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ABSTRACT

Solving inverse problems in scientific and engineering domains often involves
complex, nonlinear forward physics and ill-posed conditions. Recent advance-
ments in diffusion model have shown promise for general inverse problems, yet
their application to scientific domains remains less explored and is hindered by the
complexity and high non-linearity of physics constraints. We present a physics-
constrained diffusion model (PCDM) designed to solve inverse problems in scien-
tific and engineering domains by efficiently integrating pre-trained diffusion mod-
els and physics-constrained objectives. We leverage accelerated diffusion sam-
pling to enable a practical generation process while strictly adhering to physics
constraints by solving optimization problems at each timestep. By decoupling
the likelihood optimization from the reverse diffusion steps, we ensure that the
solutions remain physically consistent, even when employing fewer sampling
steps. We validate our method on a wide range of challenging physics-constrained
inverse problems, including data assimilation, topology optimization, and full-
waveform inversion. Experimental results show that our approach significantly
outperforms existing methods in efficiency and precision, making it practical for
real-world applications.

1 INTRODUCTION

Inverse problems arise from various scientific and engineering fields, such as computational imaging
(Beck & Teboulle, 2009), data assimilation (Evensen, 1994), optimal design (Bendsøe & Kikuchi,
1988), and geophysics (Tarantola, 1984). The goal of solving an inverse problem is to recover
underlying data or physical properties x ∈ Rn from observed measurements y ∈ Rm,

y = A(x) + n, (1)

where A : Rn → Rm is the physical forward operator, and n ∈ Rm is additive noise. The physical
forward operators often involve sophisticated simulations governed by partial differential equations
(PDEs) or physics constraints, incorporating years of domain knowledge, and occasionally involve
measurement operators. These inverse problems are typically ill-posed where multiple possible
solutions x exist for a measurement y. To deal with this challenge, a common approach is to solve
the physics-constrained optimization problem with regularization reflecting the prior or underlying
structural information of the solution,

min
x

1

2
∥y −A(x)∥22 + λR(x), (2)

where L(x) = 1
2∥y −A(x)∥

2
2 is an objective function that stems from the likelihood of alignment

for the physics constraints, R(x) is the regularization on the x, and λ is the weight coefficient.
Traditional choices for R using hand-crafted priors (Rudin et al., 1992) are not expressive enough
to capture complicated data structures. With the rise of deep learning, the trends have shifted toward
using deep generative models (Kingma, 2013; Goodfellow et al., 2014) as learned priors, which are
more effective in representing intricate data structure (Ulyanov et al., 2018; Mosser et al., 2020;
Patel & Oberai, 2021; Jacobsen & Duraisamy, 2022; Meng et al., 2022; Patel et al., 2022).

In recent years, diffusion models have demonstrated remarkable success in generative modeling
of underlying data distributions and showed outperforming existing generative models in sampling
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Figure 1: A schematic diagram of the physics-constrained diffusion models (PCDM). PCDM lever-
ages accelerated diffusion sampling (prior step) to enable the reverse process in fewer timesteps
(K < T ), while strictly enforcing physics constraints by solving optimization problems (likelihood
step) at each timesteps.

quality and stable training Ho et al. (2020); Song et al. (2021a;b); Dhariwal & Nichol (2021). In-
spired by these results, incorporating pre-trained diffusion priors and likelihood gradients of align-
ment with the measurements to estimate the posterior score for solving the inverse problems within
a Bayesian framework (Song et al., 2022; Chung et al., 2022; 2023; Song et al., 2023; 2024; Chung
et al., 2024; Li et al., 2024). Specifically, in the inverse problems within the scientific and engi-
neering domains, interest has grown in these line of methods for applications such as full-waveform
inversion (FWI) (Wang et al., 2023; 2024; Taufik et al., 2024), topology optimization (TO) (Mazé &
Ahmed, 2023; Giannone et al., 2023; Bastek et al., 2024), and data assimilation (or restoring missing
data) (Shu et al., 2023; Jacobsen et al., 2023; Rozet & Louppe, 2023; Huang et al., 2024). How-
ever, the forward operator A in these domains comes in diverse and often incurs huge bottlenecks
to solve due to its significant computational complexity and high nonlinearity. Existing methods
could lead to slow inference times when naively incorporating a gradient update of the likelihood
into every reverse sampling process of diffusion models, or suboptimal results if the total number of
likelihood gradient update is not enough to fully optimize the loss L(x) = 1

2∥y −A(x)∥
2
2, particu-

larly when using accelerated sampling methods such as denoising diffusion implicit models (DDIM)
(Song et al., 2021a). Therefore, it is necessary to obtain plausible solutions that strictly adhere to
the constraints within a feasible time for these physics-constrained inverse problems.

To address these issues, we propose a physics-constrained diffusion model (PCDM) that treats the
prior and likelihood steps separately and enhances their efficiency without affecting each other. Dur-
ing inference, we utilize accelerated diffusion models, such as DDIM, to update the prior steps at the
subsets of the full-time trajectory. Following each prior step, we optimize the physics-constrained
objective ∥y−A(x)∥22, allowing multi-step minimization, starting from denoised estimates from the
prior steps as the initial guess, ensuring that the solution strictly adheres to the constraints. Our ap-
proach is particularly suited for physics-constrained inverse problems that are notoriously complex
and highly nonlinear, making it practical and feasible. Finally, we evaluate our method across a wide
range of physics-constrained inverse problems, including data assimilation, topology optimization,
and full-waveform inversion. Compared to existing methods, our approach demonstrates superior
performance in terms of accuracy and speed. The key contributions of our work are as follows:

• We present a physics-constrained diffusion model (PCDM) designed to address inverse
problems in the scientific and engineering domains by efficiently integrating physical
knowledge with diffusion models.

• Our method offers a feasible generation process using accelerated diffusion sampling,
while strictly adhering to the physics constraints by solving optimization problems at fewer
timesteps.

