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VoiceTuner: Self-Supervised Pre-training and Efficient
Fine-tuning For Voice Generation

Anonymous Authors

ABSTRACT
Voice large language models (LLMs) cast voice synthesis as a lan-
guage modeling task in a discrete space, and have demonstrated
significant progress to date. Despite the recent success, the current
development of voice LLMs in low-resource applications is ham-
pered by data scarcity and high computational cost. In this work,
we propose VoiceTuner, with a self-supervised pre-training and
efficient fine-tuning approach for low-resource voice generation.
Specifically, 1) to mitigate data scarcity, we leverage large-scale un-
labeled dataset and pre-train VoiceTuner-SSL without pre-defined
applications, which can be fine-tuned in downstream tasks; 2) to
further reduce the high training cost in complete fine-tuning, we
introduce a multiscale transformer adapter to effectively update
only around 1% parameters as a plug-and-play module. Experi-
mental results demonstrate that VoiceTuner-SSL presents strong
acoustic continuations, and VoiceTuner achieves state-of-the-art
results in rich-resource TTS evaluation compared with competitive
baseline models. Low-resource (1h, 10h, 30h) downstream applica-
tions including zero-shot TTS, instruction TTS, and singing voice
synthesis present VoiceTuner’s superior audio quality and style
similarity with reduced data requirement and computational cost.
Audio samples are available at https://VoiceTuner.github.io

CCS CONCEPTS
• Applied computing → Sound and music computing; • Com-
puting methodologies→ Natural language generation.

KEYWORDS
Speech Large LanguageModels, Efficient Fine-tuning, Text-to-Speech,
Singing Voice Synthesis

1 INTRODUCTION
Voice synthesis [31, 34, 41] aims to generate human-like voices,
which attracts broad interest in the machine learning community.
A growing number of applications, such as voice assistant services
and long-form reading, have been actively developed and deployed
to real-world speech platforms.

Current voice large language models (LLMs) [19, 40, 50] cast
voice synthesis as a language modeling task in a discrete repre-
sentation space. VALL-E [40] proposes a language model approach
for text-to-speech (TTS) with audio codec tokens. UniAudio [43]
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introduces a multi-scale transformer to enable sub-quadratic self-
attention, unlocking better performance at a reduced cost for train-
ing and generation. A line of works [1, 3, 19] introduces the hierar-
chical approach that combines semantic and acoustic audio tokens
to decrease supervision in model training.

Despite the success achieved, the current development of voice
LLMs in low-resource scenarios (training data with limited labels)
is hampered by two major challenges: 1) data scarcity: most exist-
ing models rely on web-scale training data, which are lacking in
low-resource scenarios; and 2) high computational cost: training
voice LLMs from scratch are computationally intensive and time-
consuming, and the inefficient attention mechanism in transformer
further challenges model in modeling long codec sequence.

In this work, we propose VoiceTuner, with a self-supervised pre-
training and efficient fine-tuning approach for low-resource voice
generation. To alleviate data scarcity, we pre-train the next-token
prediction model (VoiceTuner-SSL) in the large-scale unlabeled
dataset, which can be fine-tuned in downstream generation tasks
with reduced data and device requirements. To further reduce com-
putational cost and avoid losing the general abilities of VoiceTuner-
SSL, we introduce a multiscale adapter with separated fine-tuning
strategies for global and local transformers, effectively fine-tuning
only around 1% parameters in downstream applications.

VoiceTuner is pre-trained on ∼160K hours of unlabeled voice
data without supervision, followed by rich or low resource (1h, 10h,
and 30h) adaptation in downstream applications including zero-
shot TTS, singing voice synthesis, and instruction TTS, respectively
generalizing to unseen speaker, modality, and instruction. Exper-
imental results demonstrate that VoiceTuner-SSL keeps acoustic
continuations, maintaining speaker identity, emotion, and speaking
speed from prompts. VoiceTuner exhibits superior audio quality
and style similarity, unlocking the ability to generate voice samples
in low-resource scenarios.

The key contributions are as follows:

• We present VoiceTuner, with a self-supervised pre-training
and fine-tuning approach to alleviate data scarcity in low-
resource applications.

