be a solution of the Riemannian MDS when the initial high-dimensional points are
(X1,..., XN). Then (RY1RT, ... RYNRT) is also a solution of the problem.

The proof can be found in Appendix|[D] This affine invariance property is particularly useful for EEG analysis.
Indeed, full rank spatial filters are often used to process EEG and are affine transformations (Congedo et al.
2017). Thus, comparing covariance matrices in the sensor space (i.e., obtained without applying spatial
filter) amounts to directly comparing covariance matrices in the source space (i.e, that would be obtained
with a spatial filter, e.g., with inverse solutions). Moreover, when comparing the results of a same subject
over two sessions, it is likely that the EEG electrodes are not exactly at the exact same position on the head.
Therefore, there exists an affine transformation between the covariance matrices recorded over two sessions.
As our algorithms are affine invariant, the reduced point clouds will still be comparable between the two
sessions and will be representative of the actual brain activity, no matter the filter applied. Other Euclidean
DR algorithms do not have this property of affine invariance, therefore, in the situations described above,
some artifacts could appear when comparing two point clouds different up to an affine transformation.

6 A convergence result

We want to comment on the convergence of the Riemannian MDS. For this, let us consider Y € P., d > 0
and let us define the following sub function fy 4 of the Riemannian MDS:

fra(X) = (6(X,Y) - d)*.

As one can see using Eq. [3] the Riemannian MDS loss can be rewritten as the sum of such functions.
Unfortunately, this function is not g-convex (see Appendix [B|for the definition of a g-convex function and a
counter-example for fy 4), so we do not have the usual convergence results. However, the function fy 4 can
be rewritten the following way:

fra(X) =6(X,Y)* +d* —2d5(X,Y). (7)
—_—
9(X) h(X)

Moreover, we know from |Sra & Hosseini| (2015) (Example 20) that X — 6(X,Y) is g-convex. Therefore, as
d > 0, both g and h are convex and the function fy 4 can be written as a difference of g-convex functions.
Moreover, g and h are also lower semi-continuous and proper functions. One can then use the Difference of
Convex Algorithm (DCA) proposed in [Bergmann et al.| (2023) to solve the sub-problem. In this case, the
sequence of points generated by the DCA will converge to a critical point of the cost function fy 4.

7 Synthetic experiments

Now that we have described the two algorithms that we introduced, we can test them. We now show some
experiments, first on synthetic datasets and then on real data. We used pyRiemann (Barachant et al., 2023))
to deal with SPD matrices in Pythorﬂ

LOur code is available at https://github.com/thibaultdesurrel/riemannien_dimension_reduction
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7.1 The contestants

In these experiments, we assess how the algorithms we proposed in the previous section perform against
other DR algorithms. We first want to confirm that using Riemannian geometry is better when dealing with
SPD matrices. For this, we compare 3 versions of the MDS and the t-SNE:

e A Riemannian version: the input and output distances are computed using the ATRM.

¢ A Riemannian-Euclidean version: the input distances are computed using the ATIRM, but the output
are points from R? equipped with the Euclidean structure.

e A Euclidean version: the input distances are computed using the Euclidean structure of symmetric
matrices (the Frobenius norm) and the output are also Euclidean points in R3.

We also compare our algorithms with other DR algorithms. To do this, we compare the proposed algorithms
with the Principal Geodesic Analysis (PGA) (Fletcher et al., 2004), UMAP (Mclnnes et all 2020) and the
Riemannian PCA (Horev et al., [2017). They are all described in Sec. The output spaces of PGA and
UMAP is the Euclidean space R? while for the Riemannian PCA, it is P, equipped with the AIRM. The
input of the UMAP algorithm is the Riemannian distance matrix.

7.2 The evaluation metrics

As our goal is to build a visualization tool for datasets of SPD matrices, a first criterion is a qualitative
one: how it looks. We will also use a quantitative metric: the trustworthiness coefficient (Venna & Kaski,
2001). It ranges from 0 to 1 (with 1 being the highest score) and is computed by ranking the order of
each point’s neighbors and comparing these ranks between the original high-dimensional space and the
reduced low-dimensional space. Any nearest neighbors in the reduced space that differ from the original
space are penalized according to their ranking in the input space. The number of nearest neighbors & is
a hyperparameter that will help us understand to what extent the local and global structures of the point
cloud are preserved. One needs k < N/2 where N is the total number of points.

7.3 Synthetic experiments

Reducing SPD Gaussians For this first experiment, we reduce a mixture of three Gaussians on the set
of SPD matrices. We sample N = 225 points from a mixture G(Xy,01) + G(Xo, 02) + G(X3,03) where the
means (X;)i=1,2,3 are the means of the 3 classes of the dataset AirQuality that is described in Section
and where 01 = 1/2, 03 = 1/3, 03 = 1/4. The points are balanced between the 3 Gaussians. We then use
the different algorithms detailed in Sec. to reduce this high-dimensional point cloud. The results' are
given in Figure 2] We can see that the fully Riemannian algorithms place the different Gaussians along a
geodesic (see Figure [Lb|to see what a geodesic looks like in the space of SPD matrices). Therefore, the blue
and green Gaussians are further apart from each other than they are in a fully Euclidean setting. Between
the two Riemannian versions, the Riemannian t-SNE produces a nicer visualization, the Gaussians being
separated and less clustered at the origin. Finally, while the Riemannian-Euclidean algorithms are correctly
separating the Gaussians, the resulting point cloud is in the Euclidean space R3, and not along geodesics as
they should be. Thus, it does not bring any insight on how the Riemannian geometry affects the data.