• From pre-training diffusion models from scratch for each physics-constrained problem
benchmark, we demonstrated that our model outperforms existing approaches in terms of
accuracy within a feasible time and is readily applicable to a variety of physical problems.
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2 RELATED WORKS

In recent years, machine learning has been emerging in solving inverse problems in scientific and en-
gineering domains. Roughly speaking, its applications can be categorized into two main approaches.
The first category is supervised end-to-end methods (Li et al., 2021; Lu et al., 2021), which directly
learn the inverse mapping from paired inputs and outputs. These methods enable fast evaluations
and rely solely on observational data without accessing the physical solvers. For these practical
advantages, it has been widely used for physics-related inversion problems (Wu & Lin, 2020; Zhang
& Lin, 2020; Nie et al., 2021; Wang et al., 2022; Molinaro et al., 2023). However, due to operating
in a supervised manner, they typically require thousands of paired data generated by physics-based
solvers in advance and are often limited in the zero-shot scenarios where the observation process
differs from the training conditions. Additionally, because these methods do not explicitly enforce
physical constraints during inference, they can produce unrealistic outputs that violate the underly-
ing physics, leading to significant issues.

The second category involves unsupervised (or semi-supervised) plug-and-play methods which typ-
ically leverage deep generative models as learned priors (Chung et al., 2023; Zhu et al., 2023; Mar-
dani et al., 2024; Zhang et al., 2024; Wu et al., 2024). These methods do not rely on large amounts
of paired data and instead focus on capturing the underlying distribution of plausible solutions in an
unsupervised manner. Then, the pre-trained generative prior serves as a regularizer to generate plau-
sible solutions when solving physics-constrained optimization problems. By doing so, they allow
for more flexible and data-efficient solutions to inverse problems, particularly in cases where col-
lecting paired data is expensive. For these advantages, it has been emerging for inversion problems
in scientific and engineering domains (Raissi et al., 2019; Karniadakis et al., 2021; Mazé & Ahmed,
2023; Shu et al., 2023; Jacobsen et al., 2023; Rozet & Louppe, 2023; Huang et al., 2024; Wang
et al., 2023; 2024; Taufik et al., 2024). While the methods can provide flexibility and robustness
in dealing with physics-constrained inverse problems, the reliance on iterative solvers can result in
slower inference times compared to supervised end-to-end methods. Nevertheless, the combinations
of learned priors and physics-based constraints hold great promise for addressing the limitations of
pure data-driven approaches. We focus on utilizing promising generative models, such as diffusion
models, and improving the efficiency of the optimization process to make this method practical.

3 METHODS

3.1 PRELIMINARIES: DIFFUSION MODELS

Diffusion models (DM) (Ho et al., 2020; Song et al., 2021b) is an emerging generative model that
employs both forward and reverse processes to learn the unknown data distribution progressively. In
the forward process, clean data x0 ∈ Rn is drawn from an unknown data distribution x0 ∼ p0, DM
progressively diffuses the data towards tractable distribution, such as Gaussian distribution with the
following forward stochastic differential equations (SDE):

dxt = −
βt

2
xtdt+

√
βtdw, (3)

where βt is the noise schedule, and w ∈ Rn is the Wiener process at time t ∈ [0, T ]. Here,
βt typically increases monotonically with time, ensuring that for sufficiently large time steps, the
distribution xT ∼ pT approaches some prior distribution or Gaussian at the terminal time T . The
reverse of this process is described by

dxt =
[
− βt

2
xt − βt∇xt

log pt(xt)
]
dt+

√
βtdw̄, (4)

where pt denotes the marginal density of xt at time t, and ∇xt log pt(xt) represents the score
function (Song et al., 2021b). In practice, the score ∇xt log pt(xt) can be learned using a score
network sθ(xt, t) trained with the denoising score matching objectives (Vincent, 2011)

min
θ

Ex0,t,xt∼p(xt|x0)

[∥∥sθ(xt, t)−∇xt
log pt(xt|x0)

∥∥2
2

]
. (5)

It has also been shown that the denoising score matching is equivalent to the epsilon matching, as

given by the relation, sθ(xt, t) ≈ −
ϵ
(t)
θ (xt)√
1−ᾱt

(Song & Ermon, 2019). Once the score function is
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estimated by sθ for all t, we can compute Equation 4 and simulate the reverse SDE to reconstruct
the data sample from p0. Despite its high quality, it is notorious for its slow sampling process.
To address this, (Song et al., 2021a) proposes denoising diffusion implicit models (DDIM) that
accelerate the sampling process based on non-Markovian assumptions. When ᾱt =

∏t
i=1(1− βi),

the sampling process is given by

xt−1 =
√
ᾱt−1x̂t +

√
1− ᾱt−1ϵ̂t (6)

where x̂t =
xt−

√
1−ᾱtϵ

(t)
θ (xt)√

ᾱt
is the denoised estimate of xt derived from Tweedie’s formula

(Efron, 2011), and ϵ̂t =

√
1−ᾱt−1−σ2

t ϵ
(t)
θ (xt)+σtϵ√

1−ᾱt−1

represents the noise term at time step t, which

is a weighted combination of the deterministic ϵ
(t)
θ (xt) and stochastic ϵ ∼ N (0, I) component.

The parameter σt affects the sampling process and is often set to be σt = η
√

1−ᾱt−1

1−ᾱt

√
1− ᾱt

ᾱt−1
.

Especially, when η = 0, the sampling becomes fully deterministic, while η = 1 results in a sampling
process equivalent to denoising diffusion probabilistic models (DDPM) (Song et al., 2021a).

