
A DERIVATIONS FOR PRUNING

Given that we use a Gaussian approximation of our loss p≈q = N through a quadratic approxima-
tion of our log likelihood− log p≈ 1

2 (θ
∗)TFθ∗, the most optimal compression becomes the solution

to the following constrained optimization problem:

argmin
∆θ∗

1

2
∆(θ∗)TF∆θ∗ (14)

s.t. eTk∆θ∗ + eTk θ
∗ = 0,∀k ∈ Q

where Q is the set of Q indices that are pruned.

A.1 GENERAL SOLUTION

Following (Kurtic et al., 2022), we denote pruned elements as EK = [eq1 eq2 . . .]
T ∈

[0, 1]|Q|×P and use the fact that solving eq. (6) through use of Langrange multipliers gives the
general closed-form solution for cost L and weight update ∆θ:

L =
1

2
(EKθ∗)T

(
EKF−1ET

K

)−1
EKθ∗ (15)

∆θ∗ = F−1ET
K

(
EKF−1ET

K

)−1
EKθ∗ (16)

A.2 REMOVING A SINGLE ELEMENT

Optimal brain surgeon (OBS) To remove a single element with index q, we simply set EK = eTk :

L =
1

2
(EKθ∗)T

(
EKF−1ET

K

)−1
EKθ

=
1

2
θT
k

1

[F−1]kk
θk

=
1

2

(θk)
2

[F−1]kk

,

∆θ = −F−1ET
K

(
EKF−1ET

K

)−1
EKθ

= −F−1ek
(
eTkF

−1ek
)−1

eTKθ

= − θk
[F−1]kk

F−1ek

(17)

which exactly correspond to the loss and updates of optimal brain surgeon (Hassibi & Stork, 1992).

Optimal brain damage (OBD) We may also consider that elements are independent and the
Fisher is diagonal. After noting that this implies that diagonal elements of the inverse Fisher are
scalar inverses of elements in the Fisher [F−1]kk = 1

[F]kk
, the formula’s simplify to:

L = [F]kk(θk)
2, ∆θ = −θkek (18)

which exactly corresponds to loss and updates of optimal brain damage (LeCun et al., 1989).

VECTORISED

For implementation purposes, it might be convenient to have a vectorised notation Lθ ∈ RRC or
LW ∈ RR×C to calculate all expected losses in parallel:

For OBD:
∣∣∣

For OBS:
∣∣∣
Lθ =

1

2
θ∗ ⊙ θ∗ ⊙ diag(F)

Lθ =
1

2
θ∗ ⊙ θ∗ ⊘ diag(F−1)

,
LW =

1

2
W ∗ ⊙W ∗ ⊙mat(diag(F))

LW =
1

2
W ∗ ⊙W ∗ ⊘mat(diag(F−1))

(19)

A.3 REMOVING A SINGLE ROW OR COLUMN

Structured OBS If we consider the approximation F ≈ G⊗A with known inverse (G⊗A)−1 =
G−1⊗A−1, then to remove a row at index r ∈ [0, R], we must take into account correlations within

12

elements of that row. That is, we write matrix EK = (eTr ⊗ I) containing one-hot row-vectors for
all elements in row r. Plugging into the general solution eq. (7), we find:

L =
1

2
EKθT

(
EKF−1ET

K

)−1
EKθ∗

=
1

2
((eTr ⊗ I)θ∗)T

(
(eTr ⊗ I)(G⊗A)−1(eTr ⊗ I)T

)−1
(eTr ⊗ I)θ∗

=
1

2
θT
r

(
eTr G

−1er ⊗ IA−1I
)−1

θr

=
1

2
θT (eTr ⊗ I)

([
[G−1]rr

]
⊗A−1

)−1
(er ⊗ I)θr

=
1

2

θT
r Aθr

[G−1]rr
(20)

where we write θr = eTr W
∗∈RC for the r’th row-vector in W . Similarly, we obtain the associated

weight update:

∆θ = −F−1ET
K

(
EKF−1ET

K

)−1
EKθ∗

= − (G⊗A)
−1

(eTr ⊗ I)T
(
(eTr ⊗ I) (G⊗A)

−1
(eTr ⊗ I)T

)−1

(eTr ⊗ I)θ∗

= −
(
G−1 ⊗A−1

)
(er ⊗ I)