Reducing geodesics In this second experiment, we investigate how a high-dimensional geodesic I" in P,
is reduced using our algorithms. We want to see how close the reduced trajectory is to the corresponding
geodesic in P,. More details on the setup are given in appendix [E] In this experiment, we can only compare
the Riemannian t-SNE with the Riemannian MDS as we need the reduced points to lie in P,. We conducted
some experiments varying some parameters: the dimension ¢ of the high-dimensional geodesic, the noise ¢
on its sampling and the number of points N sampled.

IThose figures should be taken with caution, as they are only 2D representations of 3D point clouds. The interested reader
can find some interactive plots in the supplementary materials.
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Figure 2: Results of the first synthetic experiment!, a comparison of the reduction of a mixture of 3 Gaussians.
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Figure 3: Results of the second synthetic experiment: comparison of the distances of the reduced geodesic
by the t-SNE or the MDS algorithm to the real geodesic.

From a qualitative point of view, and based on the visual example given in Figure both algorithms
preserve the structure of the high-dimensional geodesic. However, the MDS seams to do a better job than
the t-SNE. Indeed, at each extremity of the geodesic reduced using t-SNE, the points are less precisely on the
geodesic whereas the points in the middle are exactly on the geodesic. This can be explained by the fact that
the t-SNE focuses more on reproducing correctly points that are close to one another while the MDS gives
an equal importance to each point. We want to compare the reduced trajectory to a true geodesic in Ps.
For this, we compute the geodesic going from one extremity to the other of the reduced trajectory. Then, we
compare the distance between this true geodesic and the reduced trajectory. The results over 5 simulations
are given in Figure[3] We can see that the Riemannian t-SNE is more robust than the Riemannian MDS. In
fact, when varying the dimension of the high-dimensional space or the noise, the distance to the true geodesic
remains virtually unchanged. However, as the number of points rises, the distance grows. This is coherent as
the optimization problem becomes harder the more points there are. The MDS, on the other hand, is very
noisy and the quality of the reduction worsens as the dimension or the noise grows. We must clarify that the
t-SNE is not entirely robust to noise and changes in dimensionality. However, it demonstrates significantly
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Name Domain Number of matrices | Dimension Ref.
BNCI12014001 Brain Computer Interfaces 288 x 9 subjects 22 x 22 (Tangermann et al.[[2012)
BNCI12014002 Brain Computer Interfaces 160 x 12 subjects 15 x 15 (Steyrl et al. |2013]_
AlexMI Brain Computer Interfaces 60 x 8 subjects 16 x 16 (Barachant||2012)
AirQuality Atmospheric pollutants 102 6 x 6 (Hua et al.[|2021{|Smith et al.|[2022a)
FPHA Video sequences of hand actions 108 63 x 63 QGarcia—Hernando et al.||2018]|Wang et al.| |2023}
TEP Anomaly detection 420 52 x 52 (Downs & Vogel|[1993]|Smith et al.||2022b)

Table 1: Summary of the datasets used for the experiments.

greater robustness compared to MDS, which is highly sensitive to these two factors. The relative robustness
of t-SNE to noise comes from the fundamental design of the algorithm as explained above.

7.4 Experiments on real datasets

Setup After testing our algorithms on synthetic datasets, we now study their behavior on 6 real datasets
from different applications that are summarized in Table [I| More details on the datasets as well as on the
setup are given in Appendix[G] We used the different algorithms presented in Sec. [7-I] to reduce the datasets.
For the Riemannian t-SNE (AIRM and Log-Euclidean), we chose a perplexity of %N where N is the total
number of points. For the Euclidean t-SNE, we chose a fixed perplexity of 30 as it is the default parameter
for the t-SNE of scikit-learn (Pedregosa et al.,|2011)) (see Appendix [F| for more insights on these choices).
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Figure 4: Result of the different algorithms on subject 8 of BNCI2014001 (]Tangermann et a1.|7 |2012D.

Results We give in Figure {4 the results of the different algorithms studied when reducing the subject 8 of
the dataset BNCI2014001 (Tangermann et al. 2012 from a BCI experiment. The colors correspond to the
classes and the shape of the markers corresponds to the two sessions during which this dataset was recorded.
We see that the geometry aware algorithms (Riemannian t-SNE, Riemannian MDS, PGA and UMAP) are
able to separate the two classes. We also clearly see that the two sessions are well separated. This is not
surprising as the signals recorded by an EEG during a BCI experiment are sensitive to the user’s mental
state (Saha & Baumert| 2020; Krumpe et al., [2017)), so it is likely that the data has shifted from one session
to another. We also give in Figure [I3] the results of the different algorithms on the dataset AirQuality.

10



Published in Transactions on Machine Learning Research (02/2025)
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Figure 5: The results of the experiments on the real datasets: we plot the average of the trustworthiness
coeflicients over 6 datasets. The x-axis represents the size of neighborhood used to compute the trustwor-
thiness coefficient as % of the total number of points.

Dataset ‘ Riem-Riem t-SNE  Euc-Euc t-SNE  Riem-Riem MDS  Euc-Euc MDS

BNCI2014001 | 198.34 (£101.58)  274.92 (£6.99)  733.20 (£598.40) 19.08 (+35.21)
BNCI2014002 | 62.11 (+49.49)  113.38 (£31.79) 330.17 (£246.47)  3.49 (+1.83)

AlexMI 7.45 (+3.39) 0.71 (£0.42) 50.33 (+£19.12)  0.42 (£0.24)
AirQuality 2.53 0.75 379.26 0.71
FPHA 10.58 2.31 383.45 0.81

Table 2: Computation time of the different algorithms on the different datasets. The time is given in seconds.
For the BCI datasets, we displayed the mean time over all the subjects.