On the other hand, to solve inverse problems, we need to sample the solution x from the posterior
distribution x ∼ p(x|y). With diffusion models, the score function ∇xt

log pt(xt) in Equation 4
should be replaced by posterior score∇xt log pt(xt|y) (Chung et al., 2022; 2023; Song et al., 2023),

dxt =
[
− βt

2
xt − βt∇xt

log pt(xt|y)
]
dt+

√
βtdw̄. (7)

From Bayes’ rule, the posterior can be decomposed as p(x|y) ∝ p(x)p(y|x), and ∇xt
log pt(xt)

is readily replaced by the posterior
∇xt

log pt(xt|y) = ∇xt log pt(xt) +∇xt
log pt(y|xt), (8)

where it is required to compute both the prior term ∇xt log pt(xt), and the likelihood term
∇xt log pt(y|xt). While the score function ∇xt log pt(xt) can be obtained from pre-trained score
networks sθ(xt, t), the likelihood term∇xt log pt(y|xt) is usually intractable. To address this issue,
(Chung et al., 2023) proposed diffusion posterior sampling (DPS) that uses a Gaussian approxima-
tion for the likelihood term, which results in a one-step gradient update

∇xt log pt(y|xt) ≈ ρ∇xt

∥∥y −A(x̂(t)
0 )

∥∥2
2
, (9)

where ρ is the step size controlling data-consistency strength and x̂
(t)
0 is denoised estimate. Al-

though theoretically sound, updating the likelihood at every reverse sampling time step is inefficient
due to the tradeoff between computational cost and accuracy, especially when the forward model A
is expensive and highly nonlinear. Therefore, we introduce a physics-constrained diffusion model
(PCDM) to address this issue by treating the prior and likelihood terms separately enhancing the
speed by using an accelerated diffusion sampler, and improving the accuracy by solving the likeli-
hood objective by allowing multiple iterations.

3.2 VARIABLE SPLITTING

To separate the likelihood term and prior term in Equation 2, we draw inspiration from the classic
variable splitting method, such as half quadratic splitting (HQS) and alternating direction method of
multipliers (ADMM) (Boyd et al., 2011; Venkatakrishnan et al., 2013; Zhang et al., 2017; 2021; Li
et al., 2024). This approach introduces an auxiliary variable z in Equation 2,

min
x

1

2
∥y −A(x)∥22 + λR(z), s.t. z = x. (10)

From HQS, the objective function to optimize can be reformulated as

Lµ(z,x) =
1

2
∥y −A(x)∥22 + λR(z) + µ

2
∥z − x∥22, (11)

where µ is a penalty coefficient. Equation 11 can be solved by alternatingly optimizing the following
subproblems for z and x, while keeping other variable fixed:

zi+1 = argmin
z
Lµ(z,xi), (12)

xi+1 = argmin
x
Lµ(zi+1,x) (13)

4
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This technique decouples the likelihood terms ∥y − A(x)∥22 and the prior terms R(x), separately.
In our scenarios, the prior terms, treated by Equation 12, make the solution meaningful following
the data distribution learned from diffusion models, Meanwhile, the likelihood terms, optimized via
Equation 13, ensure that the solution strictly adheres to the given physics constraints.

3.3 REGUARLIZING VIA DIFFUSION SAMPLING

Instead of using a traditional regularizer, we can employ pre-trained diffusion models as an implicit
regularizer. We utilize an accelerated sampler, such as DDIM, to avoid slow sampling, as discussed
in the preliminary section. We set the time steps 0 = t0 < · · · < tk < tk+1 < · · · < tK = T
as a subset of [0, T ], with zT and xT initialized from the a Gaussian distribution. For readability,
we denote xtk as xk for readability. Equation 12 can then be replaced by the following two-step
sampling rule:

z′
k =
√
ᾱkxk+1 +

√
1− ᾱkϵ̂k+1, zk =

z′
k −
√
1− ᾱkϵ

(k)
θ (z′

k)√
ᾱtk

. (14)

We first sample from the previous optimized denoised estimate xk+1 to obtain the noisy data at the
next time step tk, resulting in z′

k. The purpose of this procedure is to transition the sample from the
denoised manifold (time step t0 = 0) to the manifold of the noise level at the subsequent time step
tk. Next, we compute the denoised estimate of z′

k using Tweedie’s formula (Efron, 2011), yielding
zk. This procedure aims to transition the sample from a manifold of the noise level at time step tk
back to a denoised manifold (time step t0 = 0) for further optimization in physical space. While
reducing the number of reverse steps with accelerated diffusion samplers can speed up the inference
time, it may cause convergence issues when the effective number of likelihood updates is insufficient
to fully optimize the objective. Therefore, it is necessary to strictly enforce physics constraints after
each prior step.

3.4 ENFORCING PHYSICS CONSTRAINTS

From Equation 13, we derive the following optimization problem:

xk = argmin
x
∥y −A(x)∥22 + µ∥zk − x∥22 (15)

which aims to find a proximal solution of zk while ensuring that the solution strictly adheres to
the physics constraints. In our scenarios, due to the complexity and highly nonlinear nature of the
physics constraints A, obtaining a closed-form solution for Equation 15 is usually not available
(Vono et al., 2022). Instead, we solve the optimization problem using the denoised estimates zk
from the prior steps as an initial guess

x
(n+1)
k = x

(n)
k − α∇

x
(n)
k

∥y −A(x(n)
k )∥22, x

(0)
k = zk, (16)

where α is the step size of the likelihood updates, and N is selected to the certain number of the inner
updates 0 ≤ n ≤ N within a single likelihood step. Instead of using coefficient µ to balance the
measurement-consistency term and proximal term, our likelihood updates start from the previous
denoised estimate zk and set the number of likelihood (inner) updates for searching the solution
near the zk. Additionally, unlike a one-step likelihood gradient update, our iterative approach to
solving the optimization problem enhances convergence and avoids the computation for coupling
and enforces physical constraints more strictly through N inner iterations starting from the previous
steps. This approach increases stability and makes it well-suited for large-scale inverse problems
(Chung et al., 2024; Song et al., 2024; Li et al., 2024). In our experiments, we utilize the Adam
optimizer (Kingma, 2014), and the optimization process is conducted after a certain time step t ≤
ts since the enforcement has only marginal effects during the early stage of the diffusion reverse
steps (Yu et al., 2023; Song et al., 2024). For example, when ts = 0.5T , the likelihood update
processes are conducted only at t < 0.5T of reverse steps, while only the unconditional reverse
steps are conducted for t > 0.5T . Instead of tuning hyperparameters like µ and λ, the step size for
inner updates α, the number of inner updates N , and the starting time step ts are employed as the
hyperparameters.

