
Under review as a conference paper at ICLR 2024

HYPEBOY: GENERATIVE SELF-SUPERVISED REPRE-
SENTATION LEARNING ON HYPERGRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

Hypergraphs are marked by complex topology, expressing higher-order interac-
tions among multiple nodes with hyperedges, and better capturing the topology
is essential for effective representation learning. Recent advances in generative
self-supervised learning (SSL) suggest that hypergraph neural networks (HNNs)
learned from generative self-supervision have the potential to effectively encode
the complex hypergraph topology. Designing a generative SSL strategy for hy-
pergraphs, however, is not straightforward. Questions remain with regard to its
generative SSL task, connection to downstream tasks, and empirical properties
of learned representations. In light of the promises and challenges, we propose
a novel generative SSL strategy for hypergraphs. We first present a generative
SSL task on hypergraphs, hyperedge filling, and highlight its theoretical connec-
tion to node classification. Based on the generative SSL task, we propose a hy-
pergraph SSL method, HYPEBOY. HYPEBOY learns effective general-purpose
hypergraph representations, outperforming 15 baseline methods across 11 bench-
mark datasets. To our knowledge, this is the first study on generative SSL on
hypergraphs, and we demonstrate its theoretical and empirical strengths for hy-
pergraph representation learning.

1 INTRODUCTION

Many real-world interactions occur among multiple entities, such as online group discussions on
social media, academic collaboration of researchers, and joint item purchases. Representing such
higher-order interactions with an ordinary graph can cause topological information loss (Dong et al.,
2020). Thus, hypergraphs have emerged as an effective tool for representing high-order interactions
in various domains, including recommender systems (Xia et al., 2022; Yu et al., 2021), financial
analysis (Sawhney et al., 2021; 2020), and drug analysis (Ruan et al., 2021; Saifuddin et al., 2023).

For representation learning on such a complex topology, hypergraph neural networks (HNNs) have
been developed. Training HNNs has primarily relied on task-related label supervision, such as
external node labels. However, simply learning from external supervision may limit HNNs from
capturing more complex patterns in hypergraph topology. Incorporating self-supervision related to
topology, hence, can substantially improve HNNs’ representation learning.

Particularly, generative self-supervised learning (SSL) holds promise for effective hypergraph repre-
sentation learning. Generative SSL has recently shown remarkable success in encoding complex pat-
terns in multiple domains. GPT (OpenAI, 2023) in natural language processing and Masked Autoen-
coder (He et al., 2022) in computer vision are notable examples. With generative self-supervision,
HNNs may encode complex topology more effectively, leading to improved representation learning.

However, designing a generative SSL strategy for hypergraphs is not straightforward. First, ques-
tions remain unanswered for generative SSL tasks: (1.a) What should be the target generative SSL
task for HNNs? (1.b) How does the generative SSL task relate to downstream tasks (e.g., node clas-
sification with external labels)? Second, even after determining the task, details of the SSL method
(based on the task) remain unspecified. (2.a) What empirical properties should the method aim to
satisfy? (2.b) How can it achieve effective general-purpose hypergraph representations? Moreover,
if not carefully designed, the generative SSL strategy can suffer from severe computational burden,
as the number of potential hyperedges approaches 2n, where n denotes the number of nodes.
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In light of the promises and challenges, we systematically investigate and propose a hypergraph
generative SSL strategy. To our knowledge, this is the first study on generative SSL for hypergraphs.
Our contributions and the rest of the paper are organized as follows:

• SSL Task: We formulate a novel generative SSL task, hyperedge filling, for hypergraph represen-
tation learning. Notably, we establish its theoretical connections to node classification (Section 3).

• SSL Method: Based on the hyperedge filling task, we propose HYPEBOY, a novel hypergraph
SSL method. HYPEBOY is designed to satisfy desirable properties of hypergraph SSL, mitigating
(1) over-emphasized proximity, (2) dimensional collapse, and (3) non-uniformity/-alignment of
learned representations (Section 4).

• Experiments: We demonstrate that HYPEBOY learns effective general-purpose hypergraph rep-
resentations. It significantly outperforms SSL-based HNNs in both node classification and link
prediction across 11 benchmark hypergraphs (Section 5; code and datasets are available at link).

2 RELATED WORK

In this section, we review the literature on hypergraph neural networks and self-supervised learning.

Hypergraph neural networks (HNNs). HNNs learn hypergraph representation. Converting hyper-
edges into cliques (fully connected subgraphs) allows graph neural networks to be applied to hyper-
graphs (Feng et al., 2019; Yadati et al., 2019). Such conversion, however, may result in topological
information loss, since high-order interactions (hyperedges) are reduced to pair-wise interactions
(edges). As such, most HNNs pass messages through hyperedges to encode hypergraphs. Some
notable examples include HNHN (Dong et al., 2020) with a hyperedge encoder, UniGNN (Huang
& Yang, 2021) with generalized message passing for graphs and hypergraphs, AllSet (Chien et al.,
2022) with a set encoder, ED-HNN (Wang et al., 2023a) with permutation-equivariant diffusion op-
erators, and PhenomNN (Wang et al., 2023b) with hypergraph-regularized energy functions. Note:
The discussed HNNs are hypergraph encoders, with no dedication to a particular loss objective. We
clarify that our interest is in designing a generative SSL strategy for hypergraphs, not new encoders.

Self-supervised learning (SSL). SSL strategies aim to learn representation from the input data
itself, without relying on external labels. They can largely be categorized into contrastive or gener-
ative types. Contrastive SSL aims to maximize the agreement between data obtained from diverse
views (Chen et al., 2020; Grill et al., 2020; You et al., 2020). Generative SSL, on the other hand,
predicts or reconstructs parts of the input data. Success of generative SSL demonstrates its strengths
in learning complex input data, in domains including natural language processing (Devlin et al.,
2019; OpenAI, 2023) and computer vision (He et al., 2022; Tong et al., 2022). Recently, generative
SSL for graphs has gained significant attention, with their main focuses on reconstructing edges (Tan
et al., 2023; Li et al., 2023) or node features (Hou et al., 2022; 2023). Note: Extending feature recon-
struction from graphs to hypergraphs can be direct, which serves as our baseline method. However,
it is non-trivial to extend the edge reconstruction methods for hyperedges (refer to Section 3.1).

Self-supervised learning on hypergraphs. The interest in SSL for hypergraphs is on the rise. Early
hypergraph SSL strategies mainly targeted specific downstream tasks, such as group (Zhang et al.,
2021) and session-based recommendation (Xia et al., 2022). Recent ones aim to obtain general-
purpose representation. TriCL (Lee & Shin, 2023) utilizes a tri-directional contrastive loss, which
consists of node-, hyperedge-, and membership-level contrast. Kim et al. (2023) enhances the scal-
ability of TriCL with a partitioning technique. HyperGCL (Wei et al., 2022) generates views for
contrast and empirically demonstrates its superiority over rule-based augmentation methods. Note:
(1) All the hypergraph SSL strategies are contrastive (rather than generative) and (2) no prior works
establish a clear theoretical connection between their SSL strategies and downstream tasks.

3 PROPOSED TASK AND THEORETICAL ANALYSIS

In this section, after providing some preliminaries, we propose a novel generative SSL task on
hypergraphs, hyperedge filling. Then, we establish a theoretical connection between hyperedge
filling and node classification, which is a commonly-considered important downstream task.

Preliminaries. A hypergraph G = (V, E) is defined by a node set V and a hyperedge set E . Each
hyperedge ej ∈ E is a non-empty set of nodes (i.e., ∅ ≠ ej ⊆ V,∀ej ∈ E). Each node vi ∈ V is
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Figure 1: Overview of (a) the hyperedge filling task and (b) HYPEBOY, the proposed SSL method
based on the task. The goal of the task is to find the missing node for a given query subset (i.e., the
other nodes in a hyperedge). HYPEBOY trains HNNs aiming to correctly predict the missing node.

equipped with a feature vector xi ∈ Rd, and X ∈ R|V|×d denotes the node feature matrix where the
i-th row Xi corresponds to xi.

A hypergraph neural network (HNN) fθ is a function that receives a node feature matrix X and a set
of hyperedges E as inputs to return nodes embeddings Z ∈ R|V|×k (i.e., Z = fθ(X, E), where θ is
the set of learnable parameters).1 Note: Hypergraph self-supervised learning (SSL) aims to train fθ
by utilizing only X and G, without any supervision from downstream task-related labels.

3.1 PROPOSED TASK: HYPEREDGE FILLING

We propose hyperedge filling, a generative SSL task for hypergraph representation learning. We first
define the task and discuss the superiority of the proposed task over alternatives. An illustration of
the hyperedge filling task is provided in Figure 1(a).

Task definition. Given a set of nodes, hyperedge filling aims to predict a node that is likely to form
a hyperedge with it. Specifically, for each hyperedge ej ∈ E , we divide it into a (missing) node
vi ∈ ej and a (query) subset qij = ej \ {vi}. Then, the target of the task is to correctly fill the
missing node vi for each given subset qij . This can be formalized by maximizing the probability of
vi correctly completing qij , which is denoted as p(X,E,Θ) (vi | qij), where Θ is a set of parameters
we aim to optimize in this task. We will further elaborate on our design of p(X,E,Θ)(·) in Section 4.3.

Advantage over alternatives. Potential alternatives include naive extensions of generative SSL
tasks for ordinary graphs: (a) generating hyperedges from scratch and (b) classifying given sets of
nodes into real and fake hyperedges. Compared to (a), by shifting the focus of prediction from the set
level (hyperedge itself) to the node level, the hyperedge filling task reduces the prediction space from
computationally prohibitive O(2|V|) to affordable O(|V|). Compared to (b), the hyperedge filling
task provides richer and more diversified generative SSL signals. Specifically, when considering a
single hyperedge ej , our task offers |ej | distinct node-subset combinations that can serve as SSL
signals. In contrast, predicting the mere existence of ej yields a singular and, thus, limited signal.

3.2 THEORETICAL RESULTS ON HYPEREDGE FILLING

To demonstrate the effect of hyperedge filling as a general SSL task, we present its theoretical
connection to node classification. In essence, we demonstrate that node representations optimized
for the hyperedge filling task can improve node classification accuracy. Then, we briefly discuss the
theoretical difficulty of the task, showing that it has reasonable solutions for every hypergraph.

3.2.1 BASIC SETTING

First, we assume a data model of a hypergraph G = (V, E), where (1) each node belongs to a single
class, (2) the features of each node are generated from a Gaussian distribution, and (3) each hyper-

1In this paper, we assume HNNs return only vector representations of nodes unless otherwise stated, while
we acknowledge that some HNNs return embeddings of hyperedges as well.
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edge is generated according to a given homophilic ratio P ∈ [0.5, 1].2 Specifically, if a hyperedge
has a higher homophilic ratio P, the hyperedge is more likely to contain nodes of the same class.
Assumption 1 (Node classes and features). Assume that there are 2N nodes and node classes C1

and C0 such that C1 ∪C0 = V, C1 ∩C0 = ∅, and |C1| = |C0| = N . Each node feature vector xi is
independently generated fromN (x;µ1,Σ) if vi ∈ C1, andN (x;µ0,Σ) if vi ∈ C0. For simplicity,
we assume µ1 = (0.5)di=1, µ0 = (−0.5)di=1, and Σ = I, where I is the d-by-d identity matrix.
Assumption 2 (Hypergraph topology). Assume that the number of hyperedges and the size of each
hyperedge are given. There is no singleton hyperedge (i.e., |ej | ≥ 2,∀ej ∈ E). Let B denote the
binomial distribution. Each hyperedge ej ∈ E has a membership cj ∈ {0, 1}, where cj ∼ B(1, 0.5).
Given the number |ej | of nodes and the class cj ∈ {0, 1} of a hyperedge, the number of its members
belonging to C1 satisfies |ej ∩ C1| ∼ B(|ej |,Pcj (1− P)1−cj ).