• We introduce a lightweightmultiscale adapterwith separated
fine-tuning strategies for global and local transformers, to
efficiently fine-tune only around 1% parameters and reduce
the computational cost.

• Experimental results present VoiceTuner-SSL’s ability to
keep acoustic continuations, and demonstrate VoiceTuner’s
achieves state-of-the-art results in rich-resource evaluation.

• Low-resource downstream applications including zero-shot
TTS, singing voice synthesis, and instruction TTS present
VoiceTuner’s superior audio quality and style similarity with
reduced data requirement and computational cost.

https://VoiceTuner.github.io
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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2 RELATEDWORKS
2.1 Generative Voice Models
Text-guided voice synthesis (text-to-speech and singing voice syn-
thesis) typically converts input text into mel-spectrogram (e.g.,
Tacotron [41], FastSpeech [34]), which is then transformed to wave-
form using a separately trained vocoder [14, 21], or directly generate
waveform from text (e.g., EATS [8] and VITS [20]). In zero-shot
scenarios, when the distributions of style prompts deviate from
the training data, the quality of the synthesized voice often suffers
degradation due to distribution mismatches: Meta-StyleSpeech [29]
generally adopts a speech encoding network for multi-speaker syn-
thesis. GenerSpeech [16] leverages multi-level style adaptors for the
global and local stylization of the custom utterance. YourTTS [4]
is built upon VITS with several novel modifications for zero-shot
multi-speaker and multilingual training.

2.2 Generative Voice Pre-training and
Fine-tuning

Self-supervised learning (SSL) [2, 11] has been shown to achieve
remarkable advances in recent years, opening up a wide array of ap-
plications that leverage their power by adapting models. AudioLDM
2 [27] leverages AudioMAE [13] and performs self-supervised audio
generation learning with a latent diffusion model conditioned on
audio tokens. UniAudio [43] trains on different generative tasks
to obtain prior knowledge in the inter-relationship between au-
dio and other modalities and support new audio generation tasks
after simple fine-tuning. Spear-TTS [50] is pre-trained on a BERT-
like [7] denoising pretext task, where the model is provided with
a corrupted version of an original semantic token sequence with
the goal to produce the corresponding uncorrupted token sequence.
Differently, we pre-train LLMs (namely VoiceTuner-SSL) in a next-
token prediction task without supervision, which has not been
investigated in voice synthesis task.

Efficient fine-tuning aims to reduce data and device require-
ments in downstream generation tasks. SpeechFlow [26] achieve
better performance utilizing low-rank adaptation (LoRA), which
adds the linear input projection to each self-attention layer. Au-
dioBox [39] include two-stage full fine-tuning to improve model
fidelity and quality where all parameters are optimized together.
In this work, we introduce a multiscale transformer adapter for
parameter-efficient adaptation, which updates only around 1% of
the parameters on top as a lightweight plug-and-play module.

2.3 Spoken Language Models
Recent generative models cast voice synthesis as a language model-
ing task to perform in-context learning: VALL-E [40] uses discrete
codes derived from an off-the-shelf neural audio codec model, and
regards TTS as a conditional language model. Spear-TTS [50] lever-
age back-translation and prompt-guided LLMs for high-quality TTS
with limited supervision. Jiang et al. [17] train a prosody language
model with arbitrary-length speech prompts to produce expressive
and controlled prosody. GSLM [23] with “textless NLP” is proposed
to model language directly without transcription by training au-
toregressive generative models of low-bitrate Hubert [11] tokens.
AudioLM [3] and MusicLM [1] cast audio synthesis as a language

modeling task and leverage a hierarchy of coarse-to-fine units.
However, these existing voice LLMs are trained from scratch using
web-scale data, replicating this success is limited in low-resource
scenarios.

3 METHOD
In this section, we first overview the motivation, and introduce
generative self-supervised pre-training with follow-up fine-tuning
approach with discrete voice representation. Next, we propose
a lightweight, plug-and-play adapter for parameter-efficient fine-
tuning. In the following, we introduce the scalable global and local
architecture in Section 3.3.