5
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(b) Style B

Figure 2: Qualitative results for full-waveform inversion: (a) CurveFault B and (b) Style B. In each
figure, the first and second columns display the ground truth and predicted velocity fields x, along
with the corresponding absolute error. The third and fourth columns show the given measurements
y, the estimated measurementsA(x), and the absolute error of the residual ∥y−A(x)∥, respectively.

Method CurveFault B Style B
Res MAE ↓ RMSE ↓ SSIM ↑ Res MAE ↓ RMSE ↓ SSIM ↑

InversionNet - 1.67e-1 2.41e-1 0.605 - 5.86e-2 8.93e-2 0.760
VelocityGAN - 1.58e-1 2.34e-1 0.603 - 6.49e-2 9.79e-2 0.725
Opt w/o diff 1.42e-3 2.17e-1 3.16e-1 0.410 2.53e-4 2.36e-1 3.25e-1 0.294
DPS (1000) 6.79e-4 1.29e-1 2.38e-1 0.632 1.49e-4 9.14e-2 1.35e-1 0.593

PCDM (200) 3.57e-5 4.89e-2 9.91e-2 0.850 4.96e-5 3.07e-2 5.37e-2 0.890

Table 1: Quantitative results for FWI. Numbers in parentheses represent the number of reverse
steps. Roughly speaking, DPS (1000) involves 1000 likelihood steps, PCDM (200) includes 1000
likelihood iterations (likelihood steps starting after ts = 200/2 and at most 10 iterations per reverse
step), and Opt w/o diff also involves 1000 likelihood iterations (same number of PCDM).

4 EXPERIMENTS

4.1 FULL-WAVEFORM INVERSION

Full-waveform inversion (FWI) is an example of the physics-constrained inversion problem that
aims to obtain geophysical properties (x = v(r)) from seismic measurements (y = p(r, t)) which
is governed by the acoustic wave equation (A),(

∇2 − 1

v(r)2
∂2

∂t2

)
p(r, t) = s(r, t), (17)

where∇2 = ∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 is laplace operator, p(r, t) represents the pressure wavefield at spatial
position r and time t, v(r) denotes velocity field, and s(r, t) is the source function. We utilize
the large-scale seismic benchmark dataset, OpenFWI, which consists of given measurements and
their corresponding velocity fields, as detailed in (Deng et al., 2022). For the forward model, we
utilized the open-sourced Deepwave package (Richardson, 2023), which implements the discretized
wave propagation using PyTorch (Paszke et al., 2019). The dataset consists of various families of
velocity fields, each characterized by distinct structural features and velocity variations with depth.
Each family has two versions: an easier version (A) and a more difficult version (B). While existing
frameworks generally work well on version A, they often struggle with version B (Deng et al., 2022).
To highlight the superiority of our methods, we choose version B of two velocity field families,

6
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(b) Kolmogorov flow

Figure 3: Qualitative results for data assimilation (DA): (a) Lorenz 1963 and (b) Kolmogorov flow.
In (a), the black dotted line and scattered points are the ground truth and noisy observations. Col-
ored lines and shaded uncertainty bands show the mean and standard deviation computed from 5
generated samples from each method. In (b), the first and second rows depict the ground truth and
noisy observations of the vorticity fields, ω = ∇× u. The subsequent rows present the predictions
for each method based on the given observations.

Method Lorenz 1963 Method Kolmogorov flow
MAE ↓ RMSE ↓ Time(s) MAE ↓ RMSE ↓ Time(s)

DPS (500) 9.47e-1 1.20e0 9.4 DPS (1000) 2.22e-1 3.98e-1 45.7
SDA (500) 4.49e-2 5.86e-2 9.7 SDA (1000) 8.18e-2 1.12e-1 45.6

PCDM (100) 1.49e-2 2.22e-2 2.4 PCDM (200) 2.07e-2 2.70e-2 11.2

Table 2: Quantiative results for DA. Numbers in parentheses represent the number of reverse steps.

”CurveFault B” and ”Style B”. We take InversionNet (Wu & Lin, 2020) and VelocityGAN (Zhang
& Lin, 2020) as baselines of supervised end-to-end frameworks that directly learn the mapping
between input and output without incorporating physics constraints. Additionally, we use DPS
(Chung et al., 2023) as an unsupervised plug-and-play baseline, which leverages a learned generative
prior but relies on one-step coupled likelihood gradient updates at each reverse timestep. For further
comparison, we include optimization without diffusion prior (opt w/o diff), which performs the same
number of optimizing steps as our PDCM but without utilizing diffusion priors. We use the same
train/test split and evaluation metrics between ground truth velocity and predicted velocity, including
mean absolute error (MAE), rooted mean squared error (RMSE), and structural similarity (SSIM),
as described in the (Deng et al., 2022). Additionally, we present the residual ∥y − A(x)∥, which
presents the difference between the true seismic measurements y and the estimated measurements
from forward physics and predicted velocity A(x).
As shown in Table 5, PCDM outperforms all comparisons across all metrics. Figure 7 illustrates
that optimization without diffusion (Opt w/o diff) struggles with local minima due to a lack of
appropriate regularization. DPS is suboptimal because the effective number of likelihood steps is
insufficient to fully optimize the physics-constrained inverse problem. In contrast, PCDM provides
plausible solutions by effectively integrating diffusion models and physics constraints, resulting in
efficiently navigating toward the global minimum for the inverse problems.