Second, we describe how node representations are updated via the hyperedge filling task. In this
theoretical analysis, we define the updating process of node representations as follows:

(F1) Filling probability p(X,E,Θ) (·) is defined on each node-subset pair as follows:

p(X,E,Θ) (vi | qij) :=
exp(xTi (

∑
vk∈qij xk))∑

vt∈V exp(xTt (
∑
vk∈qij xk))

. (1)

(F2) Node representation zi is obtained via gradient descent with respect to xi from L, which is the
negative log-likelihood of Eq. (1), (i.e., L = − log p(X,E,Θ) (vi | qij)). For ease of analysis,
we assume zi = xi − γ∇xi

L, where γ ∈ R+ is a fixed constant.

At last, we assume a Gaussian naive Bayes classifier F (Bishop, 2006), which is defined as:

F(xi) = argmax
k∈{0,1}

f(xi;µk, I), where f is the P.D.F. of N (x;µk,Σ). (2)

3.2.2 HYPEREDGE FILLING HELPS NODE CLASSIFICATION

Our goal is to show that for accurate classification of vi, the representation zi, which is obtained for
hyperedge filling as described in (F1) and (F2), is more effective than the original feature xi. First,
we assume a node vi belonging to the class C1 (i.e., vi ∈ C1), and we later generalize the result to
C0. Then, the effectiveness of an original feature is defined as the expected accuracy of a classifier
F with xi (i.e., Ex[1F(xi)=1] := Px (f(xi;µ1, I) > f(xi;µ0, I))). Similarly, that with a derived
representation is defined as Ez[1F(zi)=1] = Pz (f(zi;µ1, I) > f(zi;µ0, I)). Below, we show that
the effectiveness of a derived representation zi is higher than that of an original feature xi.
Theorem 1 (Improvement in effectiveness). Assume a hyperedge ej s.t. ej ∩ C1 ̸= ∅ and node
features X that are generated under Assumption 1. For a node vi ∈ ej ∩ C1, the following holds:

1⃗T
∑
vk∈qij

xk > 0 ⇒ Ez[1F(zi)=1] > Ex[1F(xi)=1], where 1⃗ denotes (1)dk=1. (3)

Proof. Full proof is provided in Appendix A.1.

Theorem 1 states that when a certain condition (boxed in Eq. (3)) is met, the effectiveness of zi is
greater than that of xi. This result implies that node representations, when refined using the objective
function associated with the hyperedge filling task, are more proficient in performing accurate node
classification compared to the original node features.

While the finding in Theorem 1 demonstrates the usefulness of the hyperedge filling task in node
classification, its validity relies on the specific condition. We further analyze the probability that the
condition is met by a stochastic G under Assumptions 1 and 2 for a given P.
Theorem 2 (Realization of condition). Assume node features X and a hyperedge ej s.t. (i) gener-
ated under Assumption 1 and 2 respectively, and (ii) ej ∩ C1 ̸= ∅. For any qij where vi ∈ C1 ∩ ej ,
the following holds:

2We set P ∈ [0.5, 1] because generation process (Assumption 2) is symmetric about P = 0.5 at P ∈ [0, 1]
under binary class setting.

4



Under review as a conference paper at ICLR 2024

W/O Projection head

W/    Projection head

Singular value rank index

L
o

g
 o

f 
s
in

g
u

la
r 

v
a

lu
e

s

(a) Representation spectrum
analysis. A sudden singular-value

drop implies dimensional collapse.

R
a

n
d

o
m

 

in
it

ia
li
z
a

ti
o

n
O

u
r 

m
e

th
o

d

Uniformity Class 0 Class 1 Class 3 Class 4

(b) Representations on the unit hypersphere. Uniformly distributed
representations achieve uniformity, and representations of nodes of

the same class located close to each other achieve alignment.

Figure 2: Analysis regarding Property 2 (avoiding dimensional collapse) and Property 3 (representa-
tion uniformity and alignment) of HYPEBOY. As shown in (a), while HYPEBOY without projection
heads (red) suffers from the dimensional collapse, HYPEBOY (blue) does not, demonstrating the ne-
cessity of the projection head. Furthermore, as shown in (b), representations from an HNN trained
by HYPEBOY meet both uniformity and alignment, justifying our design choice of the loss function.
Experiments are conducted on the Cora dataset.

1. Px,e

(
1T
∑
vk∈qij xk > 0

∣∣∣ P) ≥ 0.5,∀P ∈ [0.5, 1].

2. Px,e

(
1T
∑
vk∈qij xk > 0

∣∣∣ P) is a strictly increasing function w.r.t. P ∈ [0.5, 1].

Proof. Full proof is provided in Appendix A.2.

Theorem 2 states that the probability of the condition being satisfied is at least 0.5, if the homophilic
ratio P is at least 0.5. Moreover, the likelihood of satisfying the condition strictly increases with
respect to P. Notably, many real-world group interactions exhibit homophilic traits (Laakasuo et al.,
2020; Khanam et al., 2023). Therefore, the hyperedge filling task can improve node classification in
many real-world scenarios, as evidenced by our theoretical findings and real-world characteristics.

Generalization to the class C0. The above results can be easily generalized to the class C0 due to
the symmetry. Specifically, for each node vi ∈ C0, the effectiveness (spec., the expected accuracy
of the classifier F) of a derived representation zi is greater than that of an original feature xi under
a certain condition. The probability of such a condition holding strictly increases from 0.5 with
respect to the homophilic ratio P ∈ [0.5, 1]. We theoretically show this in Appendices A.1 and A.2.

3.2.3 EXISTENCE OF REASONABLE SOLUTIONS

If a task is too difficult, it could be excessively challenging for a model to learn meaningful repre-
sentations from the task. Fortunately, with a sufficiently large embedding dimension, our hyperedge
filling task has “reasonable” solutions for every hypergraph, as shown theoretically in Appendix B.1.

4 PROPOSED METHOD FOR HYPEREDGE FILLING

In this section, we present HYPEBOY (Hypergraphs, build own hyperedges), a hypergraph genera-
tive SSL method based on the proposed hyperedge filling task. HYPEBOY exhibits three desirable
properties of hypergraph generative SSL, as empirically demonstrated later:

Property 1. Does not over-emphasize proximity information (Veličković et al., 2019).

Property 2. Avoids dimensional collapse (Jing et al., 2022) in node representations.

Property 3. Learns node representation to be aligned and uniform (Wang & Isola, 2020).

Our proposed method, HYPEBOY, is illustrated in Figure 1(b). After presenting each of its step, we
discuss its role in satisfying the above properties. Lastly, we introduce a novel two-stage training
scheme for further enhancing HYPEBOY.
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4.1 STEP 1: HYPERGRAPH AUGMENTATION

HYPEBOY first obtains augmented feature matrix X′ and hyperedge set E ′ by using augmentation
functions τx and τE , respectively. The feature augmentation function τx : (X, pv) 7→ X′ masks
certain entries of X based on Bernoulli sampling (spec., X′ = X ⊙M, where ⊙ is an element-
wise product and Mij ∼ B(1, pv),∀i ∈ [|V|], j ∈ [d]). The topology augmentation function
τE : (E , pe) 7→ E ′ samples ⌈|E|(1 − pe)⌉ hyperedges uniformly at random from E . Note that the
magnitudes of feature and topology augmentations are proportional to pv, pe ∈ [0, 1], respectively.

Role. For hypergraph SSL, augmentations are crucial for mitigating overly-emphasized proximity
information. That is, using all hyperedges and/or features for both message passing and objective-
function construction may risk HNNs to heavily rely on direct neighborhood information (Tan et al.,
2023). Many graph SSL strategies mask certain input edges and/or node features, allowing their en-
coder models to not overfit to the neighbor distribution and features (Hou et al., 2022; Li et al., 2023;
Tan et al., 2023). Motivated by their findings, we employ the augmentation step. In Appendix E.1,
we demonstrate that augmentation enhances node classification performance of HYPEBOY.

4.2 STEP 2: HYPERGRAPH ENCODING

After augmentation, HYPEBOY obtains node and query subset representations. First, HYPE-
BOY obtains node embeddings Z ∈ R|V|×d′ by feeding the augmented hypergraph into an en-
coder HNN: Z = fθ(X

′, E ′). Then, HYPEBOY obtains projected representations of query subsets
(i.e., qij , vi ∈ ej , ej ∈ E) and nodes. To this end, we utilize a node projection head f ′

ϕ and a
set projection head f ′′

ψ . Specifically, projected embeddings of node vi and query subset qij are
hi = f ′

ϕ(zi) ∈ Rk and qij = f ′′
ρ (
∑
vt∈qij zt) ∈ Rk, respectively. Here, the design choice of a set

projection head is motivated by Deep Sets (Zaheer et al., 2017).

Role. We investigate the role of the projection heads, which are non-trivial components, in the con-
text of the dimensional collapse of embeddings. Dimensional collapse is a phenomenon in which
embedding vectors occupy only the lower dimensional sub-space of their full dimension (Jing et al.,
2022). This is identified by observing whether or not certain singular values of the embedding co-
variance matrix drop to zero. To prevent dimensional collapse, we employ projection heads in HY-
PEBOY, and this is in line with the prior findings of Jing et al. (2022) and Song et al. (2023).
Figure 2(a) illustrates that an HNN trained using HYPEBOY avoids dimensional collapse, whereas
an HNN trained with its variant (without projection heads) does not. Results on more datasets are in
Appendix E.2. Furthermore, we provide a theoretical analysis on why HYPEBOY without projection
heads may suffer from dimensional collapse in Appendix B.2. Note that this distinction leads to a
performance discrepancy in node classification (Section 5.3).

4.3 STEP 3: HYPEREDGE FILLING LOSS

The last step is to compute the SSL loss based on the hyperedge filling probability. We design
p(X,E,Θ) (vk | qij) to be normalized over V (i.e.,

∑
vk∈V p(X,E,Θ) (vk | qij) = 1). To this end,

we utilize a Softmax to model probabilities. In sum, with projected embeddings hi and qij (Sec-
tion 4.2), the probability of a node vi completing a query subset qij is defined as follows:

p(X,E,Θ) (vi | qij) :=
exp(sim(hi, qij))∑

vk∈V exp(sim(hk, qij))
, (4)

where sim is the cosine similarity function (other similarity functions are also applicable). Here,
HYPEBOY optimizes for all possible hyperedge filling cases (i.e., Πej∈EΠvi∈ejp(X,E,Θ) (vi | qij)).
Lastly, HYPEBOY minimizes the negative log-likelihood of all possible cases as follows:

L := −
∑
ej∈E

∑
vi∈ej

log
exp(sim(hi, qij))∑

vk∈V exp(sim(hk, qij))
. (5)

Note that the set Θ of all parameters consists of the parameters of the encoder HNN fθ, the node
projection head f ′

ϕ, and the set projection head f ′′
ρ (i.e., Θ = (θ, ϕ, ρ)). They are updated by gradient

descent, aiming to minimize the loss L defined in Eq. (5).
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Role. Our design choice of p(X,E,Θ)(·) ensures that representations learned via HYPEBOY achieve
both alignment and uniformity (Wang & Isola, 2020). In our case, alignment indicates that node
embeddings belonging to the same class are closely located to each other, and uniformity indicates
that embeddings are uniformly distributed over the embedding space. Through the numerator of
Eq. (5), HYPEBOY pulls representations of a missing node and a query subset, promoting the align-
ment as discussed in our theoretical analysis (Section 3.2). At the same time, the denominator of
Eq. (5) pushes away every node representation from each query subset representation, encouraging
that representations are uniformly distributed. This intuition is supported by the findings of Wang
& Isola (2020): the denominators of their contrastive loss, which push away representations from
each other, encourage uniformity. As shown in Figure 2(b), we verify that node representations from
HYPEBOY achieve both alignment and uniformity. Results on more datasets are in Appendix E.3.