3.1 Motivation
Current voice large languagemodels (LLMs) [3, 19, 40, 50] cast voice
synthesis as a language modeling task in a discrete representation
space. However, these voice LLMs are trained from scratch using
web-scale data, replicating this success in low-resource scenarios
is hampered by two major challenges: 1) data scarcity: large-scale
training data are lacking in low-resource scenarios; and 2) high
computational cost: training voice LLMs from scratch are computa-
tionally intensive and time-consuming, and the inefficient attention
mechanism in transformer further challenges model in modeling
long codec sequence.

To alleviate data scarcity, we pre-train the next-token prediction
model (VoiceTuner-SSL) in the large-scale unlabeled dataset, which
can be fine-tuned in downstream generation taskswith reduced data
and device requirements. To address the high computational cost
in low-resource scenarios, we propose VoiceTuner to respectively
decrease data requirements and learnable parameters in fine-tuning
with multiscale transformer adapter.

3.2 Speech Representation
Audio codec models such as SoundStream [45] and Encodec [6]
have recently shown that encoder-decoder architecture excels at
learning acoustic information in a self-supervised manner, where
the representation can be used in a variety of generative tasks.

The acoustic codec model typically consists of an audio encoder,
a residual vector-quantizer (RVQ), and an audio decoder: 1) The
audio encoder 𝐸 consists of several convolutional blocks with a total
downsampling rate of 320 and generates continuous representations
at every 20-ms frame in 16kHz. 2) The residual vector-quantizer
𝑄 produces discrete representations 𝑎𝑞 with a codebook size of
𝐾2, using a vector quantization layer [37]. 3) The audio decoder 𝐺
reconstructs the signal𝑦, from the compressed latent representation
𝑎𝑞 . In the end, a speech utterance𝑦 is represented as acoustic tokens
with [𝑎1, 𝑎2, . . . , 𝑎𝑇 ] , 𝑎𝑖 ∈ {0, 1, . . . , 𝐾2 − 1},∀1 ≤ 𝑖 ≤ 𝑇 , where 𝑇
is the number of frames.

3.3 Multiscale Architecture
With powerful models, large language models have recently exhib-
ited high-quality samples in natural language processing. To make
audio modeling more tractable, recent studies propose to represent
audio signals as multiple streams of discrete tokens representing the
same signal and flatten these codes [1, 22]. It comes at the high com-
putational cost of modeling extremely long sequences, because of
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Codec

Next-token Prediction Supervised fine-tuning
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Global Model

Split Split Split
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c1c2c3b1 b2 b3

(a) Generative pre-training

Local Local Local 

(b) Efficient fine-tuning (c) Multi-scale architecture

Figure 1: In subfigure (b), prompts can be adjusted for different tasks with a variety of conditions (speaker, emotion, prosody,
and style).

the quadratic cost of self-attention and large feedforward networks
per-position.

Our model (denoted as 𝜃𝐴𝑅 ) predicts long sequences with end-
to-end differentiable multiscale transformers or state space models
similar to Yang et al. [43], Yu et al. [44]. This enables sub-quadratic
calculation, unlocking better performance at reduced cost for both
training and generation. As illustrated in Figure 1(c): 1) the token
embedding matrix 𝐸𝐺 maps integer-valued tokens 𝑎1, 𝑎2, ..., 𝑐2, 𝑐3
to𝑚 dimensional embeddings, following which 2) we chunk it into
patches of size 𝑃 of length 𝐾 = 𝑇

𝑃
, 3) a large global model 𝜃global

𝐴𝑅

module outputs patch representations G1:K
o = 𝜃

global
𝐴𝑅

(G0:K−1
i ), and

4) a relatively smaller local model 𝜃 local
𝐴𝑅

operates on a single patch
containing 𝑃 elements, each of which is the sum of an output from
the global model and an embedding of the previous tokens, and
autoregressively predict the next patch L1:Ko = 𝜃 local

𝐴𝑅
(L0:K−1i +

G1:K
o ).
Our model presents the improvements from scaling attention

layers’ depth and width without the requirement of scattered model-
specific methodologies. As expected, scaling the model size (160M
(base), 420M (medium), and 1.1B (large) parameter) results in better
scores. We refer the reader to Section 8.1 for our findings.

