
A Training details

Both speaker and listener agents {✓symb, ✓rank,�vision,�text} are trained jointly during the training. All
the experiments are conducted on the training set of ImageNet [16], which has approximately 1.28
million images from 1000 classes. We create a training and validation split from the training set by
leaving aside 5% of the images for validation. After obtaining the final set of hyper-parameters, we
retrain on the entire training set for 100 epochs. We use Stochastic Gradient Descent (SGD) with
momentum and cosine learning rate scheduling. In order to train the stochastic component of the
Speaker, we use the straight-through trick [7]. We use linear warmup for learning rate for 30 epochs.
We also use a cosine schedule for temperature annealing for Gumbel Softmax, where we decrease the
temperature from 5.0 to 1.0 in first 50 epochs and then fix the temperature to 1.0 for rest of the epochs.
Please find the code and model (see the README file) attached in the supplementary material.

B More Ablations

Augmentations We perform an additional ablation study where we train the model on ImageNet
for 20 epochs with different augmentations removed and observed which ones have the most impact
on downstream classification task with kNN. The results are shown in the Table 3.

Batch Size In our experiments, we observed that higher batch size leads to both stable and improved
downstream performance which is intuitive since it allows for contrastive loss to be more accurate. In
all our experiments, we use the maximum batch size that could fit in 12GB GPU memory (128 images
per GPU). The contrastive loss is computed over the aggregate batch size over 4 GPUs (and hence
the effective batch size of 512 images). For larger batch sizes, we scale the learning rate linearly [25].
Table 4 below shows the downstream classification performance of the model at different batch sizes
(trained for 20 epochs).

Table 3: Ablation study for augmentations

Augmentation Top-1 (%)

Baseline 26.3
Remove color jitter 23.2
Remove random resized crops 22.9

Table 4: Ablation study for batch sizes

Batch Size Top-1 (%)

128 47.2
256 49.1
512 49.9

C Visualizing more symbols

Fig. 7 shows some additional examples of symbol ids and their possible meaning. We observed that
most symbol ids fire for consistent patterns. An interesting observation is that model doesn’t focus a
lot on the color but the textures and shapes in the images. One of the limitations of our approach is
the fixed-size grid used in the architecture which restricts the patch size to 32⇥ 32 or 16⇥ 16. This
restriction is important for the efficient training. However, it results in some symbols capturing only
partial concepts such as part of a face or text. In future works, we seek to address this limitation.

D Topographic Similarity

We analyse the topographic similarity between the learned messages and images from the validation
dataset as following: We take 10 random images from each category. Then we compute pairwise
Jaccard Similarity (JS) between all

�10
2

�
= 45 image pairs for that category. JS corresponds to a

simple intersection over union (IoU) of the set of symbols in the messages corresponding to two
images. This indicates how similar the images are with respect to message generated by the Speaker
(note that even though speaker generates a sequence of symbol, we analyse it as a set for this analysis).
For each pair, we also compute Learned Perceptual Image Patch Similarity (LPIPS) metric [82] using
off-the-shelf VGG model. We draw a scatter plot between the two similarity metrics as show in
Fig. 8 We observe that some categories, such as ‘toucan’, ‘filing cabinet’, and ‘crab’ have very high
correlation, while there are some categories with almost no correlation between LPIPS and Jaccard
similarity. The mean and median correlation across all categories is 0.25 and 0.21.
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Figure 7: Visualizing some more symbols. The number in the top row corresponds to one of the 128 vocabulary
ids (from 0-127). 6 representative patches corresponding to each patch are shown. The bottom row corresponds
to our interpretation of what concept that symbol might be capturing.

Figure 8: Topographic similarity computed as pairwise correlation between Jaccard similarity of messages
and LPIPS perceptual similarity of images [82]. The top row shows the 3 categories with highest topographic
similarity and the bottom row shows 3 categories with lowest topographic similarity. Note that the slope
coefficient is in the scientific notation a⇥ 10b

E Variable length messages

We analyze the number of symbols and number of unique symbols appearing in each message, as
illustrated in Fig. 9. Fig. 9a shows that that all each message has at least 7 unique symbols, without
any particular symbol excessively recurring within a message. No image uses more than 16 unique
symbols even though maximum allowable symbols that can be used by an image is 49 (from the
vocabulary of 128 symbols). Fig. 9b shows the distribution obtained when we consider all symbols
(and not just unique) for a message. The distribution looks like a gaussian and this is because of the
design choice we made in our architecture. Since for a given image, we sample the patch ranks from
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a normalized and sorted list of ranks, only about half of the symbols, end up getting selected and
hence the peak of the distribution is at 24-25 (half of 49).

(a) Unique symbols per message distribution (b) All symbols per message distribution

Figure 9: Analysis of Patch Symbols. We investigate the number of unique symbols appearing in an image (on
the x-axis). y-axis shows the number of images in the validation set with the corresponding number of unique
symbols. Most images use 13 unique symbols (maximum possible is 49) for representation.