4.4 TWO-STAGE TRAINING SCHEME FOR FURTHER ENHANCEMENT

We propose a novel two-stage training scheme to further enhance the effectiveness of HYPEBOY.

Challenges: heavy reliance on projection heads. In our preliminary studies, we observed that
during training, HYPEBOY often relies heavily on projection heads rather than the parameters of
encoder HNNs. Consequently, HNNs are pre-trained suboptimally.

Solution: warming-up encoders via feature reconstruction. To reduce this reliance on projection
heads, we introduce a warm-up training stage. Firstly, we train the parameters (i.e., the parameter
of an encoder HNN and projection heads), aiming for node-feature reconstruction, where projection
heads play a less prominent role. Then, the parameters of the encoder HNN (excluding the projection
heads) are employed to initialize the HNN encoder of HYPEBOY. This initialization strengthens the
HNN encoders, thereby reducing the reliance on projection heads. For details and effectiveness of
this warm-up stage, refer to Appendix D.3 and Section 5.3, respectively.

5 EXPERIMENTAL RESULTS

We now evaluate the efficacy of HYPEBOY as techniques for (1) pre-training hypergraph neural net-
works (HNNs) for node classification (Section 5.1) and (2) learning general-purpose representations
(Section 5.2). Then, we justify each of its component through an ablation study (Section 5.3).

Datasets. For experiments, we use 11 benchmark hypergraph datasets. The hypergraph datasets are
from diverse domains, expressing co-citation, co-authorship, computer graphics, movie-actor, news,
and political membership relations. In Appendix C, we detail their statistics and descriptions.

Baselines methods. We utilize 15 baseline methods. They include (a) 10 (semi-)supervised HNNs,
including ED-HNN (Wang et al., 2023a) and PhenomNN (Wang et al., 2023b), (b) 2 latest generative
SSL strategies for ordinary graphs (GraphMAE2 (Hou et al., 2023) and MaskGAE (Liu et al., 2022)),
and (3) 3 contrastive SSL strategies for hypergraph (TriCL (Lee & Shin, 2023), HyperGCL (Wei
et al., 2022), and H-GD, which is a direct extension of a graph SSL method (Zheng et al., 2022) to
hypergraphs). We use UniGCNII (Huang & Yang, 2021) and GCN (Kipf & Welling, 2017) as the
encoders for hypergraph SSL methods and graph SSL methods, respectively.3 In Appendix D, we
provide their details, including their implementations, training, and hyperparameters.

HYPEBOY. We employ UniGCNII as an encoder of HYPEBOY, which is the same as that of other
hypergraph SSL methods. For both node- and set projection heads, we use an MLP. Further details
of HYPEBOY, including its implementations and hyperparameters, are provided in Appendix D.3.

5.1 EFFICACY AS A PRE-TRAINING TECHNIQUE (FINE-TUNED EVALUATION)

Setup. Following Wei et al. (2022), we randomly split the nodes into training/validation/test sets
with the ratio of 1%/1%/98%, respectively.4 For reliability, we assess each method on 20 data
splits across 5 random initializations, as suggested in (Lee & Shin, 2023). We report the average
(AVG) and standard deviation (STD) of test accuracy values on each dataset. Specifically, for each

3We choose the encoders that achieve the best overall performances. In our preliminary study, we find that
UniGCNII and GCN generally work best and even outperform the encoders used in the original works.

4We ensure that a training set includes at least one node from each class.
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Table 1: Efficacy as pre-training techniques: AVG and STD of accuracy values in node classification
under the fine-tuning protocol. The best and second-best performances are colored green and yel-
low, respectively. R.G. and A.R. denote the random guess and average ranking among all methods,
respectively. O.O.T. means that training is not completed within 24 hours. HYPEBOY outperforms
all the baseline methods in 8 datasets, and overall, it obtains the best average ranking.

Method Citeseer Cora Pubmed Cora-CA DBLP-P DBLP-A AMiner IMDB MN-40 20News House A.R.

(S
em

i-)
Su

pe
rv

is
ed

R.G. 18.1 (0.9) 17.4 (1.0) 36.0 (0.7) 17.8 (0.7) 18.9 (0.2) 25.6 (1.0) 10.2 (0.2) 33.9 (0.7) 3.7 (0.2) 50.1 (1.3) 26.7 (0.3) 16.9
MLP 32.5 (7.0) 27.9 (7.0) 62.1 (3.7) 34.8 (5.1) 73.5 (1.0) 56.0 (4.9) 22.3 (1.7) 39.1 (2.4) 89.4 (1.5) 73.1 (1.4) 72.2 (3.9) 13.4

HGNN 41.9 (7.8) 50.0 (7.2) 72.9 (5.0) 50.2 (5.7) 85.3 (0.8) 67.1 (6.0) 30.3 (2.5) 42.2 (2.9) 88.0 (1.4) 76.4 (1.9) 52.7 (3.8) 10.0
HyperGCN 31.4 (9.5) 33.1 (10.2) 63.5 (14.4) 37.1 (9.1) 53.5 (11.6) 68.2 (14.4) 26.4 (3.6) 37.9 (4.5) 55.1 (7.8) 67.0 (9.4) 49.8 (3.5) 14.7

HNHN 43.1 (8.7) 50.0 (7.9) 72.1 (5.4) 48.3 (6.2) 84.6 (0.9) 62.6 (4.8) 30.0 (2.4) 42.3 (3.4) 86.1 (1.6) 74.2 (1.5) 49.7 (2.2) 11.9
UniGCN 44.2 (8.1) 49.1 (8.4) 74.4 (3.9) 51.3 (6.3) 86.9 (0.6) 65.1 (4.7) 32.7 (1.8) 41.6 (3.5) 89.1 (1.0) 77.2 (1.2) 51.1 (2.4) 9.1
UniGIN 40.4 (9.1) 47.8 (7.7) 69.8 (5.6) 48.3 (6.1) 83.4 (0.8) 63.4 (5.1) 30.2 (1.4) 41.4 (2.7) 88.2 (1.8) 70.6 (1.8) 51.1 (3.0) 13.0

UniGCNII 44.2 (9.0) 48.5 (7.4) 74.1 (3.9) 54.8 (7.5) 87.4 (0.6) 65.8 (3.9) 32.5 (1.7) 42.5 (3.9) 90.8 (1.1) 70.9 (1.0) 50.8 (4.3) 8.8
AllSet 43.5 (8.0) 47.6 (4.2) 72.4 (4.5) 57.5 (5.7) 85.9 (0.6) 65.3 (3.9) 29.3 (1.2) 42.3 (2.4) 92.1 (0.6) 71.9 (2.5) 54.1 (3.4) 9.8

ED-HNN 40.3 (8.0) 47.6 (7.7) 72.7 (4.7) 54.8 (5.4) 86.2 (0.8) 65.8 (4.8) 30.0 (2.1) 41.4 (3.0) 90.7 (0.9) 76.2 (1.2) 71.3 (3.7) 9.6
PhenomNN 49.8 (9.6) 56.4 (9.6) 76.1 (3.5) 60.8 (6.2) 88.1 (0.4) 72.3 (4.1) 33.8 (2.0) 44.1 (3.7) 95.9 (0.8) 74.0 (1.5) 70.4 (5.6) 3.9

Se
lf-

su
pe

rv
is

ed

GraphMAE2 41.1 (10.0) 49.3 (8.3) 72.9 (4.2) 55.4 (8.4) 86.6 (0.6) 69.5 (4.4) 32.8 (1.9) 43.3 (2.7) 90.1 (0.7) 71.9 (1.3) 52.8 (3.5) 8.4
MaskGAE 49.6 (10.1) 57.1 (8.8) 72.8 (4.3) 57.8 (5.9) 86.3 (0.5) 74.8 (3.1) 33.7 (1.6) 44.5 (2.5) 90.0 (0.9) O.O.T. 51.8 (3.3) 7.4

TriCL 51.7 (9.8) 60.2 (7.9) 76.2 (3.6) 64.3 (5.5) 88.0 (0.4) 79.7 (2.9) 33.1 (2.2) 46.9 (2.9) 90.3 (1.0) 77.2 (1.0) 69.7 (4.9) 3.4
HyperGCL 47.0 (9.2) 60.3 (7.4) 76.8 (3.7) 62.0 (5.1) 87.6 (0.5) 79.7 (3.8) 33.2 (1.6) 43.9 (3.6) 91.2 (0.8) 77.8 (0.8) 69.2 (4.9) 3.5

H-GD 45.4 (9.9) 50.6 (8.2) 74.5 (3.5) 58.8 (6.2) 87.3 (0.5) 75.1 (3.6) 32.6 (2.2) 43.0 (3.3) 90.0 (1.0) 77.2 (1.0) 69.7 (5.1) 5.8

HYPEBOY 56.7 (9.8) 62.3 (7.7) 77.0 (3.4) 66.3 (4.6) 88.2 (0.4) 80.6 (2.3) 34.1 (2.2) 47.6 (2.5) 90.4 (0.9) 77.6 (0.9) 70.4 (4.8) 1.7

SSL strategy, including HYPEBOY, we pre-train a backbone encoder with the corresponding SSL
scheme and then fine-tune the encoder in a (semi-)supervised manner.

Results. As shown in Table 1, HYPEBOY shows the best average ranking among all 17 methods.
Two points stand out. First, pre-training an HNN with HYPEBOY generally improves node clas-
sification. Compared to the performance of UniGCNII (HYPEBOY’s backbone encoder), HYPE-
BOY obtains performance gains up to 12.5 points in 10 out of 11 datasets. Second, HYPEBOY out-
performs all other SSL strategies. Specifically, compared to the second-best method (TriCL) the
accuracy gap is up to 5.0 points. In addition, the suboptimal performance of the SOTA generative
SSL strategies for graphs (i.e. GraphMAE2 and MaskGAE) implies the importance of preserving
higher-order interactions in learning hypergraph representations.5 In summary, HYPEBOY serves as
an effective SSL strategy to pre-train HNNs for node classification.

5.2 EFFICACY AS A GENERAL-PURPOSE EMBEDDING TECHNIQUE (LINEAR EVALUATION)

Setup. We assess the generalizability of learned representations from HYPEBOY in two downstream
tasks: node classification and hyperedge prediction. Considering this objective, we limit the base-
line methods to SSL strategies, which yield embeddings independent of downstream tasks, and the
original node features (i.e., naive X). We use the linear evaluation protocol, i.e., the embeddings are
used as fixed inputs to the classifiers for each task. For node classification, we use the same settings
described in Section 5.1. For hyperedge prediction, we split hyperedges into training/validation/test
sets by the ratio of 60%/20%/20%. For its evaluation, we obtain the same number of negative hy-
peredge samples as that of the ground-truth hyperedges (Patil et al., 2020). We report the average
(AVG) and standard deviation (STD) of test AUROC values on each dataset. Further experimental
details about hyperedge prediction, including negative sampling, are provided in Appendix D.3.

