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1 Datasets1

We use univariate and multivariate time series datasets from the UCR archive [2]. We selected four2

univariate and four multivariate datasets with different characteristics, which are summarized in Table3

1. Additionally, in Section 4.3, we use two datasets that were used in Fourier Flows [1], Google4

stocks data and UCI Energy data, which we downloaded from the project’s Github repository.5

Table 1: Main characteristics of the datasets used.

Dataset Number of Samples Length of Time series No of Features Source

Crop 7200 46 1

URLNonInvasiveFetalECGThorax1 1800 750 1
PhalangesOutlinesCorrect 1800 80 1
FordA 3601 500 1

Stock 3585 100 1 URLEnergy 19635 100 1

Cricket 108 1197 6

URLDuckDuckGeese 50 270 1345
MotorImagery 278 3000 64
PhonemeSpectra 3315 217 11

2 Fourier-based loss6

As part of the training of our HyperTime architecture, we propose a Fourier spectrum reconstruction7

loss. For a discrete-time signal f = {f0 = f(0), f1 = f(1), . . . , fN = f(N)}, the N -point discrete8

Fourier transform (DFT) is utilized to obtain the corresponding frequency domain representation of f9

through the following operation:10

Fk = [FT {f}]k =

N−1∑
n=0

fne
−2πj( kn

N ), 0 ≤ k ≤ N − 1,

where j =
√
−1 corresponds to the imaginary unit of a complex number. The coefficient Fk ∈ C11

quantifies the strength in representation of the kth frequency component of the signal. The DFT has a12

time complexity of O(N2). In practice, an algorithm called the fast Fourier transform (FFT) is used13

to compute the DFT due to its lower time complexity (i.e., O(N logN)). Using the FFT to obtain the14

frequency domain representations of two discrete-time signals f and f̂ , we introduce a Fourier-based15
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reconstruction loss as follows:16

LFFT =
1

N

N−1∑
k=0

∥Fk − F̂k∥.

Here, we utilized the PyTorch implementation of the FFT to obtain the DFT for each signal. It is17

important to note that the DFT is only well-defined for regularly sampled signals. In the case of this18

work, the discrete-time signal f is obtained by deterministically sampling the function f(t) via a19

discretized grid of time steps t ∈ {0, 1, . . . , N}.20

3 Reconstruction21

Figure 1 shows the comparison of the losses for the univariate datasets encoded with implicit networks22

with different activation functions ans Figure 2 shows the reconstruction of random samples of each23

univariate dataset using an INR with Sine activation (SIREN).24

Figure 1: Comparison of implicit networks using different activation functions for univariate datasets.

Figure 2: SIREN reconstructions of random samples from each univariate dataset.

Additionally, Figure 3 shows the comparison of implicit networks using different activation functions25

for the multivariate datasets (in log scale), and Figure 4 shows the reconstruction of random samples26

of the multivariate dataset using SIREN. We do not show DuckDuckGeese because it contains over a27

1000 features.28
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Figure 3: Comparison of implicit networks using different activation functions for multivariate
datasets.

Figure 4: INR reconstructions of random samples from three multivariate datasets.

3.1 Implementation & Reproducibility Details29

We use a two-layer MLP architecture with 60 neurons for all experiments. For the univariate datasets30

we sample 300 time series from the available training samples or the maximum number of time series31

if the number is below 300. We train for 12000 epochs using Adam optimizer with a learning rate32

of 1e-4. With this configuration, it takes approximately 180 minutes to train 300 time series on a33

g4dn.2xlarge AWS instance with a NVIDIA T4 GPU.34

3.2 Code35

The code can be provided upon request and will be placed on a public repository after the revision36

period.37
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Figure 5: Random samples of generated time series using HyperTime, compared to random samples
of original time series.

4 Time Series Generation38

Figure 5 shows generated time series using HyperTime and compares it with random samples of39

original time series for different datasets. We can see that the generated time series show a strong40

resemblance with the original time series and is in line with the t-SNE visualization on Figure 5 of41

the paper.42

4.1 Baselines43

We use the following methods with publicly available code as benchmark for our method:44

• Fourier Flows [1]: https://github.com/ahmedmalaa/Fourier-flows45

• TimeGAN [3]: https://github.com/jsyoon0823/TimeGAN46

4.2 Implementation & Reproducibility Details47

HyperTime is composed of a set encoder corresponding to a SIREN with input dimension 2, two48

hidden layers of 128 neurons and an output layer (embedding) of 40 neurons. The decoder (hyper-49

network) is an MLP with ReLU activations with dimensions 40 × 128 × 7500. The output of the50

hypernetwork is a one-dimensional vector that contains the network weights of a SIREN with input51

dimension 1 and 3 hidden layers of 60 neurons.52

For the Phalanges and NonInv datasets we train for 300 epochs, with Adam optimizer and a learning53

rate of 5e− 5. The training takes approximately 210 and 110 seconds for each dataset, respectively.54

For Crop, Stock and Energy, we train for 1000 epochs, and the training times are approximately 655

min for the Crop and Stock dataset and 30 min for the Energy dataset. All experiments were run on a56

g4dn.2xlarge AWS instance with a NVIDIA T4 GPU.57
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