3.4 Self-supervised Pre-training
Most voice LLMs rely on web-scale training data and cast voice
synthesis as a language modeling task, while the data shortage ham-
pers its application in low-resource scenarios. To alleviate it, we
leverage unlabeled corpus and pre-train LLMs (namely VoiceTuner-
SSL) in a next-token prediction task without supervision, where
we hypothesize that a generative model without pre-defined appli-
cation can be applied to different downstream tasks, reducing data
requirement in low-resource application.

VoiceTuner-SSL is pre-trained on arbitrary voice, which contains
many speakers with various accents, diverse demographics, and

heterogeneous recording conditions. Next, we fine-tune VoiceTuner-
SSL to align speech and text modalities utilizing supervised data
in downstream voice generation applications, where we find that
the self-supervised pre-training stage offers a distinct gain in both
rich and low-resource scenarios. We expect our VoiceTuner-SSL to
keep the speaker identity, prosody, and recording conditions of the
prompt and produce new content. We refer the reader to Section 5
for our findings.

3.5 Efficient Fine-tuning

Concat Concat Concat

       Global Transformer

Split Split Split

eos eoseos

b1 b2 b3a1a2a3 c1c2c3

c1c2c3b1 b2 b3

Local Transformer ❄

Lora🔥

Lora🔥

❄

Lora🔥
❄

Lora🔥

❄

Attention
N-L    Layers

Attention

L    Layers

Adapted
Prompts

❄

🔥

❄
Gate

🔥 Learnable ❄ Frozen
Task Prompts

🔥🔥 ×

×
I

Pl

Figure 2: Efficient fine-tuning with multiscale transformer
adapter.

After pre-training VoiceTuner-SSL on unlabeled speech corpus,
we fine-tune the model in downstream tasks with supervised data.
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Though fine-tuning voice LLMs is effective compared with train-
ing voice LLMs from scratch, a complete fine-tuning of large-scale
voice LLMs still 1) is time-consuming, computation-intensive, multi-
modality unsupported; and 2) can lose the general ability of foun-
dation model (e.g., acoustic continuations).

In this section, we introduce an efficient plug-and-play module,
i.e., a multiscale transformer adapter, where we have separated
fine-tuning strategies respectively for global and local transformers
to update only around 1% parameters. Specifically,

• In a local transformer, we include low-rank adaptation (LoRA) [12]
in the linear input projection of each layer in attention blocks,
where only the LoRA parameters are optimized.

• In a global transformer, a set of learnable prompts with gates [49]
are added to the input, which learn to adaptively inject new
instructions (conditions) into the pre-trained model and avoid
disturbing speech tokens at the beginning of training.

Supposewe have condition representation (i.e., task-specific prompts)
𝐼 ∈ R𝐾×𝐶 with length 𝐾 and feature dimension 𝐶 . For instruction
TTS, we use pre-trained Flan-T5-XL [33] and freeze the weights to
derive condition representation; For zero-shot TTS and SVS, we
use the token embedding matrix to obtain the representation of
acoustic and pitch tokens from speaker and MIDI prompt, which
are then pad to a fix length 𝐾 = 150.

We initialize learnable adaption prompt {𝑃𝑙 }𝐿𝑙=1 for 𝐿 layers,
where we have each layer’s prompt 𝑃𝑙 ∈ R𝐾×𝐶 and speech tokens
𝑇𝑙 ∈ R𝑀×𝐶 . Then, the adaption prompt is conducted an element-
wise addition with condition representation: 𝑃𝑙 = [𝑃𝑙 + 𝐼 ] ∈ R𝐾×𝐶 .

Suppose the model is processing with the speech tokens 𝑇𝑙 and
condition 𝑃𝑙 , The attention score related to learnable prompt is cal-
culated as 𝑆𝑝

𝑙
= Attention(𝑇𝑙 , 𝑃𝑙 , 𝑃𝑙 ) = Softmax(𝑇𝑙𝑃𝑇𝑙 /

√
𝐶)𝑃𝑙 , and

we have 𝑆𝑡
𝑙
self-attention score for original speech tokens. A learn-

able gating factor 𝑔𝑙 is adapted to adaptively control the importance
of 𝑆𝑝

𝑙
in the attention with 𝑆𝑙 = 𝑆

𝑝

𝑙
𝑔𝑙 + 𝑆𝑡𝑙 , which represents how

much information the learnable prompt contributes. Initialized by
zero, 𝑔𝑙 can first eliminate the influence of under-fitted prompts and
then increase its magnitude to provide more instruction semantics.

