
Appendix to “Reducing Collision Checking for
Sampling-Based Motion Planning Using Graph

Neural Networks”

Chenning Yu
Computer Science and Engineering

UC San Diego
chy010@ucsd.edu

Sicun Gao
Computer Science and Engineering

UC San Diego
sicung@ucsd.edu

1 More Details on GNN Architectures

Feed
Forward

Feed
Forward

Feed
Forward

Attention

Add & Norm

FeedForward

Add & Norm

EdgesObstaclesVertices

N x

Attention

Add & Norm

FeedForward

Add & Norm

N x

Concat

Concat

Goal

Feed
Forward

Vertex
Embedding

Edge
Embedding

Vertex
Embedding

Edge
Embedding

b. Message Passing

a. Graph Embedding

GNN Update

k iterations

1.1 Obstacle Encoding

In the experiment part, we find obstacle encoding is helpful to the GNN explorer, which can optimize
the explored path further with the smoother. We elaborate on the formulation of the obstacle encoding.

In this work, we consider an obstacle as a 2D or 3D box depending on the workspace, denoted as
o = (p1, · · · , pn, l1, · · · , ln) ∈ R2n, n ∈ [2, 3], where pi and li are the center and length of the box
along the i-th dimension. The environment configuration is written as O ∈ R|{o}|×2n, where |{o}| is
the number of the obstacles. Note that |{o}| is a variable number, since the number of obstacles can
be different for each problem.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Given MLPs f (i)ax , f
(i)
ay , f

(i)
Kx
, f

(i)
Qx
, f

(i)
Vx
, f

(i)
Ky
, f

(i)
Qy
, f

(i)
Vy

, the obstacle encoding is formulated as:

ax = LN(x+Att(f
K

(i)
x
(O), f

Q
(i)
x
(x), f

V
(i)

x
(O))) and x = LN(ax + f (i)ax

(ax))

ay = LN(y +Att(f
K

(i)
y
(O), f

Q
(i)
y
(y), f

V
(i)

y
(O))) and y = LN(ay + f (i)ay

(ay))
(1)

where LN denotes the layer normalization [1]. This architecture follows the standard transformer
block design [6].

1.2 Special Features

The overall special features for GNN explorer and smoother are described as follows:

Special features in explorer architecture. The GNN explorer embeds vertices with x =
hx(v, vg, (v − vg)

2, v − vg), with an MLP hx. The yl is computed as yl = hy(vj − vi, vj , vi),
with an MLP hy . Optionally, we utilize the obstacle encoding to update the x and y. With Equation
1, the x and y will merge the information from obstacles through multiple attention blocks, which is
set as 3 in our experiments.

As mentioned in the main part, the GNN explorer will update x and y over multiple loops. During
training, we iterate x and y over a random number of loops between 1 and 10. Intuitively, taking
random loops encourages the GNN to converge faster, which also helps propagating the gradient.
During evaluation, the GNN explorer will output x and y after 10 loops. For loops larger than 10,
significant improvement on performance is not perceived. Finally, with an MLP fη , the GNN explorer
will output η = fη(y), which will be used as the priority to explore corresponding edges.

Special features in smoother architecture. The GNN smoother embeds vertices with x = hx(v),
with an MLP hx. The yl is computed as yl = hy(vj − vi, vj , vi), with an MLP hy . Each time x and
y are updated, the GNN smoother will output a new smoother path π′ = {(ui, u′i)}i∈[0,k] , where
ui = fu(xi),∀vi ∈ π, given an MLP fu. The u0 and u′k are manually replaced by vs and vg, to
satisfy the path constraint. We assume the new smoother path has the same number of nodes as
the original path. Since the GNN smoother could gain novel local geometric information with the
changed configuration of the new path, we dynamically update G = 〈V,E〉, via (i) replacing those
nodes labeled as path nodes in V by the nodes on new path, (ii) replacing E by generating a k-NN
graph on the updated V . With the updated graph G, we repeat the above operation, and subsequently
get another new path, which forms a loop. By updating the graph and the new path iteratively and
dynamically, the path is potentially improved to be shorter at each round by perceiving the changing
local neighbors. During training, the GNN smoother outputs π′, after a random number of loops,
which is between 1 and 10. During evaluation, the GNN smoother will output π′ after only one loop,
but will be called 5 times in total for each smoothing tasks.

2 Environments and Datasets

We conduct the experiment on 6 different environments, which are described in details as follows, :

Maze The maze contains a 2D point robot. The datasets for training set and the test set
for ”Easy2D” is at https://github.com/NeurEXT/NEXT-learning-to-plan/tree/master/
algorithm [2]. To generate the ”Hard2D”, we utilize the script provided by https://github.com/
RLAgent/gated-path-planning-networks [5]. The Hard mazes are generated by controlling
the obstacle density not less than 46%, and the distance from start to goal not less than 1.