F Relationship between length of messages and images

We try to analyze qualitatively the relationship between the images and the length of message
representation as generated by the speaker. We sort all the images in the validation set by the length of
the message and report some of the images with very long and very short message lengths in Fig. 10.
We observe that, on an average, images with lengthier messages appear more complex visually with a
lot of clutter or variety of objects in the image. Images with shorter message length usually have a
single object.

Msg Length = 36

Msg Length = 13

Figure 10: Complex images require long messages while visually simple images like the ones shown above can
be represented with short messages.

G Visualizing saliency maps and PatchRank

We qualitatively compare the patch ranks generated by our method with the corresponding saliency
maps generated using a standard technique. Since the saliency maps provide us with important
regions of an image, the patches deemed as important by our method should overlap with the said
salient regions. Note that the saliency method uses a supervised classification model and class label
to generate the pixelwise importance heatmap. Our method on the other hand generates these plots in
an unsupervised manner.

Following this hypothesis, we extract the saliency maps for the ImageNet validation set with the
XGradCAM [24] approach, using the ResNet-50 [31] model with true category labels obtained from
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official code repository. Fig. 11 illustrates the saliency maps and the patch ranks obtained for a few
such random ImageNet validation images. We observe that important patches ranked by our model
has a high correspondence with the salient regions of the images.

Figure 11: Comparison of saliency maps and the patch rank heatmaps based on importance for ImageNet
validation images. Red represents the most important patches and Blue the least important. For each set of
three images, the first, second and third sub-images correspond to the original image, saliency maps, and
patch heatmaps respectively. Note that the saliency method uses a supervised classification model and class
label to generate the pixelwise importance heatmap. Our method on the other hand generates these plots in an
unsupervised manner.

H Analyzing the symbol distribution

We investigate the distribution of the patch symbols generated with our method. For each image in
the ImageNet validation set, we compute the list of symbols generated by ✓symb. Then we calculate
the frequency that each symbol appear across the images in the validation set, as illustrated in Fig. 12.
Even though the distribution is not uniform, we observe that all symbols recur often, suggesting that
our generated symbols are not redundant. This complements our observation in Section 4.3 (Fig. 5 of
the manuscript) where we observed that there are some symbols that correspond some very common
textures and patterns such as grass or lines, while some symbols on the other hand capture more
specific concepts such as faces, or eyes.

Figure 12: Analysis of Patch Symbols. We investigate the distribution and characteristics of symbols generated
by our method for the ImageNet validation set. x-axis shows symbol ids (between 0 and 127), while y-axis
shows the number of times that symbol appeared in the representation of images in validation set. Symbols have
non-uniform rate of appearance in the images. However, most of the symbols are utilized by the model.
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I Positive Signaling - Visual Bag of Words Classification with ✓symb

Representing the image as visual bag of words is a well-known technique in image retrieval works [71].
Since our task is to represent image with words as well, we devise the following way to evaluate
the PatchSymbol module or ✓symb. For each image in the ImageNet training and validation set, we
compute the message or the list of symbols generated by ✓symb (and filtered according to ✓rank). We
then compute a feature for each image using the weighted frequency of symbols in the image or tf-

idf [35]. We then train a simple complement naive bayes classifier [64] on top of these feature vectors.
For benchmarking, we choose two prior works that encode images to symbols and have shown
strong results in generative modeling. VQ-VAE-2 or Vector Quantized Variational AutoEncoder was
initially proposed by Oord et al. [58] and later improved by Razavi et al. [63] for both conditional
and unconditional large scale image generation. We retrain the model for 100 epochs at 256⇥ 256
resolution used in the paper using [68]’s repository. PatchVAE by Gupta et al. [28] proposes a
structured variant of Variational AutoEncoders [41]. We use the authors’s code and retrain their
models for a 7 ⇥ 7 bottleneck (corresponding to S = 32 patch size), and a 14 ⇥ 14 bottleneck
(corresponding to S = 16 patch size), each for 100 epochs.

Table 5 shows the Top-1 and Top-5 % classification accuracies on ImageNet. The patch symbols gen-
erated with our method outperform those generated by VQ-VAE-2 and PatchVAE in the downstream
classification task by factors of 45% and 25% respectively. Note that classification accuracy is far
below the ones that can be obtained using standard techniques, however the goal of this evaluation is
to demonstrate that the symbols do capture meaningful information.

Table 5: Performance of Speaker’s PatchSymbol module ✓symb - Downstream classification accuracy for
ImageNet dataset using visual BoW method with Complement Naive Bayes

Method Top-1 (%) Top-5(%)

VQ-VAE2 [58] 0.88 (± 0.03) 5.02
PatchVAE [28] (S = 32) 1.02 (± 0.07) 4.48
PatchVAE [28] (S = 16) 1.00 (± 0.08) 5.04
Ours (S = 32) 1.28 (± 0.06) 6.10

Ours (S = 16) 1.20 (± 0.06) 5.94
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