4.2 DATA ASSIMILATION

Data assimilation (DA) can be considered as a physics-constrained inverse problem that aims to
estimate the states of a system (x) by integrating partial observational data (y) with underlying
physical models (A = {M,P}), which serve as constraints. In our scenario, we have two types of

7
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SIMP (ground truth) PIDM (baseline) PCDM (ours)

(a) In-distribution

SIMP (ground truth) PIDM (baseline) PCDM (ours)

(b) Out-of-distirbution

Figure 4: Qualitative results for topology optimization (TO): testsets for (a) in- and (b) out-of-
distribution. % CE indicates the compliance error relative to the ground truth. Note that the negative
value implies that the generated solutions have lower compliance than those produced by SIMP.

Method In-distribution Out-of-distribution
Res ↓ MDN % CE ↓ % VFE ↓ Res ↓ MDN % CE ↓ % VFE ↓

TopoDiff-G - 0.83 1.49 - 1.82 1.80
DOM - 0.74 1.52 - 3.47 1.59
PIDM 1.24e-3 0.06 2.25 1.29e-3 0.56 1.91
PCDM 6.85e-4 -0.82 1.50 7.61e-4 0.05 1.79

Table 3: Quantitative results for TO. The terms Res, MDN % CE, and % VFE represent the median
residual error, median compliance error, and mean volume fraction error, respectively.

constraints: the first is observational data from sparse measurements y = M(x), and the second
is the physical residual, r = P(x) = 0. The datasets we considered are two time-dependent
physical models (P), Lorenz 1963, and Kolmogorov flow. We follow the details provided in (Rozet
& Louppe, 2023) for the benchmarks. The governing equations for the Lorenz 1963 are given by

dx

dt
= σ(y − x),

dy

dt
= x(ρ− z)− y,

dz

dt
= xy − βz, (18)

where the system parameters σ = 10, ρ = 28, and β = 8
3 result in chaotic behavior. To compute the

residuals r = P(x), we take the 2nd-order central finite difference to calculate the time derivative
of d

dt [x, y, z]. Following the dataset generation as detailed in (Rozet & Louppe, 2023), we use 1024
independent trajectories, each of length 1024, generated from various initial states. We maintain the
same train/test split described in (Rozet & Louppe, 2023). For the Lorenz 1963 scenario, the partial
observations y are given by 8x coarsening the original data with noise added with σ = 0.25.

On the other hand, Kolmogorov flow represents an incompressible fluid governed by the Navier-
Stokes equations:

du

dt
= −u∇u+

1

Re
∇2u− 1

ρ
∇p+ f , ∇ · u = 0. (19)
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where u is the velocity field, Re is the Reynold number, ρ is the fluid density, p is the pressure
field and f represents external forcing. To compute the residuals r = P(x), the time derivative
is obtained using three consecutive frames. The convection and diffusion terms in Equation 19 are
calculated by approximating the Laplacian and gradient of vorticity in Fourier space, followed by
transforming them back to the physical space, as described in (Shu et al., 2023). Following the
dataset generation as detailed in (Rozet & Louppe, 2023), we utilize 1024 independent trajectories,
each of length 64, where each state is represented as 64x64x2 with two velocity channels, generated
from randomly sampled initial states. In the case of Kolmogorov flow, the partial observations y
are obtained by 8x spatially coarsening and 4x temporal coarsening to the original data with noise
added with σ = 0.1. Consequently, each partial observation has a state represented as 8x8x2. We
use DPS (Chung et al., 2023) and SDA (Huang et al., 2024) as our baselines. SDA is a variant of
DPS that rescales the likelihood score to stabilize the sampling process. Both methods leverage a
learned generative prior and rely on one-step likelihood updates at each reverse process. In contrast,
PCDM allows multi-step likelihood updates at each reverse timestep, maintaining effectiveness even
with fewer timesteps, such as using DDIM.

As demonstrated in Table 2, PCDM outperforms all comparisons across all metrics including MAE,
RMSE, and inference time. In particular, PCDM achieves superior accuracy on benchmarks with 5
times fewer reverse steps, indicating that it provides more physically plausible solutions with faster
inference. In contrast, predictions from other methods either deviate significantly from the ground
truth, as shown in Figure 3 (a) or lack physical consistency, as illustrated in Figure 3 (b).

4.3 TOPOLOGY OPTIMIZATION

Topology optimization (TO) is another example of the physics-constrained inverse design that aims
to identify an optimal physical structure (x) that satisfies elastic equilibrium (A = {C,KU = F}),
with given loads and boundary conditions (y = {F, V0}). The problem can be represented as

min
x
C(x) = FTU(x), s.t. K(x)U(x) = F, V (x) ≤ V0, 0 ≤ xij ≤ 1. (20)

where C is compliance as the objective, F is applied loads, U(x) is the node displacement, K(x)
is the stiffness matrix, V (x) and V0 are the volume fraction and volume constraint, and the de-
sign variables xij are continuous value between 0 and 1. This problem is traditionally solved using
the Solid Isotropic Material with Penalization (SIMP) method, which is based on the finite element
method (FEM) (Bendsoe & Sigmund, 2013). We utilize a dataset composed of given constraints and
their corresponding optimal topologies solved by the SIMP as our ground truth described in (Mazé
& Ahmed, 2023). The dataset includes 30,000 optimal topologies with various boundary condi-
tions and two levels of test sets with in-distribution and out-of-distribution boundary conditions. We
compare PCDM with state-of-the-art approaches that employ diffusion models for topology opti-
mization. TopoDiff-G (Mazé & Ahmed, 2023) introduces a diffusion model guided by a gradient
update from auxiliary surrogate models in every, which helps to reduce compliance and enforces
boundary conditions at each step of the reverse sampling process. DOM (Giannone et al., 2023)
aligns the denoising trajectory with the optimization trajectory of the traditional iterative solver.
PIDM (Bastek et al., 2024) proposes a novel physics-informed framework during the training phase,
but not applying correction during inference. We follow the same train/test split and evaluation
metrics as described in (Mazé & Ahmed, 2023; Giannone et al., 2023; Bastek et al., 2024) to en-
sure fair comparisons. The evaluation metrics include the median residual error of the predicted
solution (Res), which quantifies the extent of violating of elastic equilibrium equation, the median
compliance error (MDN % CE) which is relative to the ground truth, CE = (C(x)−C(x∗))/C(x∗),
and the mean volume fraction error (% VFE), which is relative to the input volume fraction, VFE
= |V (x)− V (x∗)|/V (x∗).