Results. As shown in Table 2, HYPEBOY has the best average ranking in both node classification
and hyperedge prediction. Specifically, in node classification, compared to the second-best method
(TriCL), the accuracy gap is up to 6.3 points. This demonstrates that HYPEBOY is more effective in
learning general-purpose hypergraph representations than the other SSL strategies on hypergraphs.

5.3 ABLATION STUDY

We analyze the necessity for each component of HYPEBOY, specifically, (a) the hyperedge filling
task (Section 3.1), (b) projection heads (Section 4.2), and (c) the feature reconstruction warm-up

5Representing higher-order interactions with a graph can cause the information loss (Dong et al., 2020).
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Table 2: Efficacy as general-purpose embedding techniques: AVG and STD of accuracy/AUROC
values in node-classification/hyperedge-prediction under the linear evaluation protocol. In each
downstream task, the best and second-best performances are colored green and yellow, respectively.
A.R. denotes the average ranking among all methods. O.O.T. means that training is not completed
within 24 hours. HYPEBOY obtains the best average ranking in both downstream tasks.

Method Citeseer Cora Pubmed Cora-CA DBLP-P DBLP-A AMiner IMDB MN-40 20News House A.R.

N
od

e
cl

as
si

fic
at

io
n Naive X 27.8 (7.0) 32.4 (4.6) 62.8 (2.8) 31.9 (5.5) 69.4 (0.7) 54.7 (4.7) 21.4 (1.2) 38.1 (1.9) 91.9 (1.1) 70.6 (1.9) 71.3 (5.4) 5.0

GraphMAE2 29.2 (6.5) 37.5 (7.0) 55.5 (9.5) 38.2 (9.1) 75.6 (1.7) 57.5 (5.6) 27.3 (2.7) 36.6 (3.5) 89.1 (1.8) 62.3 (2.3) 51.7 (3.5) 5.6
MaskGAE 47.2 (11.1) 56.8 (9.3) 62.6 (5.5) 56.0 (4.8) 84.8 (0.7) 75.1 (3.5) 33.2 (2.0) 44.1 (3.9) 90.5 (0.9) O.O.T. 50.0 (2.8) 4.4

TriCL 53.3 (10.0) 62.1 (8.8) 74.5 (4.1) 63.6 (5.2) 87.1 (0.7) 80.9 (3.2) 35.0 (3.6) 48.0 (3.2) 80.0 (5.1) 67.2 (4.0) 69.1 (5.5) 2.5
HyperGCL 42.6 (8.6) 61.8 (8.3) 67.6 (8.0) 58.1 (6.3) 56.6 (5.2) 79.8 (3.8) 33.3 (2.2) 47.5 (2.8) 84.1 (2.8) 71.2 (3.4) 67.1 (5.4) 3.8

H-GD 35.6 (7.8) 37.6 (6.8) 58.0 (8.2) 48.6 (7.4) 73.3 (1.3) 74.0 (3.3) 33.8 (5.0) 35.2 (2.9) 76.6 (4.4) 54.8 (7.4) 68.3 (5.7) 5.3

HYPEBOY 59.6 (9.9) 63.5 (9.4) 75.0 (3.4) 66.0 (4.6) 87.9 (0.5) 81.2 (2.7) 34.3 (3.2) 48.8 (1.8) 89.2 (2.2) 75.7 (2.1) 69.4 (5.4) 1.4

H
yp

er
ed

ge
pr

ed
ic

tio
n Naive X 63.3 (2.1) 75.5 (1.6) 88.3 (0.6) 55.0 (1.9) 90.0 (0.4) 72.1 (1.3) 80.0 (1.1) 39.5 (1.9) 99.5 (0.1) 97.7 (2.9) 54.8 (5.0) 5.8

GraphMAE2 73.3 (2.7) 76.4 (1.7) 81.6 (1.1) 76.3 (3.1) 85.2 (0.4) 68.3 (1.8) 80.7 (0.9) 53.7 (2.6) 99.5 (0.1) 90.1 (5.7) 62.9 (3.8) 5.5
MaskGAE 86.1 (1.6) 88.5 (1.4) 92.9 (0.5) 81.8 (2.7) 93.2 (0.5) 79.3 (2.0) 84.6 (0.1) 58.1 (2.5) 99.3 (0.1) O.O.T. 87.0 (3.4) 4.0

TriCL 90.5 (1.2) 90.7 (1.3) 91.9 (0.5) 87.8 (1.5) 94.8 (0.2) 87.9 (1.4) 90.4 (0.6) 58.9 (2.1) 99.6 (0.1) 98.2 (3.0) 90.0 (2.6) 1.8
HyperGCL 73.9 (2.6) 85.4 (1.5) 89.6 (0.5) 81.1 (1.9) 83.6 (0.6) 83.5 (1.0) 82.1 (7.6) 53.8 (2.4) 99.4 (0.1) 96.7 (7.0) 76.3 (6.3) 4.5

H-GD 72.2 (5.0) 71.9 (3.1) 87.2 (0.7) 73.2 (4.0) 91.6 (1.0) 81.4 (1.9) 84.9 (2.1) 53.1 (1.8) 99.5 (0.1) 83.9 (2.1) 87.9 (3.1) 4.9

HYPEBOY 91.1 (1.1) 91.9 (1.1) 95.1 (0.3) 88.1 (1.4) 95.5 (0.1) 87.3 (1.3) 89.8 (0.5) 59.4 (2.1) 99.7 (0.1) 99.0 (1.6) 87.0 (2.8) 1.4

Table 3: The ablation study with four variants of HYPEBOY on node classification under the fine-
tuning protocol. The best and second-best performances are colored green and yellow, respectively.
F.R., H.F., and P.H. denote Feature Reconstruction, Hyperedge Filling, and Projection Heads, re-
spectively. A.R. denotes the average ranking among all methods. HYPEBOY outperforms others in
most datasets, justifying each of its components.

F. R. H. F. P. H. Citeseer Cora Pubmed Cora-CA DBLP-P DBLP-A AMiner IMDB MN-40 20News House A.R.

V1 ✗ ✔ ✗ 51.6 (11.2) 60.7 (8.2) 76.2 (3.6) 63.5 (0.6) 88.1 (0.5) 78.5 (2.9) 33.5 (2.8) 46.8 (3.1) 90.0 (1.1) 77.4 (0.9) 68.5 (4.5) 4.1
V2 ✗ ✔ ✔ 52.7 (9.6) 59.7 (9.2) 76.7 (3.2) 63.5 (0.6) 88.2 (0.5) 79.1 (2.5) 33.8 (2.2) 46.9 (3.3) 90.6 (1.0) 77.0 (0.9) 69.6 (4.9) 3.2
V3 ✔ ✗ ✗ 52.0 (9.3) 58.9 (8.2) 74.1 (3.9) 61.2 (6.6) 87.8 (0.4) 79.9 (2.3) 33.9 (2.1) 46.3 (2.7) 91.4 (0.9) 77.5 (0.9) 70.1 (4.8) 3.6
V4 ✔ ✔ ✗ 56.0 (9.9) 61.8 (8.5) 76.5 (3.1) 65.3 (4.3) 88.0 (0.4) 80.3 (2.4) 34.0 (2.0) 47.5 (2.3) 90.8 (1.0) 77.4 (1.0) 69.3 (5.0) 2.5

Ours ✔ ✔ ✔ 56.7 (9.8) 62.3 (7.7) 77.0 (3.4) 66.3 (4.6) 88.2 (0.4) 80.6 (2.3) 34.1 (2.2) 47.6 (2.5) 90.4 (0.9) 77.6 (0.9) 70.4 (4.8) 1.3

(Section 4.4). To this end, we utilize four variants of HYPEBOY: (V1): without feature reconstruc-
tion warm-up and projection heads, (V2): without feature reconstruction warm-up6, (V3): without
the hyperedge filling process, and (V4): without projection heads. Here, projection heads are used
only for methods with the hyperedge filling process. Note that (V3) is a direct extension of feature
reconstructing SSL methods for graphs to hypergraphs.

As shown in Table 3, HYPEBOY, equipped with all of its components, outperforms the others in
most datasets, demonstrating the effectiveness of our design choices. There are two other notable
results. First, the necessity of projection heads is evidenced by the superior performance of V2
(compared to V1) and ours (compared to V4). Second, the advantage of the hyperedge filling task
over feature reconstruction is manifested by the better average rank of V2 compared to V3.

6 CONCLUSION

In this work, we conduct a comprehensive analysis of generative self-supervised learning on hyper-
graphs. Our contribution is three-fold. First, we propose the hyperedge filling task, a generative
self-supervised learning task on hypergraphs, and investigate the theoretical connection between the
task and node classification (Section 3). Second, we present a generative SSL method HYPEBOY
to solve the proposed task (Section 4). Third, we demonstrate the superiority of HYPEBOY over
existing SSL methods on hypergraphs through extensive experiments (Section 5). Code and datasets
are available at link.

6In order to mitigate an issue of over-relying on projection heads (Section 4.4), we have trained an encoder
without projection heads at the beginning, and after some epochs, we train the encoder with projection heads.
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A APPENDIX

In this section, we provide a proof of each theorem. For notational simplicity, we denote the condi-
tional probability of A given B, which is originally denote as p (A | B), as p(A : B).

A.1 PROOF OF THEOREM 1

Proof. We first analyze a node vi that belongs to C1 (i.e., vi ∈ C1). By definition, Ex[1F(xi)=1] =
Px (f(xi;µ1, I) > f(xi;µ0, I)) holds. Thus, Ex[1F(xi)=1] is determined by the distribution of
f(xi;µ1, I) > f(xi;µ0, I), where a random variable is xi. The exact formula of this inequality is
derived as follows:

f(xi;µ1, I) > f(xi;µ0, I),

≡ exp(−(xi − µ1)
T (xi − µ1)) > exp(−(xi − µ0)

T (xi − µ0)),

≡(xi − µ1)
T (xi − µ1) < (xi − µ0)

T (xi − µ0),

=xTi xi − 2µT1 xi + µT1 µ1 < xTi xi − 2µT0 xi + µT0 µ0,

≡(µ1 − µ0)
Txi + µT0 µ0 − µT1 µ1 > 0 ≡ 1⃗Txi > 0, ∵ definition of µ1 and µ0 in Assumption 1.

Thus, Ex[1F(xi)=1] is equivalent to Px(1⃗
Txi > 0). In a similar sense, Ex[1F(zi)=1] is equivalent

to Px(1⃗
Tzi > 0), since as mentioned in Section 3.2, zi is a function of xk,∀vk ∈ V .