UR5 The UR5 contains a UR5 robot arm [8], which has 6 degrees of freedom. There are two sets
of boxes, poles and pads, which are set to generate in two different size range. The poles and pads
are randomly generated in the workspace for each problem.

Snake The Snake environment contains a snake robot with 5 sticks, with another 2 degrees for the
end position, which means 7D in total. The mazes are the same set of 2D mazes from NEXT.

2

https://github.com/NeurEXT/NEXT-learning-to-plan/tree/master/algorithm
https://github.com/NeurEXT/NEXT-learning-to-plan/tree/master/algorithm
https://github.com/RLAgent/gated-path-planning-networks
https://github.com/RLAgent/gated-path-planning-networks

Figure 1: Demonstrations of all our environments.

Kuka, Extended Kuka The Kuka environment contains a 7DoF Kuka arm with �xed base position.
The extended Kuka environment contains an extended 13DoF kuka arm. The boxes are randomly
generated in the workspace for each problem.

Dual Kuka The environment contains two 7DoF KUKA arms, with 14DoF in total. Each arm need
to reach the goal con�guration, while required to not only avoid collision with the obstacles but also
the other arm.

All the environments except the mazes are all implemented by PyBullet [3] with the MIT license.
The URDF �les are contained in our supplementary codes.

3 Tables for Overall Performance

Here we list the overall performances of all the methods on all the environments, including the
averaged value with the standard deviation.

Table 1: Success rate. Our algorithm bene�ts from the probabilistic complete property from the RGG,
which samples uniformly from free space,

Easy2D Hard2D UR5 Snake Kuka7D 13D 14D
GNN 1.00±0.00 1.00±0.00 0.96±0.00 1.00±0.00 0.99±0.00 0.99±0.00 0.99±0.00

GNN + Smoother 1.00±0.00 1.00±0.00 0.96±0.00 1.00±0.00 0.99±0.00 0.99±0.00 0.99±0.00
GNN w/o OE 1.00±0.00 1.00±0.00 0.96±0.00 1.00±0.00 0.99±0.00 0.99±0.00 0.99±0.00

GNN w/o OE + Smoother 1.00±0.00 1.00±0.00 0.96±0.00 1.00±0.00 0.99±0.00 0.99±0.00 0.99±0.00
BIT* 1.00±0.00 1.00±0.00 0.99±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
NEXT 0.99±0.00 0.97±0.00 0.37±0.00 0.72±0.01 0.88±0.01 0.61±0.01 0.67±0.00
RRT* 0.87±0.00 0.54±0.01 0.39±0.00 0.69±0.00 0.83±0.00 0.67±0.01 0.70±0.00

LazySP 1.00±0.00 1.00±0.00 0.99±0.00 1.00±0.00 0.99±0.00 0.99±0.00 0.99±0.00

Table 2: Collision check. GNN performs the best in most high dimensional problems.
Easy2D Hard2D UR5 Snake Kuka7D 13D 14D

GNN 336.25±3.71 715.65±6.76 2474.03±40.35 1602.16±22.66 350.52±8.29 521.70±44.58 486.95±12.99
GNN + Smoother 496.79±4.68 1029.72±8.33 5182.02±191.40 2813.75±15.01 477.32±9.06 830.95±49.06 791.78±14.27

GNN w/o OE 332.30±4.00 703.72±5.78 2556.63±49.91 1605.73±24.00 353.89±7.47 588.65±51.04 547.16±37.61
GNN w/o OE + Smoother 565.38±6.37 1126.02±9.91 3715.40±132.41 2757.88±62.64 466.06±6.70 820.70±55.97 789.25±36.54

BIT* 478.88±10.95 1253.56±15.38 4055.73±286.93 1612.22±78.85 1951.81±424.82 1175.42±287.68 1276.95±230.88
NEXT 270.23±13.92 1206.09±18.62 6461.13±14.31 4788.84±20.60 2488.49±33.76 4958.80±99.51 4559.99±21.92
RRT* 1785.46±27.93 4080.07±32.69 3135.36±4.03 3352.45±15.68 1698.04±28.34 3004.45±55.36 2796.99±13.89

LazySP 351.80±2.47 801.21±6.74 2742.12±113.08 1595.74±48.15 369.36±19.42 546.64±29.40 604.64±38.84

3

	More Details on GNN Architectures
	Obstacle Encoding
	Special Features

	Environments and Datasets
	Tables for Overall Performance
	Breakdown of the Total Planning Time
	Ablation Study
	Varying Training Set Size for Explorer
	Feature Choices
	GNN Smoother Versus Oracle Smoother
	Varying the k in k-NN
	Varying the Batch Size

	Hyperparameters
	Algorithms