(
eTr G

−1er ⊗A−1
)−1

θr

= − 1

[G−1]rr

(
G−1er ⊗A−1IA−1I

)
θr

= −G−1er ⊗ θr
[G−1]rr

(21)

arriving at a similar structured pruning update as derived in (Wang et al., 2019) for convolutional
filters. We can equivalently derive expected loss and update for columns, by considering EK =
(I ⊗ eTc). If we do so, we find the structured updates for a row r or column c:

Remove row r:
∣∣∣

Remove column c:
∣∣∣

L =
1

2

θT
r Aθr

[G−1]rr

L =
1

2

θT
c Gθc

[A−1]cc

∆θ = −G−1er ⊗ θr
[G−1]rr

∆θ = −θc ⊗A−1ec
[A−1]cc

(22)

Structured OBD We may also assume that, when removing a row r, the individual elements
within the row are also independent which would imply [A]ii =

1
[A−1]ii

. Similarly, [G]ii =
1

[G−1]ii
when removing a column c. Consequently, we can simplify to:

Remove row r:
∣∣∣

Remove column c:
∣∣∣

L =
1

2
Grrθ

T
r Aθr

L =
1

2
Accθ

T
c Gθc

∆θ =
∣∣∣− erθ

T
r

∆θ =
∣∣∣− θce

T
c

(23)

similar form to structured OBD losses and updates as derived in (Wang et al., 2019) for convolutional
filters. The derivations slightly differ in that we start from the general solution eq. (8), circumventing
the need to rederive a Langrange multipliers for each possible structure.

A.4 PRUNING MULTIPLE (CORRELATED) ROWS AND COLUMNS

Let us consider the removal of R′ rows r1, r2, . . . r′R rows or C ′ columns with indices c1, c2, . . . , cC′ ,
with 1<R′ < R and 1<C ′<C. We denote matrices containing one-hot vectors selecting all rows
and columns to be removed respectively as:

ER′ = [e1 e2 . . . eR′]
T ∈ RR′×R EC′ = [e1 e2 . . . eC′]

T ∈ RC′×C (24)

Then, the matrix EK containing one-hot row vectors selecting all elements to be removed can be
written as:

Multiple rows:
Multiple columns:

EK = (ER′ ⊗ IC) ∈ RQ×RC , (with Q = R′C)

EK = (IR ⊗EC′) ∈ RQ×RC , (with Q = RC ′)
(25)

13

To simultaneously remove rows and columns, we can stack the matrices with duplicate row vectors
removed:

Multiple rows and columns: EK

[
ER′ ⊗ IC
IR ⊗EC′

]
∈ RQ×RC with duplicate rows removed (26)

The removal of duplicate rows is required due to the few R′C ′ overlapping elements between rows
and columns, after which the total number of rows thus becomes Q = R′C+C ′R−R′C ′. We used
appropriately sized identity matrices IR ∈ RR×R and IC ∈ RC×C . For brevity, we write the vector
or matrix of pruned weightsθ := EKθ ∈ RQ.

First, we derive the removal for R′ rows by defining removal matrix as EK = ER′ ⊗ I and define
W := ER′W ∈ RR′×C . The complete weight update for the removal of multiple rows becomes:

∆θ = −F−1ET
K

(
EKF−1ET

K

)−1
EKθ∗

= −(G⊗A)−1(ER′ ⊗ I)T
(
(ER′ ⊗ I)(G⊗A)−1(ER′ ⊗ I)T

)−1
(ER′ ⊗ I)θ∗

= −(G−1ET
R′ ⊗A−1)

(
ER′G−1ET

R′ ⊗A−1
)−1

θ∗

= −(G−1ET
R′ ⊗A−1)

(
(ER′G−1ET

R′)−1 ⊗A
)
θ∗

∆W = −G−1ET
R′

(
(ER′G−1ET

R′)−1WA
)
A−1

= −G−1ET
R′(ER′G−1ET

R′)−1W (27)

Similarly, we derive the removal of C ′ columns by defining removal matrix as EK = I ⊗EC′ and
defineW := EC′W ∈ RR×C′

. The complete weight update for multiple column removal becomes:

∆θ = −F−1ET
K

(
EKF−1ET

K

)−1
EKθ∗

= −(G⊗A)−1(I ⊗EC′))T
(
(I ⊗EC′)(G⊗A)−1(I ⊗EC′)T

)−1
(I ⊗EC′)θ∗

= −(G⊗A)−1(I ⊗EC′))T
(
(I ⊗EC′)(G⊗A)−1(I ⊗EC′)T

)−1
(I ⊗EC′)θ∗

= −(G−1 ⊗A−1ET
C′)

(
G⊗EC′A−1ET

C′

)−1
θ

∆W = −G−1GW(EC′A−1ET
C′)−1(A−1ET

C′)

= −W(EC′A−1ET
C′)−1(A−1ET

C′) (28)

14

B EXPERIMENTAL DETAILS.

Code is available at: https://github.com/Qualcomm-AI-research/llm-surgeon.

B.1 MODELS

OPT models From the OPT model family ((Zhang et al., 2022)), we consider models with the
following number of parameters: 125 million (125m), 1.3 billion (1.3b), 2.7 billion (2.7b), 6.7
billion (6.7b) models. We omit 350 million model due to different layer norm. We obtain the
standard pre-trained checkpoints using Huggingface (Wolf et al., 2019) and use this as a baseline
and initialisation for compression.

Llama-v2 models From the Llama-v2 model family ((Touvron et al., 2023)), we consider a model
with 7 billion (7b) parameters and a model with 13 billion (13b) parameters. We obtain the stan-
dard pre-trained checkpoints using Huggingface (Wolf et al., 2019) and use this as a baseline and
initialisation for compression.

B.2 DATASETS

English / Wikitext-2 The majority of the results are obtained on the Wikitext-2 dataset containing
parsed subsets of the English Wikipedia (Merity et al., 2016; Wikipedia, 2004), using the default
training and test sets. For fitting, we use 128 batches of 2048 characters and for testing we use the
standard test set containing 4358 characters.

French / Wikipedia For French data experiments, we use a subset of French wikipedia
(Wikipedia, 2004). For fitting, we use 128 batches of 2048 characters and for testing we use a
randomly selected test set containing 1067888 characters.

German / Wikipedia For the Italian data experiments, we use a subset of the German wikipedia
(Wikipedia, 2004). For fitting, we use 128 batches of 2048 characters and for testing we use a
randomly selected test set containing 1112372 characters.

Italian / Wikipedia For the Italian data experiments, we use a subset of the Italian wikipedia
(Wikipedia, 2004). For fitting, we use 128 batches of 2048 characters and for testing we use a
randomly selected test set containing 633177 characters.

B.3 MASK EQUIVALENCE

When comparing the equivalence of obtained pruning masks between two models θA and θB ob-
tained by two compression methods A and B. We always consider the case of 50% pruning, and
define the mask equivalence as the fraction of same weights that are set two zero in both models:

mask equivalence =

P∑
i=1

1([θA]i = 0 and [θB]i = 0)

P
. (29)

where 1 denotes an indicator function that returns 1 if both weights [θA]i and [θB]i are zero, and
returns 0 otherwise.

B.4 SPARSEGPT AND EVALUATION OF BASELINES

For the SparseGPT baseline, we used the official code SparseGPT code repository (Frantar & Alis-
tarh, 2023) which allows for training and evaluation on wikitext-2. The obtained results may differ
from those reported in the original paper as the C4 dataset was used there.

In this work, models were trained with the same 128 batches of the wikitext-2 training set as avail-
able in the SparseGPT codebase and are evaluated on the wikitext-2 test set using the exact same
evaluation procedure.

15

https://github.com/Qualcomm-AI-research/llm-surgeon

C TECHNICAL DETAILS

C.1 PSEUDOCODES

Algorithm 2 LLM Surgeon (structured)
Input: target size α
Input: initial weights θ0

For shot t in [1, 2, . . . , T]
Compute: approximate curvature G1,A1 from data (optionally also G2,A2) ▷ section 3.1
Compute: costs per row/column Lr,Lc from G1,A1, (G2,A2) ▷ section 3.2
Compute: threshold τ using Lr and Lc given target size α ▷ section 3.3
Select: rows and columns to remove ER, EC based on τ ▷ section 3.3
Compute: weight update ∆θt−1 based on ER,EC and G1,A1, (G2,A2) ▷ section 3.4
Update: remaining weights θt ← θt−1 +∆θt−1 ▷ section 3.5
Optionally: θt ← low-rank update(θt)