Now, we present an exact form of zi. Since zi = xi− γ∇xi
L holds by (F2), we first induce∇xi

L:

∇xi
L =

∂
(
− log(p(X,E,Θ) (vi : qij))

)
∂xi

=

∂

(
− log

(
exp(xT

i (
∑

vk∈qij
xk))∑

vt∈V exp(xT
t (

∑
vk∈qij

xk))

))
∂xi

, (6)

= −
∂
(
xTi (

∑
vk∈qij xk)

)
∂xi

+
∂
(
log
(∑

vt∈V exp(xTt (
∑
vk∈qij xk))

))
∂xi

, (7)

= −

 ∑
vk∈qij

xk

+
exp(xTi (

∑
vk∈qij xk))∑

vt∈V exp(xTt (
∑
vk∈qij xk))

 ∑
vk∈qij

xk

 , (8)

= −

(
1−

exp(xTi (
∑
vk∈qij xk))∑

vt∈V exp(xTt (
∑
vk∈qij xk))

) ∑
vk∈qij

xk

 . (9)

By Eq (9), zi can be expressed as a function of xk,∀vk ∈ V , as follows:

zi = xi + γ

(
1−

exp(xTi (
∑
vk∈q xk))∑

vt∈V exp(xTt (
∑
vk∈q xk))

)
︸ ︷︷ ︸

(Term 1)

(∑
vk∈q

xk

)
. (10)

Let x′
q denotes

∑
vk∈qij xk. Furthermore, denote (Term 1) in Eq (10) as f(x) ∈ (0, 1). Then, we

rewrite Eq (10) as zi = xi + γ (1− f(x))x′
q . We finally rewrite 1⃗Tzi as follows:

1⃗Tzi = 1⃗Txi + γ(1− f(x))1⃗Tx′
q. (11)

Let β denotes 1⃗Tx′
q . Note that by the statement of Theorem 1, 1⃗Tx′

q > 0 ≡ β > 0 holds. Thus,
our main interest, which is Px(1⃗

Tzi > 0), can be rewritten as follows:

Px

(
1⃗Tzi > 0

)
= Px

((
1⃗Txi + γ(1− f(x))β

)
> 0
)
. (12)

13



Under review as a conference paper at ICLR 2024

Note that when 1⃗Txi > 0 holds, 1⃗Tzi > 0 holds as well, since γ(1 − f(x))β > 0 holds. Thus,
Eq (12) is split as follows:

Px

(
1⃗Tzi > 0

)
= Px

(
1⃗Txi > 0

)
+ Px

(
−γ(1− f(x))β < 1⃗Txi < 0

)
,

= Ex[1F(zi)=1] = Ex[1F(xi)=1]︸ ︷︷ ︸
(a) Expected accuracy of naive xi

+Px

(
−γβ <

1⃗Txi
(1− f(x))

< 0

)
.︸ ︷︷ ︸

(b) Additional gain via hyperedge filling

(13)

Note that the gain term, which is the (b) term of Eq (13), is always greater than zero.

Generalizing to vi ∈ C0. Now, we analyze a node vi that belongs to C0 (i.e., vi ∈ C0). In this case,
the previous condition 1⃗Tx′

q > 0 ≡ β > 0 becomes 1⃗Tx′
q < 0 ≡ β < 0. In a similar sense, for the

expected accuracy: Px

(
1⃗Tzi > 0

)
is changed as Px

(
1⃗Tzi < 0

)
. In this setting, we can directly

extend the result of Eq (12) as follows:

Px

(
1⃗Tzi < 0

)
= Px

((
1⃗Txi + γ(1− f(x))β

)
< 0
)
. (14)

By employing the above proof, we can obtain the following result (note that β < 0 in this case):

Px

(
1⃗Tzi < 0

)
= Px

(
1⃗Txi < 0

)
+ Px

(
0 < 1⃗Txi < −γ(1− f(x))β

)
,

= Ex[1F(zi)=0] = Ex[1F(xi)=0]︸ ︷︷ ︸
(a) Expected accuracy of naive xi

+Px

(
−γβ <

1⃗Txi
(1− f(x))

< 0

)
.︸ ︷︷ ︸

(b) Additional gain via hyperedge filling

(15)

Thus, we can derive the same result for vi ∈ C0 also.

A.2 PROOF OF THEOREM 2.

Remark. We have denoted the homophilic ratio in Assumption 2 as P to distinguish it from the
hyperedge filling probability p(X,E,Θ). In this proof, by allowing a slight duplication in notation, we
let P := p, since we do not use p(X,E,Θ) in this proof. In addition, we let ej := e and qij := q.

Proof. We first derive the functional form of Px,e

(
1⃗T
(∑

vk∈q xk

)
> 0 : p

)
. By the condition of

the theorem such that vi ∈ ej ∩ C1, the following holds:

Px,e

(
1⃗T

(∑
vk∈q

xk

)
> 0 : p

)
=

Px,e

(
1⃗T
(∑

vk∈q xk

)
> 0, vi ∈ e : p

)
Pe (vi ∈ e : p)

. (16)

It is important to note that if the number of nodes that belong to both C1 and ej is decided, denoted by

s (i.e., s = |e∩C1|), the distribution of 1⃗T
(∑

vk∈q xk

)
is automatically decided, since xt,∀vt ∈ V

is independently generated from Gaussian distribution, whose mean vector is decided according to
the class of the corresponding node. This is because for a given s, and by letting the size of the
hyperedge e as S (i.e., |e| = S),

∑
vk∈q xk ∼ N ((2s−1−S)µ1, (S−1)I) holds. From this result,

the following two results are induced:

1⃗T

(∑
vk∈q

xk

)
∼ N

(
(2s− 1− S)d

2
, (S − 1)d

)
, (17)

Px

(
1⃗T

(∑
vk∈q

xk

)
> 0 : s

)
= Φ

(
(2s− S − 1)

√
d

4(S − 1)

)
. (18)

14
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Thus, we rewrite Eq (16) as follows:

≡
S∑
s=0

Px,e

(
1⃗T
(∑

vk∈q xk

)
> 0, s, vi ∈ e

)
Pe (vi ∈ e : p)

, (19)

=

S∑
s=0

Px

(
1⃗T
(∑

vk∈q xk

)
> 0 : s

)
× Pe(s, vi ∈ e)

Pe (vi ∈ e : p)
. (20)

By Assumption 2, each Pe(s, vi ∈ e) is derived as follows7:

Pe(s, vi ∈ e : p) =

(
S

s

)ps(1− p)S−s

2︸ ︷︷ ︸
prob. of s at c = 1

+
(1− p)spS−s

2︸ ︷︷ ︸
prob. of s at c = 0


(
1−

(
N−1
s

)(
N
s

) )︸ ︷︷ ︸
prob. of vi ∈ C1 ∩ e

. (21)

By using Eq (21), we derive Pe(vi ∈ e : p) as follows:

Pe(vi ∈ e : p) =
S∑
s=0

(
S

s

)(
ps(1− p)S−s

2
+

(1− p)spS−s

2

)(
1−

(
N−1
s

)(
N
s

) ), (22)

=

S∑
s=0

(
S

s

)(
ps(1− p)S−s

2
+

(1− p)spS−s

2

)
s

N
, (23)

=
1

N

S∑
s=0

(
S

s

)sps(1− p)S−s

2︸ ︷︷ ︸
s∼B(S,p)

+
s(1− p)spS−s

2︸ ︷︷ ︸
s∼B(S,1−p)

, (24)

=
1

N

(
Sp

2
+

S(1− p)

2

)
,∵ each is an expectation function, (25)

=
S

2N
. (26)

With the result of Eq (26) and Eq (18), we rewrite Eq (20) as follows:

≡ 2N

S

S∑
s=0

(
S

s

)(
ps(1− p)S−s

2
+

(1− p)spS−s

2

)
s

N
Φ

(
(2s− 1− S)

√
d

4(S − 1)

)
, (27)

=
1

S

S∑
s=0

(
S

s

)
s
(
ps(1− p)S−s + (1− p)spS−s

)
Φ

(
(2s− 1− S)

√
d

4(S − 1))

)
. (28)

Note that our main function, which is Px,e

(
1⃗T
(∑

vk∈q xk

)
> 0 : p

)
, is equal to Eq (28). Here,

one can easily verify that Eq (28) is equivalent to the first statement of the theorem.

Now, we show the first and second statements of the theorem. Here, we first show the second
statement, and from the result, we further prove the first statement.

Second statement. Now, we further rewrite Eq (28) by adequately mixing two binomial functions.
For simplicity, we denote Φ((2s−1−S)

√
d

4(S−1) ) as ϕ(s), since Φ(·) only depends on s, and other
terms are fixed constants. We rewrite Eq (28) as follows:

=
1

S

S∑
s=0

(
S

s

)
s
(
ps(1− p)S−s + (1− p)spS−s

)
ϕ(s), (29)

=
1

S

S∑
s=0

(
S

s

)
sps(1− p)S−sϕ(s)︸ ︷︷ ︸

(Term 1)

+
1

S

S∑
s=0

(
S

s

)
s(1− p)s(p)S−sϕ(s)︸ ︷︷ ︸

(Term 2)

. (30)

7prob. indicates probability.

15
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We define s′ := (S − s). Due to the symmetric characteristic of the binomial function and standard
Gaussian distribution, we can rewrite (Term 2) in Eq (30) as follows:

≡ 1

S

S∑
s′=0

(
S

s′

)
ps

′
(1− p)S−s

′
(S − s′)Φ

(
(S − 2s′ − 1)

√
d

4(S − 1)

)
. (31)

Since we can regard s and s′ as equivalent terms in our framework, we add (Term 1) of Eq (30) and
Eq (31) as follows:

=
1

S

S∑
s=0

(
S

s

)
ps(1−p)S−s

[
(S − s)Φ

(
(S − 2s− 1)

√
d

4(S − 1)

)
+ sΦ

(
(2s− S − 1)

√
d

4(S − 1)

)]
︸ ︷︷ ︸

Term (a)

.

(32)

We aim to show that Eq (32) is a strictly increasing function w.r.t. p ∈ [0.5, 1]. For simplicity, we
let K :=

√
d/(4(S − 1)). We first discard 1/(S + 1) from Eq (32) for simplicity, since 1/(S +

1) is a constant, which is independent of the increasing/decreasing of values. When we do not
consider Eq (32) Term (a), Eq (32) is equivalent to 1, and this is a probability distribution of binomial
distribution.

That is, we can think of Eq (32) as a weighted average of the following values:[
(S − s)Φ ((S − 2s− 1)K) + sΦ ((2s− S − 1)K)

]
,∀s ∈ {0, 1, · · · , S}. (33)

Specifically, we denote
(
S
s

)
ps(1 − p)S−s as a weight of

[
(S − s)Φ ((S − 2s− 1)K) +

sΦ ((2s− S − 1)K)
]
. Note that values of Eq (33) and their weights are both symmetric about

s = S/2: s and S − s have the same value. Thus, we can rewrite Eq (32) for an even number S as:

≡
S∑

s=⌊S/2⌋

(
S

s

)
(ps(1− p)S−s + (1− p)spS−s)

×
[
(S − s)Φ ((S − 2s− 1)K) + sΦ ((2s− S − 1)K)

]
. (34)

While this formulation is for an odd number S, we can extend further results to an even number S.

We first show that Eq (33) is an increasing function w.r.t. s ∈ {⌊S/2⌋, ⌊S/2⌋+ 1, · · · , S}. For two
cases where s = k and s = k + 1, their Eq (33) is compared as follows:[

(S − k − 1)Φ (S − 2k − 3) + (k + 1)Φ (2k − S + 1)
]

(35)

>
[
(S − k)Φ (S − 2k − 1) + kΦ (2k − S − 1)

]
, (36)

≡ k (Φ (2k − S + 1)− Φ (2k − S − 1)) + Φ (2k − S + 1) (37)
> (S − k) (Φ (S − 2k − 1)− Φ (S − 2k − 3)) + Φ (S − 2k − 3) , (38)

By the condition of s ≥ ⌊S/2⌋, k > S − k holds. Furthermore, by the charac-
teristic of the CDF of standard normal distribution, (Φ (2k − S + 1)− Φ (2k − S − 1)) >
(Φ (S − 2k − 1)− Φ (S − 2k − 3)) holds. Moreover, since s ≥ ⌊S/2⌋, Φ (2k − S + 1) >
Φ (S − 2k − 3) also holds. In sum, Eq (35) > Eq (36) holds, and this result implies that Eq (33) is
an increasing function w.r.t. s ∈ {⌊S/2⌋, ⌊S/2⌋+ 1, · · · , S}.
Since greater s has a higher value of Eq (33), we can naturally conclude that Eq (34), which is our
goal function, is an increasing function w.r.t. p if weights are more assigned to the terms related to
the higher s as p increases. This idea is formalized as: ∃s∗ ∈ {⌊S/2⌋, · · · , S}, s.t. ∂w(p, s)/∂p >

0,∀s ≥ s∗ and ∂w(p, s)/∂p < 0,∀s ≤ s∗, where w(p, s) =
(
S
s

) (
ps(1− p)S−s + (1− p)spS−s

)
.