Our goal is to quantitatively see how the local and global structures of the high-dimensional point cloud are
preserved. For this, we look at how the trustworthiness coefficient evolves when the neighborhood expands
(sec. . We give in Figure the results of this experiment and in Appendix the detailed results. A first
important observation is that considering the Riemannian geometry of SPD matrices is important as both
the t-SNE and the MDS work better when the distances are computed using the AIRM distance of Eq. [2
When focusing on the different t-SNE, we see that the local structure (less than 10% of all the neighbors) is
well-preserved using the Riemannian-Euclidean t-SNE but, as soon as the neighborhood gets bigger, the fully
Riemannian t-SNE conserves better the structure. This is explainable as, locally, a Riemannian manifold
can be approximated by a Euclidean space (the tangent space) but globally, the curvature induces some
deformations of the space. This is exactly what we observe and therefore, the Riemannian t-SNE should be
used when trying to reduce a dataset of SPD matrices. For the MDS, we were not able to see any quantitative
differences between the fully Riemannian MDS and the Riemannian-Euclidean one.

When comparing our algorithms with PGA, UMAP and the Riemannian PCA, we clearly see that the
Riemannian t-SNE is the best algorithm on these datasets. As UMAP does not have any a priori information
on the geometry of the point cloud, it only manages to reproduce correctly the local structure of the point
cloud and collapses as the neighborhood grows. PGA seems to be able to preserve the global structure of the
point cloud, but is not very good when dealing with local structures. The Riemannian PCA greatly under-
performs compared to the proposed algorithms. The Riemannian t-SNE works better than the Riemannian
MDS, as we had already witnessed in the previous experiments. All in all, the Riemannian t-SNE is the best
trade-off between preserving the local and the global structures of a set of high-dimensional SPD matrices.

7.5 Details on computation times

The computations were made on a Macbook Pro M3 with 36 Go of memory. The time taken by the different
algorithms to reduce the various datasets are detailed in Table [2| The Euclidean algorithms are, of course,
faster than the Riemannian ones as each iteration is longer to compute. Indeed, at each iteration of the
gradient descent, the distance matrix between all the points needs to be computed. As the AIRM distance
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Figure 6: Comparing the two distances on the manifold of SPD matrices. The trustworthiness coefficient
over the 6 datasets is averaged.

requires computing matrix inverse square roots and a matrix logarithm, it takes more time to compute than
its Euclidean counterpart. However, one should remark that the dimension of the high-dimensional points
has very little influence on the time each iteration takes to compute: at each iteration, only 2 x 2 SPD
matrices are at stake, so the distance matrix is always computed on 2 X 2 matrices. We also remarked that
the Riemannian t-SNE needed much less time to converge than the Riemannian MDS.

8 Affine invariant metric or Log-Euclidean metric ?

In section [3| we presented the Affine Invariant Riemannian metric (AIRM) for the manifold of SPD matrices.
It is not the only metric that exists on the manifold P.. Another widely used (Huang et al.l 2015} |Chevallier
et al.,|2021)) distance is the Log-Euclidean distance (Pennec et al.,|2006) that preserves theoretical properties
while requiring fewer computations. The main idea of the Log-Euclidean is to apply the standard Euclidean
metric to the matrices after transforming them with the matrix logarithm. This transformation maps them
to the tangent space at the identity matrix, which is a Euclidean space. We define this metric below.

Definition 8.1 (Log-Euclidean distance). The Log-Euclidean distance d; g between X € P, and Y € P, is:

o.p(X,Y) = [[log(X) —log(Y)| r

In this section, we want to compare the Riemannian t-SNE and Riemannian MDS based on the AIRM
metric (as done so far) and based on the Log-Euclidean distance described above. For this, we implemented
versions of the t-SNE and the MDS that uses the Log-Euclidean distance instead of the AIRM distance. We
refer to the two versions of the t-SNE as AIRM t-SNE and LogFuc t-SNE and likewise for the MDS. As
the Log-Euclidean does not have the affine invariance property contrary to the AIRM distance, the built
algorithms using the Log-Euclidean are not affine invariant.

We conducted the same experiments as in section [7.4] on the real datasets, and we show the results in
Figure [6] For the t-SNE, it is clear that using the AIRM distance leads to better results than using the
Log-Euclidean distance. For the MDS, changing the distance used does not lead to significant changes in
the results. As we loose some important properties (such as the affine invariance) when computing distances
with the Log-Euclidean distance without any result improvement, we conclude that one should use the AIRM
distance when reducing SPD from a high-dimensional space to a low-dimensional one.
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9 Conclusion

In this paper, we introduced a variant for t-SNE and MDS to handle data on the Riemannian manifold of
SPD matrices. We showed that the Riemannian algorithms are able to retain important properties of the
geometry such as the affine invariance. Moreover, we showed that we could cast our problem into a class of
optimization problems that can be written as a difference of g-convex functions. In the experiments, we did
not implement this DCA, but rather a Riemannian Gradient Descent (RGD) algorithm. We do not have any
theoretical guarantees on the convergence of this problem using a RGD, however, in practice, we stopped
the RGD when the gradient was small enough (< 107°%). There are also no guarantees that the critical
point reached is indeed a minimizer of our cost function. Finally, we tested our algorithms on synthetic
and real-world data and demonstrated their usefulness. The Riemannian t-SNE is the most interesting in
real-world applications. Hence, if the goal is to visualize a set of SPD matrices, and therefore we care about
the faithfulness of the representation, our Riemannian t-SNE should be used. Furthermore, even if using a
less computationally heavy distance on the manifold of SPD matrices (such as the log-Euclidean one), we
showed that the best suited metric for our work is the AIRM one.