Output: compressed weights θ̂ = θT

Algorithm 3 LLM Surgeon (semi-structured / unstructured)
Input: target size α
Input: initial weights θ0

For shot t in [1, 2, . . . , T]
Compute: approximate curvature G1,A1 from data (optionally also G2,A2) ▷ section 3.1
Compute: costs per element Lk from G1,A1, (G2,A2) ▷ section 3.2
Compute: threshold τ from Lk and target size αt (unstructured/semistructured) ▷ section 3.3
Select: elements to remove EK based on τ (unstructured/semistructured) ▷ section 3.3
Compute: weight update ∆θt−1 based on EK and G1,A1, (G2,A2) ▷ section 3.4
Update: remaining weights θt ← θt−1 +∆θt−1 ▷ section 3.5
Optionally: θt ← low-rank update(θt)

Output: compressed weights θ̂ = θT

C.2 DAMPENING

In practice, we dampen the G and A matrices by adding a diagonal term G + λGI and A + λAI .
In our experiments, we found that values in the range [0.01, 0.1] multiplied by mean diagonal terms
generally works well. We follow (Frantar & Alistarh, 2023) and always use λA=0.01diag(A) to
be consistent with prior work and allow for a fair comparison with baselines. Further, we use
λG=0.1diag(G) for structured experiments and λG=0.01diag(G) in semi-structured and unstruc-
tured experiments.

16

D DOWNSTREAM TASK PERFORMANCE

We also evaluate our method on downstream tasks as perplexity metrics do not necessarily correlate
with downstream performance. Further, we also repeat this experiment using the C4 dataset as
reference data for compression, as this is used in prior work (Frantar & Alistarh, 2023) and as this
can be regarded a more general reference dataset. In tables 5 and 6 we report 0-shot test performance
of structured pruning for LLM surgeon and K-OBD baseline.

Table 5: Downstream task performance using Wikitext-2 for pruning.
Structured pruning
(with wikitext-2) Model size wikitext word ppl boolq piqa hallaswag winogrande arc easy arc challenge openbookq copa lambada openai wsc273 AVERAGE wikitext2
Dense baseline 100% 9.24 77.74 79.11 75.99 69.14 74.58 46.25 44.20 86.00 73.92 85.71 71.26
LLM Surgeon (ours) 90% 9.63 76.21 78.56 75.39 67.64 74.12 46.50 43.60 85.00 72.64 84.98 70.46

80% 12.16 72.97 77.09 71.30 66.30 71.36 41.89 41.80 87.00 56.43 80.22 66.66
70% 16.91 61.25 73.56 60.72 61.09 63.09 36.69 38.80 81.00 28.33 76.56 58.11
60% 25.15 44.98 69.26 48.04 54.38 52.31 30.29 36.80 78.00 11.72 68.50 49.43
50% 43.68 39.60 64.36 40.29 52.57 44.91 26.28 30.80 74.00 6.52 61.54 44.09

K-OBD 90% 9.89 76.67 78.02 74.80 68.11 75.17 46.33 44.60 86.00 72.71 82.78 70.52
80% 17.62 74.34 75.24 67.85 64.64 63.80 40.27 41.60 83.00 30.23 82.42 62.34
70% 32.72 65.29 71.82 53.07 56.83 51.05 33.11 37.80 79.00 12.21 70.70 53.09
60% 68.63 60.80 65.67 43.99 53.20 41.79 28.50 34.00 75.00 7.04 60.44 47.04
50% 136.33 61.56 60.66 36.84 53.04 36.11 26.71 33.00 72.00 4.70 61.17 44.58

Table 6: Downstream task performance using C4 for pruning.
Structured pruning
(with C4) Model size wikitext word ppl boolq piqa hallaswag winogrande arc easy arc challenge openbookq copa lambada openai wsc273 AVERAGE wikitext2
Dense baseline 100% 9.24 77.74 79.11 75.99 69.14 74.58 46.25 44.20 86.00 73.92 85.71 71.26
LLM Surgeon (ours) 90% 9.90 77.03 78.45 74.95 68.27 73.19 45.99 44.60 84.00 72.81 82.78 70.21