As shown in Table 3, PCDM significantly outperforms existing methods in residual and compliance
errors, demonstrating that our approach ensures elastic equilibrium and produces more stable struc-
tures. Notably, our method achieves a negative compliance error across in-distribution test sets and
examples illustrated in Figure 4. This indicates that the generated topology exhibits lower compli-
ance, i.e. a more stable structure under the given boundary conditions compared to the topology
produced by SIMP. By strictly enforcing physics constraints and utilizing efficient diffusion sam-
pling, our method consistently provides superior structures compared to existing methods.
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Figure 5: Ablation studies on (a) step size α, (b) the number of likelihood (inner) updates N within
a single likelihood step, and (c) the starting time of likelihood steps ts/T .

4.4 ABLATION STUDIES

In Figure 5, we conduct ablation studies on the step size α, the number of likelihood (inner) it-
erations N within a single likelihood step, and the starting time of likelihood steps ts/T on the
CurveFaultB benchmark for the full waveform inversion problem. The results demonstrate that se-
lecting an appropriate step size, such as α = 5e − 3 in this case, is essential for obtaining optimal
solutions; otherwise, the performance decreases. Performing more than 10 likelihood iterations
per likelihood step achieves sufficient solution accuracy. While higher update counts offer only
slight improvements at the cost of increased computational time. Additionally, starting likelihood
steps after ts/T = 25% of the reverse process achieves stable convergence. This demonstrates that
conducting likelihood steps during only the final 25% of reverse steps is sufficient, significantly re-
ducing computational times. This reduction is due to the marginal impact of likelihood steps during
the early stages of diffusion reverse steps, as discussed in (Yu et al., 2023; Song et al., 2024).

5 CONCLUSION

In this paper, we presented the physics-constrained diffusion model (PCDM), a framework designed
to solve the inverse problems in scientific and engineering domains effectively. By integrating pre-
trained diffusion models with physics-constrained objectives, PCDM provides plausible and physi-
cally consistent solutions in a feasible inference time. Our approach leverages accelerated diffusion
sampling, enabling effective reverse steps in fewer timesteps, while strictly adhering to physics con-
strained by multi-step optimizing the likelihood objective at each reverse timestep. Extensive exper-
iments on a variety of challenging physics-constrained inverse problems, including full-waveform
inversion, data assimilation, and topology optimization, demonstrate that our method consistently
outperforms existing approaches. The results highlight PCDM’s ability to provide high-quality so-
lutions without compromising computational complexity, making it a practical tool for real-world
applications in fields where complex and nonlinear physics are prevalent.
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A IMPLEMENTATION DETAILS

A.1 PROBLEM DETAILS

Full waveform inversion. We used CurveFault B and Style B datasets from the OpenFWI bench-
marks (Deng et al., 2022). The original velocity field represents a 700 m×700 m, discretized on a
70×70 grid with 10 m grid spacings. We cropped 3 pixels from each boundary, reducing the grid
size to 64×64 and the corresponding velocity field 640 m×640 m which represent v(r) in equa-
tion 17. We set the 5 sources located from x = 0 m to x = 640 m with evenly spacing dx = 160
m at a depth of z = 10 m, and the 64 receivers located from x = 0 to x = 640 m with spacing dx
= 10 m at the same depth of z = 10 m. The Ricker wavelet with a central frequency of 15 Hz is
used as the source function s(r, t) in equation 17. Simulations were conducted for 1 s with a time
step of 0.001 s, resulting in measurements y with the size of 5×64×1000. In this case, we make 5
batches of gradient updates for 1 likelihood iterations. We utilize the open-sourced Deepwave pack-
age (Richardson, 2023), which implements the discretized wave equation using PyTorch (Paszke
et al., 2019) via the finite difference method. A 4th-order finite difference scheme was employed,
along with a perfectly matched layer (PML) of 120 grid points to prevent reflections from the edges
of the model. Due to the significant discrepancy in value ranges - where the true velocity fields
v(r) typically span from 1500 m/s to 4500 m/s, while random initialization of the diffusion models
or optimization solvers usually follows a standard normal distribution N (0, 1) - we preprocess the
training set of velocity fields with min-max normalization before pre-training the diffusion model.
During the inference stage, at each likelihood step, the output of the previous diffusion reverse step
is denormalized to compute the measurement-consistency term. Subsequently, the updated state of
the likelihood step is normalized back into the appropriate range of values for the diffusion models.
For the measurement-consistency term, we employed a combination of l1 and l2 loss function (Deng
et al., 2022). Specifically, the term is expressed as c1 · ∥y − A(x)∥1 + c2 · ∥y − A(x)∥2, with c1
and c2 both set to 0.5.

Data assimilation. We used the Lorenz 1963 and Kolmogorov flow datasets as benchmarks, follow-
ing (Rozet & Louppe, 2023). For Lorenz 1963, the system parameters were set to σ = 10, ρ = 28,
and β = 8

3 . The partial observations y are given by 8x coarsening the original data with noise added
with σn = 0.25. The time derivative of the state for residual computations was computed by the
2nd-order central finite difference. For the Kolmogorov flow, the state consists of 2-dimensional
velocity fields of size 64×64×2 within the domain [0, 2π]2 with periodic boundary conditions. The
Reynolds number was set to Re = 1000, the fluid density ρ = 1, and external forcing f followed
Kolmogorov forcing with linear damping (Chandler & Kerswell, 2013). The partial observations y
are obtained by 8x spatially coarsening and 4x temporal coarsening to the original data with noise
added with σn = 0.1. To compute the residuals, the time derivative is obtained using three consec-
utive frames. The convection and diffusion terms in equation 19 are calculated by approximating
the Laplacian and gradient of vorticity in Fourier space, followed by transforming them back to the
physical space, as described in (Shu et al., 2023). Data generation and implementation for both
datasets were based on (Rozet & Louppe, 2023).