In future works, we consider several promising extensions and applications of our methods. First, the
optimization algorithms are computationally expensive and may limit the use of our approaches for very
large datasets. A stochastic optimization setting on manifolds (Bonnabel, 2013)) is a promising solution. Our
Riemannian dimensionality reduction could be used as a visual feedback tool to help users train controlling
BCIs. This could help to tackle the issue of BCI illiteracy/deficiency (Allison & Neuper, 2010)), in the spirit
of Duan et al.| (2021) but conforming with the ATRM geometry. Finally, our approaches focused on the case
of SPD matrices, but it could be extended to other manifolds. For this, one would need a manifold that can
be viewed and plotted in two or three dimensions such as Stiefel manifolds that can be used to visualize sets
of subspaces (Yamamoto et al., [2021)).
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A More on the Riemannian geometry of SPD matrices

In this section, we introduce some useful tools to study the Riemannian geometry of Symmetric Positive
Definite (SPD) matrices. This section completes what was said in section

A.1 The exponential and logarithm mapping
The mapping Exp allows going from the tangent space Tx P, to the manifold P. and its inverse map Log are

useful tools in Riemannian geometry. In the case of the SPD manifold P., equipped with the affine invariant
metric given at Eq. [T} the expression of the Exp and Log mappings are:

Proposition A.1. Given X,Y € P, and U € TxP., one has:

Expy (U) = XY/2 exp (X—1/2UX—1/2) X2

Logy (Y) = X2 log (X*l/QYX*l/Q) X172
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A.2 Distributions on the manifold of SPD matrices

In the sequel and in order to define the conditional probabilities for the Riemannian t-SNE, we need a
Gaussian distribution on the space of symmetric positive definite matrices P.. A generalization of the usual
Euclidean Gaussian distribution on P, was introduced in Said et al. (2016). Let us consider Y € P, and
o>0.
Definition A.2. The Gaussian distribution G(Y,o) on P, is defined using its probability density function
Py » and ((0) its normalizing factor as:

1

py,U(Y) = ) exp {_

]

The interpretation of the two parameters Y and o are the same as in the Euclidean case: Y is the center of
mass of the distribution and o is a parameter that controls the dispersion of the distribution. An important
property is that the normalizing factor ¢(c) does not depend on the parameter Y, only on o. An expression
of ¢(o) can be found in proposition 4 of [Said et al.| (2016]).

B Optimizing on a Riemannian manifold

We introduce here basic tools for optimizing on a Riemannian manifold M. More details on the following
tools can be found in [Boumal| (2023]).

B.1 Riemannian Gradient Descent (RGD)

We study the following problem:
min f(x)

TeEM

where f: M — R is a smooth function called the cost function. We are going to take inspiration from
the Euclidean gradient descent xx11 = xp — ag grad f(zx) &k = 0,1,2.... However, we need to adapt this
algorithm to the Riemannian manifold M. As M is not always a vector space, it is not guaranteed that,
for a given zy, xp — aggradf(zy) still lies on the manifold. We need a way to project back this point onto
the manifold. This is done using a retraction, an operator R,: T, M — M which projects a point from a
given tangent space back onto the manifold. We can then use this retraction to adapt the Euclidean gradient
descent:

Algorithm B.1 (Riemannian gradient descent). Given a Riemannian manifold M, an initial point zo € M
and a retraction R on M, we iterate

Th41 = Rzk(*akvf(xk)% keN

where, at each iteration k, we pick a step-size ay.

To choose the step-size ay, the most common method is to use line-search where the goal is to minimize the
function ¢(t) = f(Rs, (—tV f(zk))) approximately.

B.2 Geodesic convexity

In a usual Euclidean setting, when one wants to have some results on an optimization problem, the first
reflex is to check if the loss function is convex. As we are in a Riemannian setting, we need to adapt the
notion of convexity: we introduce the notion of geodesically convex (or g-convex) function:

Definition B.2. A function f: A — R is geodesically convez (or g-convex) if A is geodesically convex subset
of a manifold M and foT': [0,1] — R is convex for each geodesic segment I': [0, 1] — M whose image is in
A (with T'(0) # T'(1)). This means that

vt € [0,1], f(T(#) < (1 =) f(T(0)) +tf(T(1)). 9)

In our case, as the set P, of symmetric positive definite matrices is convex and complete, it is geodesically
convex and therefore, we can study the g-convexity of the loss functions we encounter.
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B.3 Counter example on the geodesically convexity of the sub-problem of the Riemannian MDS

Jra(T()
(1 =1) fra(X1) +tfra(X2)

0.008 -

0.006

0.004 4

0.002 4

0.000 4

Figure 7: Counter example of the g-convexity of the sub-function fy 4 of the Riemannian MDS.