80% 14.42 75.60 76.82 69.71 63.85 70.29 41.30 42.80 87.00 45.53 82.42 65.53
70% 25.16 66.39 72.85 58.11 56.83 62.16 34.47 38.40 80.00 22.69 69.96 56.19
60% 45.35 62.48 68.93 48.10 55.64 51.56 27.99 35.20 70.00 12.56 61.54 49.40
50% 77.30 62.60 65.02 41.70 54.22 42.55 24.23 31.20 71.00 7.26 60.44 46.02

K-OBD 90% 10.59 75.47 78.18 73.61 66.46 72.52 44.37 43.60 87.00 71.22 82.42 69.48
80% 20.12 73.36 75.14 66.11 62.43 62.84 38.23 41.00 86.00 21.50 78.39 60.50
70% 56.92 63.30 68.44 52.31 55.64 46.72 31.31 34.60 77.00 5.69 68.86 50.39
60% 112.85 62.23 64.47 46.36 52.17 40.53 29.52 32.40 72.00 2.91 63.00 46.56
50% 272.16 62.42 61.70 38.47 50.43 33.29 26.96 31.80 65.00 0.91 59.34 43.03

We find that our method not only performs well in terms of test perplexity but also correlates well
with downstream performance, outperforming the baselines on these downstream tasks.

E ADDITIONAL EXPERIMENTS ON LLAMA-V2 13B.

To assess performance on larger 13B parameter models, we also report structured compression on
the Llama-v2 13B model and evaluate downstream task performance. Test perplexities (lower is
better) can be found in table 7 below:

Table 7: Pruning Llama-v2 13B model.
Baseline Pruned model sizes

Dense 100% 90% 80% 70% 60% 50%
K-OBD 4.547 4.908 6.294 10.08 13.06 16.06
LLM Surgeon 4.547 4.692 5.286 6.207 7.245 9.428

as well as evaluated results on downstream benchmarks (higher is better) in table 8 below.

Table 8: Downstream task performance after pruning large Llama-v2 13B model.
Llama-v2 13B Model size wikitext word ppl boolq piqa hallaswag winogrande arc easy arc challenge openbookq copa lambada openai wsc273 AVERAGE wikitext2
Dense baseline 100% 8.23 80.52% 80.52% 79.38% 72.14% 77.53% 49.23% 45.20% 90.00% 76.77% 89.38% 74.07%
LLM Surgeon (ours) 90% 8.57 81.07% 79.87% 79.24% 72.38% 76.30% 49.91% 47.20% 92.00% 75.47% 89.38% 74.28%

80% 10.08 80.86% 79.00% 77.09% 70.56% 75.93% 46.76% 46.80% 90.00% 67.79% 86.45% 72.12%
70% 12.74 74.50% 76.50% 71.52% 68.67% 69.74% 40.27% 45.00% 91.00% 54.40% 83.52% 67.51%
60% 16.00 64.62% 73.01% 65.04% 65.75% 63.80% 37.12% 39.60% 90.00% 44.50% 81.32% 62.48%
50% 23.75 65.66% 68.77% 56.19% 63.22% 56.19% 31.83% 36.60% 85.00% 35.16% 77.29% 57.59%

K-OBD 90% 8.79 81.31% 79.76% 79.12% 72.22% 76.94% 47.95% 47.80% 91.00% 75.26% 88.64% 74.00%
80% 11.79 80.80% 79.16% 76.80% 70.56% 73.74% 46.93% 48.60% 88.00% 58.99% 87.55% 71.11%
70% 20.00 66.76% 74.43% 64.18% 64.96% 56.23% 36.01% 39.00% 88.00% 38.54% 79.49% 60.76%
60% 27.74 55.66% 70.24% 55.52% 60.46% 49.62% 32.68% 35.80% 80.00% 30.06% 73.63% 54.37%
50% 37.38 59.79% 66.54% 48.39% 57.46% 46.59% 30.72% 34.00% 77.00% 24.61% 69.96% 51.50%

We find that LLM Surgeon also outperforms baselines on existing Llama-v2 13B models. We stress
that these results are obtained on structured pruning of rows and columns, which are regarded the
hardest and most constrained pruning structure. Yet, we can compress Llama 13B by 20% with less
than 2% drop in downstream task performance. It also significantly outperforms the baseline for all
compression rates, both in terms of test perplexity and downstream task performance.