To conclude, the adaptation enjoys efficient training efficiency
with only around 1% learnable parameters. As a lightweight plug-
and-play module, this enables us to fine-tune voice LLMs on cheap
devices.

3.6 Reconstructing High-Fidelity Waveforms
We train a unit-based neural vocoder from scratch for the acoustic
unit to waveform generation. Inspired by BigVGAN [24], the syn-
thesizer includes the generator and multi-resolution discriminator
(MRD). The generator is built from a set of look-up tables (LUT)
that embed the discrete representation and a series of blocks com-
posed of transposed convolution and a residual block with dilated
layers. The transposed convolutions upsample the encoded repre-
sentation to match the input sample rate. Details are included in
Appendix B.2.

Conv1D Layer

AMP

Transposed
Conv1D

Embedding Layer

Acoustic Tokens

Conv1D

×N

Tanh
Conv1D
Snake1d

Source Module

F0 Prompt

Harmonic Source

AMP

Transposed
Conv1D

Conv1D Layer
×N

×N

Figure 3: Overview of the unit-based vocoder. The F0 aux-
iliary input denoted with dotted lines is included only in
singing voice synthesis.

4 TRAINING AND EVALUATION
4.1 Dataset
For self-supervised pre-training, we utilize large-scale datasets with
Librilight [18] and WenetSpeech [47], where we have ∼160K hours
of 16 kHz audio that greatly increases the domain coverage.

We fine-tuning VoiceTuner-SSL to align speech and text modali-
ties utilizing TTS data such as LibriTTS [46], VCTK [38] and Prompt-
Speech [9], resulting in rich-resource VoiceTuner. For text sequence,
we tokenize it into the phoneme sequence with an open-source
grapheme-to-phoneme conversion tool [36]. To evaluate Voice-
Tuner in low-resource scenarios, we construct paired data (1h, 10h,
30h) with three application tasks: instruction-guided TTS, zero-
shot TTS, and singing voice synthesis, respectively generalizing
to unseen instruction, speaker, and modality. We have attached
detailed information on data configuration in Figure 1.

4.2 Evaluation Metrics
Speech intelligibility.We report word error rate (WER) to eval-
uate the intelligibility of speech by transcribing it using a whis-
per [32] ASR system following [40].

Style similarity. SIM assesses the coherence of the generated
speech in relation to the speaker’s characteristics, and we employ
the speaker verification model WavLM-TDNN [5] to evaluate the
speaker similarity. F0 Frame Error (FFE) measures the prosody
similarity of synthesized and reference audio.

For pitch, speaking speed, and volume attributes accuracy, con-
sidering that the values of generated singing may slightly deviate
from the boundaries used for categorization, we adopt a soft-margin
mechanism for accuracy calculation. Specifically, we take the accu-
racy of data falling within the correct range as 100, and calculate
the accuracy with 100∗exp (−𝑘𝜖) for data outside the correct range,
where 𝜖 is the error between the data value and the boundary, and
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Table 1: Dataset usage in self-supervised pre-training and
efficient fine-tuning stages. More information is included in
Appendix A.

Task Dataset

Self-supervised pre-training

Next-token prediction Librilight, WenetSpeech

Rich-resource Evaluation

TTS (phone/frame level) LibriTTS, VCTK
Zero-shot TTS Librilight, LibriTTS

Low-resource Evaluation (30/10/1 hr)

Instruction-guided TTS PromptSpeech
Zero-shot TTS LibriTTS, VCTK

Singing voice synthesis OpenCPOP, OpenSinger, M4Singer

𝑘 is a hyper-parameter controlling the decay rate of accuracy at the
margins, with larger 𝑘 corresponding to faster decay. We illustrate
the accuracy curves in Figure 5 in Appendix C.1.