Topology optimization. We used topology optimization benchmarks (Mazé & Ahmed, 2023)
which include 30,000 topologies for training, about 1,800 new topologies for the in-distribution
test set, and 1,000 new topologies for the out-of-distribution test set. In this problem, it includes
three constraints compliance C(x) = UT (x)KT (x)U(x), elastic equilibrium K(x)U(x) = F ,
and volume constraint, 1

N

∑
i xi ≤ V0, where K(x) and U(x) are the global stiffness and dis-

placement respectively, and F is given loads. We implement the physical constraint terms as,
∥K(x)U(x)−F∥22 + c1 · ∥C(x)− 0∥22 + c2 ·ReLU( 1

N

∑
i xi−V0), where given loads and volume

conditions can be considered as boundary conditions y = {0, F, V0} and the compliance and elastic
equations can be considered as forward operator A = {C,KU, 1

N

∑
i xi}. We set the coefficients

with c1 = 1e− 4 and c2 = 1.

A.2 ARCHITECTURE AND TRAINING

The implemented details of architectures and training for each problem are summarized in Table 4
respectively. We adopt the architecture and training details for the data assimilation and topology
optimization from (Rozet & Louppe, 2023) and (Bastek et al., 2024), respectively.
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Table 4: Details of architectures and training.

Problem Full waveform inversion Data assimilation Topology optimization
Dataset CurveFault B Style B Lorenz 1963 Kolmogorov flow In-distribution Out-of-distribution

Architecture
Model U-Net U-Net MLP U-Net U-Net U-Net

Target resolutions 64×64 64×64 3 64×64×2 64×64 64×64×3
Latent channels 128 128 64 [32, 64, 128] [128, 256, 512] [128, 256, 512]

Attention resolution 16 16 - - 32 32
Number of residual blocks 2 2 3 3 2 2

Activation SiLU SiLU SiLU SiLU SiLU SiLU
Normalization LayerNorm LayerNorm LayerNorm LayerNorm LayerNorm LayerNorm

Training
Optimizer Adam Adam Adam Adam Adam Adam
Batch size 128 128 64 64 8 8
Timesteps 1000 1000 500 1000 1000 1000
β schedule Linear Linear Linear Linear Cosine Cosine

Epochs 1000 1000 500 1000 1000 1000
Learning rate 1e-4 1e-4 1e-3 2e-4 1e-4 1e-4
Weight decay 0.5 0.5 1e-3 1e-3 - -

A.3 ALGORITHMS

Opt w/o diff We employ the Adam optimizer (Kingma, 2014) with a learning rate of 0.005 and
perform 1,000 iterations for the total optimization process. For the initialization, we take a random
initialization from the standard normal distributionN (0, 1). During the optimization, we denormal-
ize the x to match the proper scales of the true velocity fields, and appropriately compute the wave
equation 17.

DPS (Chung et al., 2023) From Bayes’ rule, the posterior can be decomposed as

∇xt log pt(xt|y) = ∇xt log pt(xt) +∇xt log pt(y|xt), (21)

where it is required to compute both the prior term ∇xt
log pt(xt), and the likelihood term

∇xt
log pt(y|xt). The score function ∇xt

log pt(xt) can be obtained from pre-trained score net-
works sθ(xt, t), and Gaussian approximation is used to compute the likelihood term, which results
in a one-step gradient update

∇xt
log pt(y|xt) ≈ ρ∇xt

∥∥y −A(x̂(t)
0 )

∥∥2
2
, (22)

where ρ is the step size and x̂
(t)
0 is denoised estimate. For full waveform inversion problems in both

CurveFault B and Style B datasets, the total number of time steps is set to T = 1000, with a step
size of ρ = 0.01. For the Lorenz 1963 system, T = 500 with ρ = 1. For the Kolmogorov flow,
T = 1000 with ρ = 1.

DiffPIR (Zhu et al., 2023) utilizes a variable splitting method to decouple the prior and likelihood
steps. DiffPIR also employs a diffusion prior during the prior steps and solves the proximal sub-
problem

x̂
(t)
0 = argmin

x
∥y −A(x)∥2 + ρt∥x− x̂

(t)
0 ∥2, (23)

using a one-step gradient update for the likelihood steps with step size ρt = λ(σn/σt)
2,

x̂
(t)
0 ≈ x̂

(t)
0 − ρt∇xt

∥y −A(x̂(t)
0 )∥2. (24)

By choosing proper hyperparameters and schedules, DiffPIR aligns with the procedures of the
DPS algorithm. However, our method uses multiple gradient updates starting from x̂

(t)
0 (i.e.,

x̂
(t)
0 = argmin

x
∥y − A(x)∥2 starting from denoised estimate x̂

(t)
0 from previous step), instead of

solving the proximal subproblem with one-step gradient update. Our method eliminates the need for
cumbersome step-size tuning but adjusts the number of inner gradient updates per likelihood step
for feasible time cost. The total number of time steps is set to T = 1000, with hyperparameters of
regularization weight λ = 10, and stochasticity ζ = 0.1.

RED-diff (Mardani et al., 2024) propose a variational approach leading to solving the following
optimization problem at each noise level:

µ = argmin
x
∥y −A(µ)∥2 + Eϵ

[
λt∥ϵθ(xt, t)− ϵ∥2

]
, (25)
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where λt is the regularization weight which can be defined as a pre-defined schedule, they performed
a single gradient update for the optimization process at each noise level, i.e., in a single reverse step,
while our method utilizes multiple gradient updates for an optimization process at each reverse step.
We implement the algorithm as one of our baselines. The total number of time steps is set to T =
1000, with linear schedule, and step size of the gradient updates is set to 0.01, and regularization
coefficients λ = 0.1.