17

F ABLATIONS

F.1 SHOTS

Table 9: Ablation of shot counts T for structured LLM Surgeon compressing OPT-1.3b model.
Target size Shots T wikitext-2 PPL Shots T wikitext-2 PPL Shots T wikitext-2 PPL

90% 6 14.70 8 14.70 10 14.72
80% 12 15.14 16 15.12 20 15.08
70% 18 16.21 24 16.24 30 16.23
60% 24 18.53 32 18.45 40 18.49
50% 30 23.32 40 22.95 50 22.68

F.2 TASK-SPECIFIC COMPRESSION

Table 10: Cross-task performance and mask
equivalences of 50% compressed OPT-125m
model using structured LLM Surgeon on language
subsets.

evaluation dataset mask equivalence (%)
target EN FR DE IT EN FR DE IT

Pretrained 27.66 22.54 24.32 27.66
EN 47.46 172.9 181.1 169.1 1.00 0.74 0.70 0.72
FR 113.4 28.44 35.02 34.90 0.74 1.00 0.87 0.90
DE 142.1 35.15 27.49 38.49 0.70 0.87 1.00 0.87
IT 123.7 31.85 33.78 30.58 0.72 0.90 0.87 1.00

LLM Surgeon uses data to find a compressed
model that has the least negative impact on fi-
nal test performance. In this section, we ex-
plore the extent to which the method can use
data to compress specifically to the task at hand.
We do so by comparing test performance and
equivalences between resulting pruning masks
for different language modeling languages: En-
glish (EN/wikitext-2), French (FR) and Italian
(IT) and the German (DE). We consider 50%
unstructured compression using LLM Surgeon with correlated weight updates. For each compressed
model, we compare performance on all languages and compare the equivalences between resulting
pruning masks (details in appendix B.3), and report results in table 10. Like other methods that use
data for compression (Hassibi & Stork, 1992; Frantar & Alistarh, 2023; Wang et al., 2019), we ex-
pect to see some correlation between the data used for training and data with good test performance,
which is reflected in both test performance and masks. It is important to note that the final perfor-
mance after compression will depend on the quality of the used dataset for compression. Further, the
experiment demonstrates that the method can be used for task-specific compression tailored towards
the data used for compression and generalises to high test performance on the associated test data.

18

G ON FAIR COMPARISON

All results in this work (including the SparseGPT) were trained on Wikitext-2 for fair comparison.
To do so, we used the same dataloader and evaluation script as the official SparseGPT repo and reran
all SparseGPT results to be trained on Wikitext-2. In some cases, this resulted in better scores for the
SparseGPT baseline compared to the C4-trained results reported in the original SparseGPT paper.
Yet, we find that our method using improved curvature estimates still outperformed the baselines in
terms of final test performance.

H COMPUTATIONAL PERFORMANCE

We report computational cost in terms of pruning time in table 11 and GPU memory in table 12.

Table 11: Time performance.
Test performance

Runtime Network Time PPL 90% PPL 80% PPL 70% PPL 60% PPL 50%
Unstructured baseline (SparseGPT) Llama-v2 7B <5m 5.49 5.58 5.71 5.94 6.51
Unstructured LLM Surgeon (ours) Llama-v2 7B 2d8h16m 5.13 5.20 5.36 5.66 6.08
Structured baseline (K-OBD) Llama-v2 7B 16h58m 5.48 9.14 15.43 28.03 46.64
Structured LLM Surgeon (ours) Llama-v2 7B 17h08m 5.25 6.18 7.83 10.39 15.38
Structured baseline (K-OBD) Llama-v2 13B 1d6h5m 4.908 6.294 10.08 13.06 16.06
Structured LLM Surgeon (ours) Llama-v2 13B 1d9h26m 4.692 5.286 6.207 7.245 9.428

Our method is most efficient for structured pruning, but it must be noted that engineering efforts may
further improve speed for unstructured pruning. The focus of the paper is structured pruning, on
which we achieve state-of-the-art compression rates. Importantly, compression of LLMs only needs
to happen once after which a pruned model can be deployed infinitely many times without further
cost. This motivates our method which takes longer to run but reaches better final test performance.

Table 12: Memory performance.