In this section, we prove the result stated in Section @ the sub-function fy,4 of the Riemannian MDS is not
g-convex. We recall that this sub-function is defined as:

fra=((X,Y)—d)?%

with ¥ € P, and d > 0. For fy4 to be g-convex, it needs to satisfy the inequality |§| for all geodesic I'.
However, if we consider a geodesic that passes through Y, this inequality is not satisfied as shown in Figure
[l For this plot, we chose two random SPD matrices X; and X3 and chose Y in the middle of the geodesic
I" going from X; to Xo. We also fixed d = 0.1. We can clearly see that for this geodesic T', the inequality [J]
is not satisfied. Therefore, fy 4 is not g-convex.
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C Derivation of the gradients

C.1 The gradient of the Riemannian distance

We start by expressing the gradient of the squared Riemannian distance given at Eq. |2 (see (Boumall [2023)
for the definition of a Riemannian gradient).

Proposition C.1. Let Y € P. be fired and let us consider the following mapping: H: X € P, + §(X,Y)2.
Then, the Riemannian gradient of H is

VH(X)=—-2Logx(Y).

C.2 The gradient of Riemannian MDS

Here, we compute the gradient of the Riemannian MDS stress function. We recall that the stress function
S is defined as follows (see Eq. [3)):

S(Y1,..,Yn) =Y _(6(Y;,Y;) — Dij)*. (10)

i<j
So, using the gradient of the Riemannian distance as given in Proposition [C.1] we have the following gradient:
Vv, S(Yi, . Ya) =2 Dy Logy (Y;)
£ \8(Y,Y)) o

where we recall that Logy, is the Riemannian logarithm as given in Proposition

Proof. We will compute the gradient with respect to Y. First, we have:

SYr,....Y,) = Z (8(Y;,Y3) — Dig)? + terms independent of Y.
i#k

9i(Yx)
Moreover, we have that the Riemannian gradient of h;(Y) = §(Y;,Y) is, using

Logy (Y;)

Vi) = =Sy

(1)

Therefore,

Vv, 9i(Ye) = 2 ( D 7 1) Logy, (Yi)

(Y5, Yy

Thus, we have the full gradient:

D;
Vv S(Y1, ..., Yn) = 22 ((S(Yl;/k) - 1> Logy, (Y3)

O

We have checked numerically this gradient using the tools in PyManopt (Townsend et al.l |2016). The
function check_gradient compares the gradient to the first order Taylor expansion of the function. More
details in [Boumal, (2023).
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C.3 Derivation of the gradient of Riemannian t-SNE

Let us now compute the gradient of the Riemannian t-SNE. We recall the following notations:

oy = Pl TP (L+6(v3, Y5~
Y 2 Y (T 0(Y, V1))t

We want the gradient with respect to Y; of the following cost function:

N
c=Y K <P\|szzpwlogp”.
=1

i=1 j#i

This gradient is given by:

Pij — 4ij
Vy,C = —4 Z J}/“}J/) Logy, (Yj).

Let us define the following variables to facilitate the computations:

dij = 6(Yi,Y;)
Z=> 146V, ¥)*) "
k#l
2 \—1

Therefore, we have ¢;; = % To compute the gradient Vy,C, we use the chain rule and the symmetry
of dij = dji:

Vy,C =2 12

v: Z 3 du (12)

Using the computation of the gradient of the Riemannian MDS and especially the Eq. we have

Logy, (Y;)

Vy,dij = — d.:
ij

Therefore, we will focus on the computation of %. Using the notations defined above, we have
1]

N 1 d2
C:ZZpijIngij ZZPzglOg< ) )

i=1 j#i i=1 j#i

The first part of this sum does not depend on d;;, thus, we have

Zzpkl - log ((1 ‘*‘?z)_l)

k= llyék
= —log Z — log(1 + d3,)) (13)
k=1 l#k
N
ZZW 1ogZ+ZZpkz  loa(l +diy)
k=1 l#k k=1 l#k

Let us compute those two terms separately:
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e For the first term, let us start by computing % log Z:
ij

1 0
log Z = — Z
adij Z ad”
1 0 _
Z ad. E (1 + 5(Yk, }/1)2) ! by definition of Z
i gl
1 2dy;
= —= -5 as the only non-zero term of the derivative of the sum is when k=7 and l=j.
Z (14 d?j)2
qij (1+d2H~1
= —2————d;; using the fact that q;;=————.
(1+d) ™ T
Therefore,

Z Zpk:l logZ =—2¢;;(1+d;;)"'d;; Z Zpkl —2gi;(1+ d3;) "' d;.

k=1 Ik k=1 I£k

——
=1

o For the second term, we start by computing % log(1 + d2,):

2N—1 e q s iy
log(1+ %)) = ————0—(1+d}) = {2dij(1+dia‘) if k=iandl=j

0d;; (14 d3,) ody; 0  otherwise

Thus,

ZZPH log 1+dyy) =2di; (1 + dZ;) "' pi.
k=1 l#£k

Stitching all together in Eq. we have

oc
0dij o

—2qi; (14 d;) " dij + 2di; (1 4 d) ' pij = 2dij(pig — qiy) (1 + d3;) 71

We can now go back to Eq[I2] and we have

_ Log _
Vy,C =2 2di;(pij — qi) (1 +d;) " ( 75 ) =—4 E (pij — qi;) (1 + d3;) ™" Logy, (Y;).
ij

J

As with the gradient of the MDS, we numerically checked this gradient using the check_gradient function
of PyManopt.