DAPS (Zhang et al., 2024) also adopt a variable splitting method to decouple the prior and likelihood
steps. Its inference procedure includes: (1) reverse process to obtain denoised estimate x̂

(t)
0 , (2)

multiple number of gradient updates for a likelihood step, and (3) perturbation with the forward
diffusion process to next noise level. While this approach is similar to ours, a key difference lies
in their use of proximal loss term, ∥x̂(j)

0 − x̂0∥2, during the likelihood gradient update. This term
encourages solutions near the previous denoised estimate and follows the update rule:

x̂
(j+1)
0 = x̂

(j)
0 − η∇x̂0

(
1

2β2
y

∥y −A(x)∥2 + 1

2r2t
∥x̂(j)

0 − x̂0∥2
)
, (26)

where here is x̂0 denoised estimate of xt at time t. The total number of time steps is set to T = 200,
and step size of the gradient updates is set to η = 0.005, and the number of inner updates 5.

PCDM Our method addresses the likelihood process by directly minimizing the term ∥y −A(x)∥2

starting from the previous denoised estimate x̂
(t)
0 as an initial guess,

x̂
(n+1)
0 = x̂

(n)
0 − α∇

x̂
(n)
0
∥y −A(x̂(n)

0 )∥22, x̂
(0)
0 = ztk , (27)

which does not require the hyperparameters of the weight coefficient βy and βt for the data-
consistency term and proximal term. In our likelihood steps, we set a proper step size α and set
the number of likelihood iterations N for searching the solution near the previous state while strictly
enforcing the physical constraints, rather than relying on balancing weights between measurement
consistency and the proximal term. Moreover, our method conducts the likelihood steps to only the
steps before t < ts during the reverse steps. By performing likelihood updates only in regions where
they are more effective, we can achieve superior results within the same computational cost. For ex-
ample, when 1000 likelihood iterations are conducted within a reverse process spanning T = 200,
DAPS performs 5 inner gradient updates per likelihood step. In contrast, our method employs an
unconditional reverse process for ts > 100 and performs 10 inner gradient updates for ts < 100.
For full waveform inversion problems, the total number of time steps is set to T = 200, with step
size α = 0.005, the number of inner updates 10, and ts/T = 0.5. For the Lorenz 1963 system, the
total number of time steps is set to T = 100, with step size α = 0.05, the number of inner updates
10, and ts/T = 0.5. For the Kolmogorov flow, the total number of time steps is set to T = 200, with
step size α = 0.05, the number of inner updates 10, and ts/T = 0.5. For the topology optimization,
the total number of time steps is set to T = 200, with step size α = 0.001, the number of inner
updates 10, and ts/T = 0.5. The overall algorithm of PCDM is presented in Algorithm 1, where
we denote xtk as xk for readability.

B ADDITIONAL RESULTS

Method CurveFault B Style B
Res MAE ↓ RMSE ↓ SSIM ↑ Res MAE ↓ RMSE ↓ SSIM ↑

InversionNet - 1.67e-1 2.41e-1 0.605 - 5.86e-2 8.93e-2 0.760
VelocityGAN - 1.58e-1 2.34e-1 0.603 - 6.49e-2 9.79e-2 0.725
Opt w/o diff 1.42e-3 2.17e-1 3.16e-1 0.410 2.53e-4 2.36e-1 3.25e-1 0.294

DPS 6.79e-4 1.29e-1 2.38e-1 0.632 1.49e-4 9.14e-2 1.35e-1 0.593
Diffpir 7.11e-4 1.15e-1 2.19e-1 0.670 1.96e-3 8.32e-2 1.24e-1 0.624

RED-diff 6.26e-4 8.43e-2 1.48e-1 0.751 8.60e-4 8.49e-2 1.26e-1 0.617
DAPS 4.12e-4 6.61e-2 1.19e-1 0.806 1.89e-4 3.79e-2 6.43e-2 0.837
PCDM 3.57e-5 4.89e-2 9.91e-2 0.850 4.96e-5 3.07e-2 5.37e-2 0.890

Table 5: Quantitative comparisons on full waveform inversion including state-of-the-art plug-and-
play algorithms.
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Algorithm 1 Physics-constrained Diffusion Model (PCDM)

1: Input: Pre-trained diffusion model ϵθ, forward model A, measurement y, time steps
{t0, · · · , tK}

2: Hyperparameters: Step size α, number of iterations N , starting time of likelihood steps ts
3: Output: x0

4: Sample xT ∼ N (0, I)
5: for k = K, ..., 0 do
6: z′k ←

√
ᾱkxk+1 +

√
1− ᾱk ϵ̂k+1 ▷ Prior step: DDIM sampling

7: x
(0)
k ← (z′k −

√
1− ᾱtkϵ

(k)
θ (z′k))/

√
ᾱk ▷ Prior step: Obtaining denoised xk

8: if tk < ts then ▷ Likelihood step: Starting time ts
9: for n = 0, ..., N − 1 do

10: x
(n+1)
k = x

(n)
k − α∇

x
(n)
k

∥y −A(x(n)
k )∥22 ▷ Likelihood step: N iterations

11: end for
12: xk ← x

(N)
k

13: else
14: xk ← x

(0)
k

15: end if
16: end for
17: return x0
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(a) Loss trajectories of comparison methods at each reverse time step.
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(b) Progressive state at each reverse time step.

Figure 6: An example of (a) the loss trajectories of comparison methods and (b) the corresponding
progressive states at each reverse time step, respectively (CurveFault B).
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(a) Loss trajectories of comparison methods at each reverse time step.
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(b) Progressive state at each reverse time step.

Figure 7: An example of (a) the loss trajectories of comparison methods and (b) the corresponding
progressive states at each reverse time step, respectively (Style B).
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