Network SparseGPT (baseline) Unstructured LLM-Surgeon (ours)
Llama-7B <5m / 1 GPU (32GB) 2d8h16m / 4xH100 80 GB

K-OBD (baseline) Structured LLM-Surgeon (ours)
Llama-7B 16h58m / 4xH100 80 GB 17h08m / 4xH100 80 GB
Llama-13B 1d6h5m / 8xH100 80 GB 1d9h26m / 8xH100 80 GB

We argue that differences in the performance and the runtime of pruning methods can largely be
attributed to underlying assumptions on correlations between weights. Notably, algorithms that
consider few correlations, sometimes to the extent of completely disregarding all gradient informa-
tion, can result in very fast pruning algorithms for unstructured and semi-structured pruning but are
often not flexible enough to perform structured pruning of rows and columns. Examples of such
lightweight algorithms for LLMs are (Sun et al., 2023) and SparseGPT (Frantar & Alistarh, 2023),
as can also be observed from table 11. Our approach makes less strong assumptions on the cur-
vature of the loss and as a result outperforms all baselines on all unstructured, semi-structured and
structured pruning. Further, the improved curvature is also eligible for dynamic allocation of weight
removal and improved correlated weight updates. In practice, we always recommend using our
method for structured pruning. For unstructured and semi-structured pruning, we note an important
trade-off between the desired final test accuracy and the available computational budget. Here, our
proposed method can achieve the highest final model performance but requires more computational
resources and takes longer to run. It should be noted that pruning only needs to happen once after
which a model can be deployed infinitely many times this time, which dependent on the available
computational resources can also legitimise spending additional pruning time even if this is much
higher compared to other algorithms in relative terms. In absolute terms, the use of multiple large
GPUs is common practice in the field of large language models and many more GPUs are typically
used to train and deploy large language models. Moreover, the curvature approximation is naively
amenable to data parallelism in case further speed-ups or larger models are required. We hope this
provides context and emphasises the trade-off between performance and compute in practice.

19

I EXTENDING CURVATURE ESTIMATES

Instead of using a single Kronecker product, we might consider improving the approximation
through a sum of multiple Kronecker factors:

F ≈ F̃ = G1 ⊗A1 +G2 ⊗A2 (30)

This last appendix deals with the question how one may computationally find such approximations
and how to utilise them in the neural network pruning framework.

I.1 NEAREST KRONECKER PRODUCT OR SUM OF KRONECKER PRODUCTS

Instead of assuming independence of activations and derivatives as in section 3.1, following the
classic KFAC of (Martens & Grosse, 2015), we might want to find the nearest Kronecker product
approximation F ≈ G̃⊗ Ã that is closest to the Fisher in terms of the Frobenius norm:

G̃l, Ãl = argmin
Gl,Al

||Fl −Gl ⊗Al||F (31)

Finding the nearest sum of Kronecker factors can be rephrased as a classic eigenvalue problem of
finding the nearest rank-1 matrix. Golub & Van Loan (2013).

||F − G̃⊗ Ã||F ≡ ||R(F)− vec(G̃)vec(Ã)T ||F (32)

Power method and deflation After considering the reshaping, we can use power iterations to
solve for and find the nearest Kronecker factors G1,A1 = solve(F).

Find with power iterations:

G̃1, Ã1 = solve(F) = argmin
G,A

||F −G⊗A||F

Deflation:

G̃r, Ãr = solve(F −
∑r−1

r′=1
(G̃r′ ⊗ Ãr′))

A more extensive description of the power method solve(·) can be found in algorithm 4. At the start
of the algorithm, we initialise power iterations as vector with one’s 1 = [1 1 . . . 1]. After each
shot we can initialise the vector as the final estimate found during the previous shot.

Algorithm 4 Kronecker power method. Finds G̃, Ã nearest Kronecker product ||F − G̃⊗ Ã||F .
Input: Initialise g̃0=1, ã0=1 (or using estimates of previous shot).
Input: Set iterations I (or I=1 if using estimates from previous shot)
Output: G̃, Ã

for iteration i in [1, 2, . . . , I] do
Compute: g̃i = R(F̃)ãi−1

||R(F̃)ãi−1||2
, withR(F̃)ãi−1 = 1

N

∑N
n=1 a

T
n Ã

i−1anvec(gngT
n)

Compute: ãi = R(F̃)T g̃i

||R(F̃)T g̃i||2
, withR(F̃)T g̃i = 1

N

∑N
n=1 g

T
n G̃

ignvec(ana
T
n)

Compute: σi = ||ãi||2
end for
Return: G̃ =

√
σimat(g̃), Ã =

√
σimat(ã).