D Proof of the affine invariance property

Proof. Let (X1,...Xn) be points in P, and R be an invertible matrix.
1. Let (X1,...,Xy) = (RX;R",..,RXyR"). We introduce the two following functions:
i<j
Sr(Z1, ..., Zn) = (8(Zi, Z;) — Dij)*

i<j
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where D;; = 6(X;,X;) and D;; = §(X;, X;). Then, S (resp. Sg) is the function one needs to
minimize when wanting to solve the Riemannian MDS problem when the initial high-dimensional
points are (X1,...X,y ) (resp. (X1,..., Xn)). Since the Riemannian distance is affine invariant (prop.

3-3), we have ) o
Dij = 6(X;, X;) = 0(RX;RT,RX;R") = §(X;, X;) = Dij.

Therefore, S(Z1,...,Zn) = S'R(Zl, .oey Zn) for all N-tuple of SPD matrices (Z1, ..., Zn). So the set
of solutions are the same.

2. Let (Y1, ...,Yn) be a solution of~the Riemannian MDS when the initial high-dimensional points are
(X1,..., Xn). Let us denote (Y1,...,Yn) = (RY1R",..,RYNRT). Then, we have for all i < j,
0(Y;,Y;) =46(Y;,Y;). So, with the same notations as in point 1. We have that

S(Yy,..Yn) = S(Y1, ..., YN).

As (Y1, ..., Yy) is a solution of our problem, (Y1, ..., Yy) is too.
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E Reducing a geodesic

1.5

0.5
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Figure 8: An example of two matrices sampled on opposite sides of the cone of SPD matrices. The pink line
represents the geodesic linking those two points. They all lie in the P, cone represented in blue.

-10

20

°

Figure 9: Results from t-SNE. Figure 10: Results from MDS.

Figure 11: Examples of a reduced geodesic using both algorithms and their comparison with the geodesic T
going from the first to the last reduced point. The dimension of the high-dimensional space from which this
example geodesic was sampled is ¢ = 5. This is why, unlike in Figure [3] in this example the MDS seams to
lead to better results than the t-SNE.

In experiment, we investigate how a high-dimensional geodesic is transformed using our algorithms. To be
more precise, we sample a random geodesic I' in P, going from two randomly sampled points X7 and Xy,
the start and end point of the geodesic. We want X; and Xy to be on "opposite sides" of the cone of SPD
matrices. To do that, we will use their spectral decomposition. We start by sampling U uniformly in O(d)
. We then sample the eigen values (A, ...A}) (resp. (AY,..A])) of X; (resp. Xn). To do
that, we sample the first half of the eigen values of X7 in U([3, 4]) and the second half in ¢([0, 1]). For X, we
do the opposite, the first half of the eigen values are drawn from ([0, 1]) and the second half from U([3, 4]).
We can then compute X; (resp. Xy) as X1 = Udiag(Al, ..., AL)UT (resp. Xy = Udiag(AY, .., AX)UT). We
give an example of matrices sampled on "opposite sides" of the cone in Figure
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Once the initial and final point X7 and Xy of the geodesic are sampled, we consider (X1, ..., Xx), N points
uniformly spaced on the geodesic I'. We reduce these points using our algorithms into (Y1,...Yn), N points
in P. We compare the trajectory (Y1,...Yn) to the geodesic I' in Ps going from Y7 to Y. To do this, we

consider (Y7, ..., Yy) uniformly spaced on the geodesic T in P (therefore ¥; = I'(4=%)). Then, we compute

the distances between the points (Y7, ...Yx) and (}71, s Y'N) that we denote dpoint ((Y5)s, f):

N
dpoint ((Y7)i, T) = 25(3@‘5@)2 (14)

Given this setup, we conducted some experiments varying some parameters: the dimension ¢ of the true
geodesic, the noise € on the sampling of the initial points on the true geodesic and the number of points N
sampled on the geodesic. The base parameters are ¢ = 50, ¢ = 0 (no noise) and N = 100. The perplexity of
the Riemannian t-SNE was set to be %N for all the experiments (see Appendix .

F Influence of the perplexity

In this section we discuss the perplexity parameter that plays an important role in the t-SNE algorithm.
We recall that the perplexity is a hyperparameter chosen by the user and that will be used to compute the
variance of the Gaussians in the conditional probabilities defined in Eq. @] The role of the perplexity is to
fix the entropy of the conditional probabilities. As explained in (Van Assel et al., |2023)), the perplexity can
be interpreted as the effective number of neighbors for each data point. It is a way of balancing attention
between some local and some global aspects of the data one wants to reduce. It is known that varying this
parameter can change a lot the results one gets from the t-SNE, and there is no silver bullet method to
choose the correct perplexity (Wattenberg et al., |2016]).

In the Euclidean case, van der Maaten & Hintonl (2008)) say that “The performance of SNE is fairly robust
to changes in the perplexity, and typical values are between 5 and 50”. We want to see if this statement is
still true in the Riemannian case. For this, we sample two Riemannian Gaussian in P. where ¢ = 5 is the
high-dimensional space. The first Gaussian has for mean X; = I.. (the identity matrix) and a variance of
o1 = 0.5 and the second one has a mean of X; = 10I, and a variance of o, = 0.25. We sample N = 60 points
in each Gaussian and concatenate them together to create the high-dimensional dataset. We then use the
Riemannian version of the t-SNE algorithm with different values of the perplexity perp € [5, 10, 15, ..., 50, 55].
The initial point of the optimization process is fixed to only see the influence of the perplexity. We show
the results in Figure We see that the perplexity has an important impact on the result. When the
perplexity is too small, the points the further from the origin have huge coefficients and are all aligned. As
the perplexity grows, the coefficients of the points get smaller and smaller, and we are able to see some
structure in the dataset appear. Contrary to the Euclidean t-SNE, we need a larger perplexity to have a
convincing result. However, when the perplexity is too big, here where it is equal to 120, all the point cloud
gets flatten into a hyperplane, all the points are then aligned in a 2D plan. Throughout our experiments,
we found empirically that taking the perplexity to be equal to 3/4 of the total number of points works well.
In this example, it corresponds to taking a perplexity of 90, which seems to correctly reproduce the desired
structure.
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Figure 12: We show in this plot the same high-dimensional point cloud X that is reduced using the Rieman-
nian t-SNE algorithm with different choices of the perplexity. The colors represent the two Gaussians from
which we sampled X. On the first three plots, the red points are not visible, it is because the blue points
have very big coeflicients, and the red ones small coefficients, so we are not able to see both of them at the
same time.