To this end, we derive the first derivative of w(p, s):

∂ω(p, s)

∂p
=

(
S

s

)
( sps−1(1− p)S−s︸ ︷︷ ︸

(a)

− (S − s)ps(1− p)S−s−1︸ ︷︷ ︸
(b)

(39)

− s(1− p)s−1pS−s︸ ︷︷ ︸
(c)

+(S − s)(1− p)spS−s−1︸ ︷︷ ︸
(d)

). (40)

16
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We then compute (a) + (b) and (c) + (d) respectively, and sum them up as follows:

(a) + (b) = ps−1(1− p)S−s−1(s(1− p)− (S − s)p), (41)

= ps−1(1− p)S−s−1(s− sp− Sp+ sp), (42)

(c) + (d) = (1− p)s−1pS−s−1(−sp+ (S − s)(1− p)), (43)

= (1− p)s−1pS−s−1(−sp+ (S − s)− Sp+ sp), (44)

(a) + (b) + (c) + (d) = ps−1(1− p)S−s−1(s− Sp) + (1− p)s−1pS−s−1(S − s− Sp). (45)

Remark. When p = 1/2, Eq (45) = 0 holds, which means that if Eq (32) turns out to be an
increasing function w.r.t. p, Eq (32) has its minimum value at p = 1/2. Thus, we narrow down the
range of p as p > 1/2.

Moving on to our main object, first, we find s∗ such that Eq (45) = 0 holds. We utilize the logarithm
function to simplify the computation (note that

(
S
s

)
is canceled out).

≡ p(s−1)(1− p)S−s−1(s− Sp) = (1− p)(s−1)pS−s−1(s− S + Sp), (46)
≡ (s− 1) log p+ (S − s− 1) log (1− p) + log (s− Sp) =

(s− 1) log (1− p) + (S − s− 1) log p+ log (s− S + Sp),

= (s− 1) log (
p

1− p
) + (S − s− 1) log

1− p

p
+ log

s− Sp

s− S(1− p)
= 0,

= (2s− S) log
p

1− p︸ ︷︷ ︸
Term (a)

+ log
s− Sp

s− S(1− p)︸ ︷︷ ︸
Term (b)

= 0. (47)

However, it is hard to obtain the exact solution of Eq (47). Instead, we analyze the formula of Term
(a) + Term (b) in Eq (47), which is expressed as below:

(2s− S) log
p

1− p
+ log

s− Sp

s− S(1− p)
. (48)

To show the required conditions, it is enough to show that Eq (48) < 0 holds at s = S/2, and Eq (48)
> 0 holds at s = S. This is because since Eq (48) is an increasing function w.r.t. s, the above two
conditions imply that there exists a s∗, which is our interest, between S/2 and S. Thus, we finalize
the proof by showing that at s = S/2, Eq (48) < 0 holds and at s = S, Eq (48) > 0 holds.

When plugging S/2 to s, 2s−S gets zero. Since p > 1/2 is given, log s−Sp
s−S(1−p) becomes negative.

Thus, we have demonstrated the first claim. We now plug S into s and obtain the following result:

≡ (2S − S) log
p

1− p
+ log

S − Sp

S − S(1− p)
> 0, (49)

≡ S log
p

1− p
+ log

S(1− p)

Sp
> 0, (50)

≡ S log
p

1− p
− log

p

1− p
> 0, (51)

≡ (S − 1) log
p

1− p
> 0. (52)

Thus, we can conclude that Eq (32), which is our interest, is an increasing function w.r.t. p > 1/2,
and has its minimum value at p = 1/2.

Now, we show that the above proof can also be applied to an even number S. Note that for an even
number S, Eq (32) is equal to the addition of Eq (34) that starts with s = S/2 + 1 and Eq (53),

w(p, s) =

(
S
S
2

)
× S

2
× p

S+1
2 (1− p)

S+1
2 . (53)
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Specifically, if we obtain ∂w(p, s)/∂p, we get

∂w(p, s)

∂p
=

((
S
S
2

)
× S

2

)
×
(
S

2
p

S−2
2 (1− p)

S−2
2 (1− 2p)

)
≤ 0,∀p ∈ [0.5, 1]. (54)

Since the sign of ∂w(p, s)/∂w(p, s) remains unchanged for s = S + 1/2, our proof is still valid for
an even number S.

First statement. From the above proof, we now show the lower bound of Eq (27), which is the first
statement. As described on Remark in A.2, the value of Eq (27) (equivalent to Eq (32)) is minimized
at p = 0.5. Thus, we show the statement by finding the lower bound of Eq (28) at p = 0.5, by again
denoting K :=

√
d

4(S−1) , as follows:

=
1

S

S∑
s=0

(
S

s

)
s
(
ps(1− p)S−s + (1− p)spS−s

)
Φ

(
(2s− 1− S)

√
d

4(S − 1))

)
, (55)

=
1

S

S∑
s=0

(
S

s

)
2s

(
1

2

)S
Φ ((2s− S − 1)K) . (56)

First, consider an even number S. Then, for Φ((2s − S − 1)K),∀s ∈ {1, · · · , S}, consider the
below relations:

1Φ(−S + 1)︸ ︷︷ ︸
(a1)

+2Φ(−S + 3)︸ ︷︷ ︸
(b1)

+ · · ·+ (S − 1)Φ(S − 3)︸ ︷︷ ︸
(b2)

+S Φ(S − 1)︸ ︷︷ ︸
(a2)

. (57)

In Eq (57), (a1) + (a2) = 1 holds, and (b1) + (b2) = 1 holds also. In this manner, we can pair
all terms in Eq 57. If we take a closer look at this, pairs have a relation of: k11k12 + k21k22 such
that k11 + k21 = S, k12 + k22 = 1, k11 < k12, and k21 < k22 hold. Note that k11k12 + k21k22
is lower-bounded by k11+k21

2 since distributing the weight of a larger value to a smaller value will
decrease the overall value. From this result, we can obtain a lower bound of Eq (57) as follows:

1

S

S∑
s=0

(
S

s

)
2s

(
1

2

)S
Φ ((2s− S − 1)K) ≥ 1

S

S∑
s=0

(
S

s

)
2s

(
1

2

)S
1

2
= 0.5. (58)

Now, we consider an odd number S. Similar things also happen in this case, but there is a term
s = S+1

2 ; Φ(0) that does not have any pair. On the other hand, since Φ(0) = 0.5, we can still ensure
Eq (58) holds in this case. Thus, we have derived that regardless of the fact whether S is an odd or
even number, Eq (28) at p = 0.5 is lower-bounded by 0.5, which is a global lower bound of Eq (28).
Thus, the first statement has been proven.

Generalization to vi ∈ C0. Note that the required condition for the improvement in vi ∈ C0 is
1T
∑
vk∈q xk < 0. Thus, we further investigate Px,e

(
1T
∑
vk∈q xk < 0

∣∣∣ P), where vi ∈ e and
q = e \ {vi} (refer to Remark). First, let s denote the number of nodes that belong to both ej and
C0. Note that we aim to investigate the following probability:

Px,e

(
1⃗T

(∑
vk∈q

xk

)
< 0 : p

)
=

Px,e

(
1⃗T
(∑

vk∈q xk

)
< 0, vi ∈ e : p

)
Pe (vi ∈ e : p)

. (59)

Here, the following holds: ∑
vk∈q

xk ∼ N ((2s− 1− S)µ0, (S − 1)I), (60)

1⃗T

(∑
vk∈q

xk

)
∼ N

(
− (2s− 1− S)d

2
, (S − 1)d

)
, (61)

Px

(
1⃗T

(∑
vk∈q

xk

)
< 0 : s

)
= Φ

(
(2s− S − 1)

√
d

4(S − 1)

)
. (62)
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Note that Eq. (62) is equivalent to Eq. (18). Moreover, the following also holds:

Pe(s, vi ∈ e : p) =

(
S

s

)ps(1− p)S−s

2︸ ︷︷ ︸
prob. of s at c = 0

+
(1− p)spS−s

2︸ ︷︷ ︸
prob. of s at c = 1


(
1−

(
N−1
s

)(
N
s

) )︸ ︷︷ ︸
prob. of vi ∈ C0 ∩ e

. (63)

Here again, Eq. (21) is equivalent to Eq. (63). Finally, we can guarantee that Eq. (59) is as follows:

≡
S∑
s=0

Px

(
1⃗T
(∑

vk∈q xk

)
> 0 : s

)
× Pe(s, vi ∈ e)

Pe (vi ∈ e : p)
, (64)

≡2N

S

S∑
s=0

(
S

s

)(
ps(1− p)S−s

2
+

(1− p)spS−s

2

)
s

N
Φ

(
(2s− 1− S)

√
d

4(S − 1)

)
, (65)

=
1

S

S∑
s=0

(
S

s

)
s
(
ps(1− p)S−s + (1− p)spS−s

)
Φ

(
(2s− 1− S)

√
d

4(S − 1))

)
. (66)

Importantly, Eq. (66) is equal to Eq. (28). This result implies that Theorem 2 and its proof is
generalizable to the case of vi ∈ C0 also.

A.3 EMPIRICAL DEMONSTRATION ON THE PROOF.

To empirically validate the proof provided above, we have conducted toy experiments. We have
considered every combination of S ∈ {2, 3, 4, 5, 6, 7, 8}, which is a size of ej (i.e., |ej |), and d ∈
{2, 3, 4, 5, 6, 7, 8}, which is a dimension of input feature xi ∈ Rd,∀vi ∈ V . Then, we visualize how
Eq (27) varies w.r.t. S, d, and P ∈ [0, 1], which corresponds to the X-axis of each plot. As shown
in Figure 3, for all cases, we can verify that the value of Px,e

(
1⃗T
(∑

vk∈q xk

)
> 0 : P

)
is strictly

increasing w.r.t. P ∈ [0.5, 1] (statement 2), and the value of Px,e

(
1⃗T
(∑

vk∈q xk

)
> 0 : P

)
is

lower bounded by 0.5 (statement 1). Thus, we can ensure that Theorem 2 is valid through empirical
verification.

B ADDITIONAL THEORETICAL ANALYSIS

B.1 EXISTENCE OF REASONABLE SOLUTIONS IN THE HYPEREDGE FILLING TASK

In this section, we investigate the existence of a reasonable solution in the proposed hyperedge filling
task. To this end, we first formalize the concept of the hyperedge filling task is solved.
Definition 1 (Solved hyperedge filing task). For a hypergraph G = (V, E), the hyperedge filling
task is solved when the following holds:

p(X,E,Θ) (vi | ej \ {vi}) > p(X,E,Θ) (vk | ej \ {vi}) ,
∀vi ∈ ej ,∀vk ∈ {vs : {vs} ∩ (ej \ {vi}) ̸∈ E , vs ∈ V}, ,∀ej ∈ E .