True Fisher

rmse: 0.13
rmse diag: 0.19

Classic KFAC (IAD)

rmse: 0.12
rmse diag: 0.15

Nearest KFAC RK = 1

rmse: 0.11
rmse diag: 0.15

Nearest KFAC RK = 2

rmse: 0.09
rmse diag: 0.14

Nearest KFAC RK = 3

rmse: 0.04
rmse diag: 0.14

Nearest KFAC RK = 9

Figure 5: Example illustration of nearest Kronecker factor approximations F̃≈
∑RK

r=1 Gi ⊗ Ai,
compared to classical KFAC with the IAD assumption. Larger RK yields better approximations to
the true Fisher F for larger RK , as measured by the root mean squared error (rmse).

20

I.2 EXTENDED CURVATURE APPROXIMATIONS

For classic KFAC with IAD or RK=1 nearest Kronecker approximations of the form F̃ = G⊗A,
the inverse simply becomes (G⊗A)−1 = G−1 ⊗A−1. Unfortunately, we can not use this famous
inverse identity for sum of Kronecker factors, which is why we fall back on eigendecompositions
G = E1S1E

T
1 and A = E2S2E

T
2 , allowing us to decompose the Fisher into:

F̃ = K1S1K
T
1 ⊗K2S2K

T
2 = (K1 ⊗K2)(I ⊗ I + S1 ⊗ S2)(K

T
1 ⊗KT

2) (33)

where specific K1 and K2 can be found in App. B of Martens & Grosse (2015), which we closely
followed in our derivations. Because K1 and K2 are orthogonal and S1 and S2 diagonal, the inverse
Fisher becomes:

F̃−1 = (K1 ⊗K2)(I ⊗ I + S1 ⊗ S2)
−1(KT

1 ⊗KT
2) (34)

In the context of neural network training, the problem gets slightly harder since we want to incre-
mentally construct estimates G̃i and Ãi from individual samples al,n, gl,n that make up F , without
having to simultaneously store more than a single or batch of input activations al,n or output gradi-
ents gl,n in memory. Although this online Kronecker-product principal component analysis problem
largely remains an open research problem, we our approach closely follows the recent work by (Ko-
roko et al., 2022) that uses similar approximations in the context of optimisation. A sum of multiple
RK>1 Kronecker factors will yield closer approximations, but also linearly increase memory re-
quirements with higher RK and makes inverting F−1 considerably more difficult.

Formulas to compute cost and weight updates. For sum of Kronecker factors, we find that the
constrained optimization solution of for costs ∆L eq. (7) and weight updates ∆θ eq. (8) become the
following inner-product and matrix-vector product:

Lk =
1

2
⟨θ∗,Uθ∗⟩ = (θ∗)TU(θ∗) ∈ R (35)

∆θ = F̃−1ET
Ku = K1

(
K

T

1 UK2 ⊘
[
11T + s1s

T
2

])
KT

2 ∈ RRC (36)

with at the heart of it all a matrix U = [EKF−1ET
K]−1 that captures correlations between weights:

U =

[
EK

(
K1 ⊗K2

)(
I ⊗ I + S1 ⊗ S2

)−1(
KT

1 ⊗KT
2

)
ET

K

]−1

(37)

where (I ⊗ I + S1 ⊗ S2) is diagonal and the inverse can thus be computed element-wise. The
remaining inverse is of size K ×K, for K correlated weights.

Note on sum of Kronecker factors Experimentally, we did not find a benefit in performance
when using a sum of two nearest Kronecker factor approximation, or found it too slow. Therefore,
we focus in the main text on LLM Surgeon with fast single Kronecker product KFAC approximation
to approximate the loss landsscape curvature. Nevertheless, we choose to include this appendix as
we believe could prove useful in other contexts or inspire future work that aim to further improve
the quality of curvature approximations.

21

J CODE

Code is available at: https://github.com/Qualcomm-AI-research/llm-surgeon.

22

https://github.com/Qualcomm-AI-research/llm-surgeon