G Details on the experiments on real datasets

In this section, we give details on the different datasets we used in the experiments of section [7.4] Then, we
give some information on the computation times of the different algorithms.

G.1 Details on the datasets

We give here a brief introduction to each of the 7 datasets used in our experiments at section [7.4]

BCI datasets: 3 of the datasets are coming from Brain Computer Interfaces (BCI) experiments:
BNCI2014001 (Tangermann et al., 2012)), BNCI2014002 (Steyrl et al.l [2015) and AlexMI (Barachant, 2012)).
These datasets come from MOABB (Aristimunha et al.l [2023)). The selected 3 motor imagery datasets con-
sist of several subjects for each dataset and several sessions for each subject. The two classes of each dataset
are balanced and the size of the matrices are respectively 22 x 22, 15 x 15 and 16 x 16. We start by applying
a standard band-pass filter with range [7; 35] Hz for each dataset. To compute the covariance matrices from
an EEG, we used the Ledoit-Wolf shrunk covariance matrix (Ledoit & Wolfl 2004) to avoid ill-conditioned
matrices.

AirQuality dataset: This dataset is from the Beijing Municipal Monitoring Center. It is a dataset of air
quality monitored from 34 different sites in Beijing, China (Hua et al., [2021)). For each site, six atmospheric
pollutants where recorded every hour: CO, NOg, O3, PM1g, PMs 5 and SO5. We used the same preprocessing
as in (Smith et al.l [2022a)) to get a point cloud of 102 covariance matrices of size 6 x 6. Each covariance
matrix has a label depending on which period it represents: weekdays, weekends or holidays.

FPHA dataset: This is a dataset of video sequences in first person view used as benchmark for estimating
hand actions. The original dataset (Garcia-Hernando et al.,2018) consist of 1,175 video sequences distributed
across 45 distinct categories. We chose 8 of those categories for a total of 108 videos. The categories chosen
aredrink_mug, give_card, give_coin, high_five, open_juice_bottle, open_peanut_butter, put_sugar,
write_pen. As in (Wang et al.| 2023]), we converted the video sequences into 63 x 63 SPD matrices repre-
senting how the 3D coordinates of 21 hand joints are linked together.
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TEP dataset: The last dataset is obtained from a simulation of an industrial process known as the Tennessee
Eastman Process (TEP) (Downs & Vogel, [1993). This dataset is used as a benchmark dataset testing and
comparing various anomaly detection methods. We used the preprocessing described in [Smith et al.| (2022b))
to get a dataset containing 420 SPD matrices of size 52 x 52.

The setup Once the datasets are reduced using the different algorithms, we want to compute the
trustworthiness coefficient. For this, we need to choose a hyperparameter k£ for the number of near-
est neighbors. As the different dataset have different numbers of points N, in order to compare them
we choose k to be a certain percentage of the total number of points N. We choose for our study
k € {0.05N,0.1N,0.2N,0.3N,0.4N,0.5N} as one needs k < N/2. All the results are given at Appendix
M
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H Detailed table of the results of the different algorithms on the different datasets.

Trustworthiness with the neighborhood as
a % of the total number of points

Dataset Algorithm 0.05 0.1 0.2 0.3 0.4 0.5
Riem-Riem t-SNE | 0.9751 | 0.9822 | 0.9890 | 0.9924 | 0.9894 | 0.9899
Euc-Euc t-SNE 0.8785 | 0.8776 | 0.8819 | 0.8902 | 0.8771 | 0.8519

Riem-Euc t-SNE 0.9814 | 0.9834 | 0.9895 | 0.9895 | 0.9800 | 0.9739
Riem-Riem MDS 0.9783 | 0.9836 | 0.9919 | 0.9950 | 0.9948 | 0.9935

AirQuality Euc-Euc MDS 0.8747 | 0.8737 | 0.8772 | 0.8835 | 0.8657 | 0.8332
Riem-Euc MDS 0.9811 | 0.9834 | 0.9914 | 0.9933 | 0.9945 | 0.9932
UMAP 0.9549 | 0.9580 | 0.9627 | 0.9567 | 0.9395 | 0.9439
PGA 0.9665 | 0.9735 | 0.9885 | 0.9949 | 0.9946 | 0.9945
Riem PCA 0.9381 | 0.9503 | 0.9683 | 0.9750 | 0.9745 | 0.9706
Riem-Riem t-SNE | 0.9479 | 0.9439 | 0.9461 | 0.9435 | 0.9404 | 0.9311
Euc-Euc t-SNE 0.7622 | 0.7551 | 0.7592 | 0.7620 | 0.7549 | 0.7351