Roughly, Definition 1 implies that for all possible hyperedge filling cases in a hypergraph G, the
probability of filling a correct node for a given query subset is always greater than that of filling a
wrong node. It is important to note that our goal is to identify whether there exists a reasonable
solution, not a trivial solution. Thus, we define the notion of a reasonable solution as follows:
Definition 2 (Reasonable solution). Let Q := {ej \ {vi} : ∀vi ∈ ej ,∀ej ∈ E}. For a hypergraph
G = (V, E), a reasonable solution of the hyperedge filling task is a pair of node representations
Z ∈ R|V|×d and query set representations Q ∈ R|Q|×d such that:

zTi qj > zTk qj ,

∀vi ∈ Sj ,∀vk ∈ V \ Sj ,∀qj ∈ Q, where Sj = {vs : ({vs} ∩ qj ∈ E) ∧ (vs ̸∈ qj), vs ∈ V}.
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Figure 3: Empirical demonstration of Theorem 2. Note that S denotes the size of a hyperedge, and d

denotes the dimension of features. As stated, Px,e

(
1⃗T
(∑

vk∈q xk

)
> 0 : P

)
is strictly increasing

in P ∈ [0.5, 1] (statement 2), and lower bounded by 0.5 (statement 1).

Now, we analyze whether there exists a reasonable solution for any hypergraph G = (V, E).
Theorem 3 (Existence of a reasonable solution). For any hypergraph G = (V, E), there exists a
reasonable solution for some embedding dimension d.

Proof. Consider a binary matrix B ∈ {1, 0}|V |×|Q|, where each column j ∈ {1, · · · , |Q|} rep-
resents one-hot encoding of Sj over V (i.e., Bij = 1[vi ∈ Sj ], where 1[·] is an indicator func-
tion). Here, we can think of a matrix decomposition of B, specifically, singular value decompo-
sition of B. Denote this singular value decomposition as B = UΣVT , where U ∈ R|V|×rank(B),
V ∈ Rrank(B)×rank(B), and V ∈ R|Q|×rank(B). Let Z := UΣ and Q := V. In such a case, the
following holds:

zTi qj =

{
1 if vi ∈ Sj ,

0 otherwise.
(67)
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Thus, zTi qj > zTk qj ,∀vi ∈ Sj ,∀vk ∈ V \ Sj ,∀qj ∈ Q always holds, which implies that Z := UΣ
and Q := V are one of reasonable solutions.

From Theorem 3, we have demonstrated that there exists a reasonable solution for any hypergraph
G. Thus, we can conclude that the hyperedge filling task has a solution all the time, and we are
learning a solvable task.

B.2 DIMENSIONAL COLLAPSE OF HYPEBOY WITHOUT PROJECTION HEADS.

In this subsection, we provide a theoretical analysis of why HYPEBOY without head parameters
may suffer from dimensional collapse. Jing et al. (2022) have suggested that one of the reasons for
the dimensional collapse in contrastive learning lies in the gradient flow: the mechanism of how
representations are updated via contrastive loss. Specifically, consider a linear model that creates
representations of a n number of data by Z = XW, where X ∈ Rn×d are node features and
W ∈ Rd×k is a learnable parameter matrix. When we update parameters W by using contrastive
losses, k-th biggest singular value of weight matrices σk evolve proportional to its own value (e.g.,
σ̃k ← σk × c, where σ̃k is a k-th biggest singular value of updated W and c is a positive constant).
Due to this mechanism, small single values grow slowly or diminish, causing dimensional collapse.

In this analysis, motivated by the analysis of Jing et al. (2022), we track how singular values of
representations change as we update representations via hyperedge filling. Following the setting
of Jing et al. (2022), we consider a linear model: Z = XW. Note that X are given features of data
points. Thus, singular values of embeddings Z are dependent on W.

We first define the loss of hyperedge filling as follows:

L := −
∑
ej∈E

∑
vi∈ej

log

 exp
(
zTi

(∑
vs∈qij zs

))
∑
vt∈V exp

(
zTt

(∑
vs∈qij zs

))
. (68)

Now, we obtain the closed form of the following update equation, which is based on the gradient
descent: W←W− γ∇WL, where γ is a fixed learning rate. We first derive (∂L/∂Z), and utilize
the chain rule: (∂L/∂Z)× (∂Z/∂W).

The derivative of numerators of Eq (68) can be written as follows:

−
∂
(∑

ej∈E
∑
vi∈ej z

T
i

(∑
vs∈qij zs

))
∂Z

= −EZ,

where E ∈ R|V|×|V|, s.t. Eij = 2× |{ek : {vi, vj} ⊆ ek,∀ek ∈ E}|.

We now derive the derivative of the denominators of Eq (68):

∂
(∑

ej∈E
∑
vi∈ej log

(∑
vt∈V exp

(
zTt

(∑
vs∈qij zs

))))
∂Z

. (69)

We denote a multiset of every possible subset of a hyperedge that a single node is omitted asQ (i.e.,
Q = {ej \ {vi} : vi ∈ ej , ej ∈ E}). The reason for multiset is that given subsets can be duplicated
due to the nature of overlapping hyperedges (e.g., when we omit a node v1 from {v1, v2, v3} and v4
from {v4, v2, v3}, remaining sets become identical).

We split the derivation into the node level. In addition, we let a subset of Q such that includes a
node vk as Qk. Then, for a node vk, its gradient is computed as follows:

∑
qj∈Q

exp
(
zTk

(∑
vs∈qj zs

))
∑
vt∈V exp

(
zTt

(∑
vs∈qj zs

)) ×
∑
vs∈qj

zs

 (70)

+
∑
ql∈Qk

∑
vi∈V

exp
(
zTi

(∑
vs∈ql zs

))
∑
vt∈V exp

(
zTt

(∑
vs∈ql zs

))zi. (71)
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We define two more matrices to express the above equations in a simple matrix form. By assigning
an index k = {1, · · · , |Q|} to each element of qj ∈ Q, we define a binary matrix Q ∈ R|Q|×|V| that
represents Q as follows:

Qji =

{
1 if vi ∈ qj ,

0 otherwise.

In addition, we denote a score matrix A ∈ R|Q|×|V| that models a probability of filling each node
vi ∈ V to each set qj ∈ Q, which is defined as follows:

Aki =
exp

(
zTi

(∑
vs∈qj zs

))
∑
vt∈V exp

(
zTt

(∑
vs∈qj zs

)) . (72)

By using A and Q, we can express Eq (70) and (71) for all nodes as follows: QTA︸ ︷︷ ︸
Eq (70) of all nodes

+ ATQ︸ ︷︷ ︸
Eq (71) of all nodes

Z. (73)

Finally, we express (∂L/∂Z) as follows:

∂L
∂Z

=
(
−E+QTA+ATQ

)
Z. (74)

In addition, by using the chain rule and derivative of matrix multiplication, ∂L/∂W is derived as
follows:

∂L
∂W

= XT
(
−E+QTA+ATQ

)
XW. (75)

We denote updated W as W̃. To sum up, update rule of W̃ := W − γ∇WL is written as follows:

W̃ :=
(
I+ γXT

(
E−QTA+ATQ

)
X
)
W. (76)

Here, we denote k-th biggest singular values of W̃ and W as σ̃k and σk, respectively.

Note that
(
I+ γXT

(
E−QTA+ATQ

)
X
)

is a function of X, E , and W. Thus, we denote this
term as g(X, E ,W) ∈ Rd×d.

If we take a closer look at g(X, E ,W)W, W̃ is a near-linear transformation of W itself8. In such
a case, from the min-max characterization, the following inequality holds:

σ̃k ≤ σ′
1 × σk, where σ′

1 is the biggest singular value of a matrix g(X, E ,W). (77)

Eq (77) indicates that σ̃k is upper-bounded by the multiplication between the biggest singular value
of g(X, E ,W) and σk. While it is not an exact equality, this result implies that the changed singular
value is likely to be correlated with its previous singular value. Hence, small singular values are
likely to grow slowly, similar to the case that is suggested by Jing et al. (2022), which may cause
dimensional collapse.

C DATASETS

In this section, we provide details of the used datasets. In our experiments, we have utilized 11
hypergraph benchmark datasets. We have removed nodes that do not belong to any hyperedge,
following Lee & Shin (2023). Data statistics of each dataset are reported in Table 4.

Source of each dataset. The sources of used datasets in this work are as follows:

• Cora, Citeseer, Pubmed, Cora-CA, and DBLP-P datasets are from the work of Yadati et al. (2019).
8It is not a perfect linear transformation, since a function g(·) also receives W as an input
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Table 4: Statistics of datasets we have used in our experiments.

Citeseer Cora Pubmed Cora-CA DBLP-P DBLP-A AMiner IMDB MN-40 20News House

|V| 1,458 1,434 3,840 2,388 41,302 2,591 20,201 3,939 12,311 16,242 1,290
|E| 1,079 1,579 7,963 1,072 22,263 2,690 8,052 2,015 12,311 100 341∑
e∈E |e| 3,453 4,786 34,629 4,585 99,561 6,201 32,028 9,560 61,555 65,451 11,843

# Classes 6 7 3 7 6 4 12 3 40 4 2
# Features 3,703 1,433 500 1,433 1,425 334 500 3066 100 100 2

• DBLP-A and IMDB datasets are from the work of Wang et al. (2019).

• AMiner dataset is from the work of Zhang et al. (2019).

• Mondelnet-40 (MN-40) dataset is from the work of Wu et al. (2015).

• 20Newsgroups (20News) dataset is from the work of Dua et al. (2017).

• House dataset is from the work of Chien et al. (2022).

Co-citation datasets. We utilize three co-citation datasets: Cora, Citeseer, and Pubmed. In these
datasets, each node represents a publication and hyperedges represent sets of publications co-cited
by particular publications. For example, if a particular publication has cited nodes (publications)
vi, vj , and vk, these nodes are grouped as a hyperedge {vi, vj , vk} ∈ E . Node features are bag-of-
words of the corresponding publication. Node classes indicate categories of the publication.

Co-authorship datasets. We utilize four co-authorship datasets: Cora-CA, DBLP-P, DBLP-A, and
AMiner. In Cora-CA, DBLP-P, and AMiner, each node represents a publication, and a set of publi-
cations that are written by a particular author is grouped as a hyperedge. Features are bag-of-words
of the corresponding publication, and classes indicate categories of the publication. Conversely in
DBLP-P, each node represents an author, and co-authors of a particular publication are grouped as
a hyperedge. Node features are bag-of-words regarding the research keywords of the author. Node
classes indicate the research area of the author.

Computer graphic datasets. We utilize one computer graphical dataset: Modelnet-40 (MN-40).
In this dataset, each node represents a visual object, and hyperedges are synthetic hyperedges that
have been created with a k-NN graph constructed according to the features of each data point,
following Feng et al. (2019) and Chien et al. (2022). Node features are embeddings of each visual
object obtained via GVCNN (Feng et al., 2018) and MVCNN (Su et al., 2015). Node classes indicate
the categories of the corresponding visual object.

Movie-Actor dataset. We utilize one movie-actor dataset: IMDB. In this dataset, each node indi-
cates a movie, and the filmography of a particular actor is grouped as a hyperedge. Node features
are bag-of-words of the plot of the movie. Node classes indicate the genre of the movie.

News dataset. We utilize one news dataset: 20NewsGroups (20News). In this dataset, each node
represents documents of 20 newsgroups and a set of documents containing a particular word is
grouped as a hyperedge. Node features are TF-IDF representations of news messages. Node classes
indicate the categories of the corresponding document.

Political membership dataset. We utilize one political membership dataset: House. In this dataset,
each node represents a member of the US House of Representatives, and members belonging to
the same committee are grouped as a hyperedge. Node features are created by adding noise to the
one-hot encoded label vector, as suggested by Chien et al. (2022). Node classes indicate the political
party of the representatives.