Riem-Euc t-SNE 0.9653 | 0.9530 | 0.9366 | 0.9289 | 0.9210 | 0.9052
Riem-Riem MDS 0.9127 | 0.9072 | 0.9087 | 0.9092 | 0.9064 | 0.8946

AlexMI Euc-Euc MDS 0.7585 | 0.7577 | 0.7668 | 0.7747 | 0.7754 | 0.7557
Riem-Euc MDS 0.9166 | 0.9143 | 0.9133 | 0.9127 | 0.9100 | 0.8965
UMAP 0.9252 | 0.9123 | 0.8930 | 0.8751 | 0.8577 | 0.8286
PGA 0.8851 | 0.9018 | 0.9204 | 0.9299 | 0.9341 | 0.9332
Riem PCA 0.7804 | 0.7924 | 0.8189 | 0.8316 | 0.8381 | 0.8268
Riem-Riem t-SNE | 0.9488 | 0.9543 | 0.9605 | 0.9623 | 0.9599 | 0.9419
Euc-Euc t-SNE 0.7075 | 0.6937 | 0.6938 | 0.6972 | 0.6961 | 0.6684

Riem-Euc t-SNE 0.9564 | 0.9454 | 0.9351 | 0.9219 | 0.9036 | 0.8376
Riem-Riem MDS 0.9303 | 0.9333 | 0.9367 | 0.9366 | 0.9327 | 0.9205

BNCI2014001 | Euc-Euc MDS 0.7048 | 0.7071 | 0.7160 | 0.7203 | 0.7175 | 0.6891
Riem-Euc MDS 0.9304 | 0.9334 | 0.9360 | 0.9355 | 0.9310 | 0.9182
UMAP 0.9408 | 0.9316 | 0.9194 | 0.9035 | 0.8782 | 0.8062
PGA 0.9231 | 0.9319 | 0.9442 | 0.9511 | 0.9528 | 0.9448
Riem PCA 0.7762 | 0.7825 | 0.7945 | 0.8011 | 0.8008 | 0.7815
Riem-Riem t-SNE | 0.9583 | 0.9629 | 0.9665 | 0.9676 | 0.9648 | 0.9549
Euc-Euc t-SNE 0.7370 | 0.7239 | 0.7191 | 0.7155 | 0.7067 | 0.6663

Riem-Euc t-SNE 0.9672 | 0.9553 | 0.9451 | 0.9335 | 0.9177 | 0.8808
Riem-Riem MDS 0.9376 | 0.9398 | 0.9429 | 0.9426 | 0.9386 | 0.9288

BNCI2014002 | Euc-Euc MDS 0.7429 | 0.7428 | 0.7437 | 0.7434 | 0.7346 | 0.6992
Riem-Euc MDS 0.9375 | 0.9406 | 0.9438 | 0.9434 | 0.9391 | 0.9279
UMAP 0.9476 | 0.9358 | 0.9166 | 0.8964 | 0.8731 | 0.8260
PGA 0.9317 | 0.9403 | 0.9527 | 0.9590 | 0.9610 | 0.9575
Riem PCA 0.8338 | 0.8455 | 0.8623 | 0.8729 | 0.8735 | 0.8590
Riem-Riem t-SNE | 0.9652 | 0.9685 | 0.9704 | 0.9763 | 0.9771 | 0.9707
Euc-Euc t-SNE 0.9114 | 0.8771 | 0.8205 | 0.7711 | 0.7143 | 0.6034

Riem-Euc t-SNE 0.9845 | 0.9722 | 0.9645 | 0.9616 | 0.9587 | 0.9348
Riem-Riem MDS 0.8955 | 0.8889 | 0.9033 | 0.9269 | 0.9464 | 0.9610

FPHA Euc-Euc MDS 0.8665 | 0.8477 | 0.7935 | 0.7345 | 0.6906 | 0.6023
Riem-Euc MDS 0.9525 | 0.9500 | 0.9462 | 0.9439 | 0.9441 | 0.9395
UMAP 0.9695 | 0.9581 | 0.9486 | 0.9369 | 0.9268 | 0.8989
PGA 0.9512 | 0.9551 | 0.9626 | 0.9686 | 0.9729 | 0.9766
Riem PCA 0.8490 | 0.8247 | 0.8174 | 0.8151 | 0.8080 | 0.7843
Riem-Riem t-SNE | 0.9842 | 0.9804 | 0.9780 | 0.9804 | 0.9761 | 0.9750
Euc-Euc t-SNE 0.8892 | 0.8849 | 0.9043 | 0.9264 | 0.9379 | 0.9465

Riem-Euc t-SNE 0.9938 | 0.9833 | 0.9797 | 0.9686 | 0.9328 | 0.9242
Riem-Riem MDS 0.9732 | 0.9621 | 0.9755 | 0.9844 | 0.9901 | 0.9949

TEP Euc-Euc MDS 0.8902 | 0.8931 | 0.9061 | 0.9146 | 0.9186 | 0.9075
Riem-Euc MDS 0.9945 | 0.9916 | 0.9921 | 0.9930 | 0.9927 | 0.9890
UMAP 0.9788 | 0.8448 | 0.7128 | 0.6287 | 0.5878 | 0.4989
PGA 0.9743 | 0.9736 | 0.9767 | 0.9781 | 0.9849 | 0.9909
Riem PCA 0.9143 | 0.8998 | 0.9143 | 0.9355 | 0.9499 | 0.9575
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I Plot of the results of the dataset AirQuality
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Figure 13: Reduced point cloud of the dataset AirQuality using the different algorithms.
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