D EXPERIMENTAL DETAILS

In this appendix section, we provide details of our experiments. We first describe the machines we
have used in our experiments. Then, we provide details of baseline methods and implementations.
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Table 5: Hyperparameter combination of HYPEBOY that shows the best validation accuracy on
each dataset. pv ∈ [0, 1] indicates magnitude of feature augmentation, pe indicates magnitude of
topological augmentation, and SSLepochs indicates the training epoch of hyperedge filling task.

Citeseer Cora Pubmed Cora-CA DBLP-P DBLP-A AMiner IMDB MN-40 20News House

pv 0.2 0.4 0.0 0.4 0.0 0.1 0.2 0.3 0.4 0.2 0.4
pe 0.9 0.9 0.5 0.8 0.6 0.9 0.6 0.9 0.5 0.5 0.8

SSL epochs 120 200 180 200 180 120 100 180 180 80 140

D.1 MACHINES

All experiments are conducted on a machine with NVIDIA RTX 8000 D6 GPUs (48GB memory)
and two Intel Xeon Silver 4214R Processors.

D.2 DETAILS OF BASELINE METHODS

Neural networks. We utilize 10 supervised baseline models: MLP, HGNN (Feng et al., 2019),
HyperGCN (Yadati et al., 2019), HNHN (Dong et al., 2020), three unified hypergraph net-
works, (UniGCN, UniGIN, UniGCNII) (Huang & Yang, 2021), AllSet (Chien et al., 2022), ED-
HNN (Wang et al., 2023a), and PhenomNN (Wang et al., 2023b).

Graph SSL. In order to run two graph generative SSL methods, which are GraphMAE2 (Hou et al.,
2023) and MaskGAE (Li et al., 2023), we transform the input hypergraph into a graph by using the
clique expansion, which converts each hyperedge into a clique of a graph (Dong et al., 2020).

H-GD. One of our baseline methods H-GD directly extends the Group Discrimination method, an
SSL technique designed on a graph (Zheng et al., 2022). We strictly follow the overall structure
suggested by Zheng et al. (2022), while the feature augmentation and topology augmentation have
been replaced into τx and τe that are described in Section 4.1, respectively.

D.3 DETAILS OF SETTINGS AND IMPLEMENTATIONS

Hyperedge prediction setting. Note that we need to create negative hyperedge samples to evaluate
the performance of a model on the hyperedge prediction task. In our experiment, we have created
negative hyperedge samples based on SNS (size negative samples) (Patil et al., 2020). Specifically,
to create a negative hyperedge, we sample a size of the current hyperedge from the real-world hy-
peredge size distribution of the corresponding dataset. Then, we sample nodes uniformly at random
and fill the corresponding hyperedge. In this manner, we create negative hyperedges with the same
number of ground-truth hyperedges.

Feature reconstruction warm-up of HYPEBOY. As described in Section 4.4, before training an
encoder HNN with HYPEBOY, we utilize a feature reconstruction process, which directly extends
GraphMAE (Hou et al., 2022) to hypergraph structure. This process mitigates the encoder’s over-
reliance on the projection heads, improving the performance in downstream tasks (Section 5.3).

To this end, we first mask a certain portion of input node features with a learnable mask token.
We have fixed the augmentation portion as 0.5 for all the cases. In addition, we augmentation the
input hyperedge by using τE , which is defined in Section 4.1. We have fixed the magnitude of
augmentation pe as 0.2 for all the cases. Then, we obtain node embeddings by using an encoder
HNN. We again mask embeddings of nodes that have been masked at the input level by using
another learnable mask. Subsequently, we obtain reconstructed features with an HNN decoder,
which has an architecture that is the same as that of the encoder HNN. Finally, we utilize the cosine
similarity between reconstructed features and original features as a loss, specifically, one minus
cosine similarity. Specifically, we utilize UniGCNII (Huang & Yang, 2021) for encoder and decoder.

Projection heads of HYPEBOY. For projection heads (Section 4.2), we utilize a two-layer MLP
model with a ReLU (Nair & Hinton, 2010) activation function for both node projection head f ′

ϕ and
set projection head f ′

ρ. Note that these projection heads are updated via the hyperedge filling task
together with an encoder HNN.
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Table 6: Comparison between HYPEBOY without augmentation step (denoted by w/o Aug.) and
HYPEBOY (denoted by w/ Aug.) in the node classification task under two protocols. The best
performance is colored as a green. In most of the settings, HYPEBOY outperforms its variant.

Protocol Method Citeseer Cora Pubmed Cora-CA DBLP-P DBLP-A AMiner IMDB MN-40 20News House

Fine w/o Aug. 53.5 (8.7) 58.6 (8.3) 75.5 (4.0) 62.9 (6.0) 87.8 (0.4) 79.7 (2.3) 33.9 (2.1) 47.2 (2.5) 90.7 (0.7) 77.5 (0.9) 69.9 (4.9)

tuning w/ Aug. 56.7 (9.8) 62.3 (7.7) 77.0 (3.4) 66.3 (4.6) 88.2 (0.4) 80.6 (2.3) 34.1 (2.2) 47.6 (2.5) 90.4 (0.9) 77.6 (0.9) 70.4 (4.8)

Linear w/o Aug. 55.8 (9.0) 60.6 (7.3) 72.7 (3.4) 63.3 (4.6) 87.6 (0.5) 81.4 (2.5) 34.2 (2.7) 47.8 (2.0) 89.7 (1.9) 75.1 (1.6) 67.5 (1.6)

evaluation w/ Aug. 59.6 (9.9) 63.5 (9.4) 75.0 (3.4) 66.0 (4.6) 87.9 (0.5) 81.2 (2.7) 34.3 (3.2) 48.8 (1.8) 89.2 (2.2) 75.7 (2.1) 69.4 (5.4)

Training details and hyperparameters. We utilize the Adam optimizer (Kingma & Ba, 2015)
with a fixed weight decay rate of 10−6 to train all models. We fix the hidden dimension of all
models and the dropout rate of them as 128 and 0.5, respectively. When training any neural network
for downstream tasks, we train the model for 200 epochs, and for every 10 epochs, we evaluate
the validation accuracy of the model. Then, we utilize the model checkpoint that yields the best
validation accuracy to make a final evaluation of the model on the test dataset.

For a linear evaluation protocol of node classification, we utilize a logistic classifier, with a learning
rate 10−3. For a linear evaluation protocol of hyperedge classification, we utilize a two-layer MLP,
with a learning rate of 10−3 and the dropout rate of 0.5.

Regarding hyperparameter tuning, for each model and dataset, we find the hyperparameter combi-
nation that gives the best validation performance. Then, with the selected hyperparameters, we train
the model on a training dataset and evaluate the performance of the trained model on a test dataset.

For all the supervised models we have used, we tune the learning rate as a hyperparameter within
{0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001}. Moreover, especially for SOTA HNNs PhenomNN, we
additionally tune their other hyperparameters. Specifically, along with the learning rate, we addi-
tionally tune λ0 and λ1 within {0, 1, 10}, which are weights of different message-passing functions,
and α within {0, 1, 10} which is a weight of node’s own representation during encoding.

For all SSL baseline methods, we set a broader search space, which is as follows:

• TriCL (Lee & Shin, 2023): We tune their feature augmentation magnitude within {0.2, 0.3, 0.4},
hyperedge augmentation magnitude within {0.2, 0.3, 0.4}, and learning rate of an encoder within
{0.01, 0.001, 0.0001}.

• HyperGCL (Wei et al., 2022): We tune learning rate of an encoder within {0.01, 0.001, 0.0001},
that of a generator {0.01, 0.001, 0.0001}, and weight of contrastive loss β within {0.5, 1, 2}.

• HGD, variant of GD (Zheng et al., 2022): We tune their feature augmentation magnitude within
{0.2, 0.3, 0.4}, hyperedge augmentation magnitude within {0.2, 0.3, 0.4}, and learning rate of an
encoder within {0.01, 0.001, 0.0001}.

• GraphMAE2 (Hou et al., 2023): We tune mask ratio within {0.25, 0.5, 0.75} and learning rate of
an encoder within {0.01, 0.001, 0.0001}.

• MaskGAE (Li et al., 2023) We tune degree loss weight α within {0.001, 0.002, 0.003} and learn-
ing rate of an encoder within {0.01, 0.001, 0.0001}.

In addition, we set self-supervised learning epochs of the above methods as hyperparameters, search-
ing within {50, 100, 150, · · · , 450, 500}.
For HYPEBOY, we tune feature augmentation magnitude px within {0.0, 0.1, 0.2, 0.3, 0.4}, and
hyperedge augmentaiton magnitude pe within {0.5, 0.6, 0.7, 0.8, 0.9}. We have fixed the learning
rate and training epochs of the feature reconstruction warm-up as 0.001 and 300, respectively. In
addition, we first train an encoder with a feature reconstruction process for 300 epochs. Then, we
train the encoder with the hyperedge filling, and the specific epoch is a hyperparameter searched
within {20, 40, · · · , 180, 200}. We report a hyperparameter combination of each dataset that shows
the best validation accuracy in our fine-tuning experiment (Section 5.1) in Table 5.

E ADDITIONAL EXPERIMENTAL RESULTS

In this section, we present several experimental results that are omitted in the main paper.
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Citeseer Pubmed Cora – CA DBLP – P DBLP – A

Without projection headsWith Projection head X-Axis: Singular value rank index Y-Axis: Log of singular values

Figure 4: Analyzing dimensional collapse of HYPEBOY with/without projection heads on five
benchmark datasets. While HYPEBOY does not suffer from dimensional collapse, its variant that
does not utilize projection heads, suffers from this issue.

E.1 COMPARISON AGAINST HYPEBOY WITHOUT AUGMENTATION

As described in Section 4.1, augmentation (masking) has played a key role in various generative SSL
methods in obtaining effective representations. Motivated by their findings, we have also adopted
augmentation strategy τx and τe in HYPEBOY also. To demonstrate the effectiveness of augmen-
tation, we have employed one variant of HYPEBOY, where the augmentation step is omitted. In
other words, the input of a target HNN fθ is always a clean feature and topology, (X, E). Then,
we compare this variant with our proposed HYPEBOY, in the node classification task under fine-
tuning protocol and linear evaluation protocol. As shown in Table 6, HYPEBOY outperforms its
variant, which does not have an augmentation step in most of the datasets of both protocols. Thus,
we can conclude that augmentation is crucial for mitigating the issue of over-emphasizing proximity
information and creating effective representations.

E.2 DIMENSIONAL COLLAPSE ANALYSIS

In Section 4.2, we discuss the role of projection heads in terms of dimensional collapse: projec-
tion heads encourage an encoder HNN to avoid dimensional collapse. We further anlyze this phe-
nomenon in five more benchmark hypergraph datasets: Citeseer, Pubmed, Cora-CA, DBLP-P, and
DBLP-A. As shown in Figure 4, in all five datasets, we have verified that small singular values
of embeddings that are created via HYPEBOY without projection heads drop to zero, empirically
demonstrating that the dimensional collapse has occurred (red lines). Notably, such an issue has not
been observed in HYPEBOY (blue lines).

E.3 ALIGNMENT AND UNIFORMITY ANALYSIS

In Section 4.3, we discuss the role of our design choice of p(X,E,Θ)(·) in promoting alignment and
uniformity of representations. We further demonstrate this characteristic in five more benchmark hy-
pergraph datasets: Citeseer, Pubmed, Cora-CA, DBLP-P, and DBLP-A. As shown in Figure 5, rep-
resentations obtained from HYPEBOY achieve both uniformity (first column) and alignment (other
columns) in most of the cases.
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Figure 5: Analyzing alignment and uniformity of representations obtained via HYPEBOY. In most
cases, representations obtained by HYPEBOY achieve both alignment and uniformity.
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