Subjective evaluation.We also conduct a crowd-sourced hu-
man evaluation via Amazon Mechanical Turk, which is reported
with 95% confidence intervals (CI), and analyze two aspects: style
similarity (speaker, emotion, and prosody) and audio quality (clarity,
high-frequency), respectively scoring SMOS and MOS. Our subjec-
tive evaluation tests are crowd-sourced and conducted by 20 native
speakers via Amazon Mechanical Turk on a 1-5 Likert scale.

The MOS (mean opinion score) tests explicitly instruct the raters
to “(focus on examining the audio quality and naturalness, and ignore
the differences of style (timbre, emotion, and prosody).)". For style
similarity evaluation, we explicitly instruct the raters to “(focus
on the similarity of the style (timbre, emotion, and prosody) to the
reference, and ignore the differences of content, grammar, or audio
quality.)". More information has been attached in Appendix C.

4.3 Model Configurations
For acoustic tokens, we train the SoundStream model with 12 quan-
tization levels, each with a codebook of size 1024 and the same
downsampling rate of 320. We take three quantization levels as
the acoustic tokens, representing each frame as a flat sequence of
tokens from the first, second, and third quantization layers. We
trained three sets of VoiceTuner, with 160M (base), 459M (medium),
and 1.1B (large) parameters. As for the unit-based vocoder, we use
the modified V1 version of BigVGAN. A comprehensive table of hy-
perparameters is available in Appendix B. Except explicitly stated,
we use our 459M (medium) model for downstream evaluation.

During training, we pre-train VoiceTuner-SSL for 100K steps
using 8 NVIDIA A100 GPUs with a batch size of 6000 tokens for
each GPU on the publicly-available fairseq framework [30], and
fine-tune VoiceTuner for 10K steps using 1 NVIDIA A100 GPU.
Adam optimizer is used with 𝛽1 = 0.9, 𝛽2 = 0.98, 𝜖 = 10−9. The
unit-based vocoder is optimized with a segment size of 8192 and
a learning rate of 1 × 10−4 until 500K steps using 4 NVIDIA V100
GPUs. For sampling, we employ top-p [10] sampling with p = 0.25.

4.4 Baseline
We compare the generated audio samples with other systems, in-
cluding 1) GT, the ground-truth audio; 2) GT (voc.), where we first
convert the ground-truth audio into tokens and then convert them
back to audio using BigVGAN; 3) YourTTS [4]: a zero-shot multi-
speaker TTS model which is built upon VITS [20]; 4) VALL-E [40]
and Spear-TTS [19], recently proposed Speech LLMs for English
zero-shot TTS. For easy comparison, the results are compiled and
presented in the following sections.

5 SELF-SUPERVISED PRE-TRAINING RESULTS

Table 2: Acoustic continuity of VoiceTuner-SSL.

Model SIM Emotion Style Speed

GT / 100 95.8 86.9
GT (voc.) 0.94 93.1 92.4 87.4

Base 0.92 90.5 78.5 63.4
Medium 0.92 91.3 81.5 65.6
Large 0.93 92.7 83.1 67.1

We expect our generative foundation model VoiceTuner-SSL to
keep the speaker identity, prosody, and recording conditions of the
prompt and produce new content in next-token prediction. Specif-
ically, we generate continuations of 5 seconds for each 3-second
prompt, where the prompts are obtained by cropping samples from
Librispeech test-clean. In the following, we run the speaker, style,
emotion, and speed classifier on the sampled continuations (exclud-
ing the prompts) and report the results.

The evaluation results are presented in Table 2, and we have
the following observations: 1) VoiceTuner-SSL can preserve the
speaker, style, emotion, and speaking speed in the prompt with a
high recognition accuracy at a zero-shot setting, even if the model
is not fine-tuned in downstream datasets; Informally, VoiceTuner-
SSL is optimized in a large amount of self-supervised data, which
contains many speakers with various accents and diverse demo-
graphics to improve robustness and generalization; and 2) as shown
in the demo page, in a noisy environment, VoiceTuner also presents
the acoustic consistency and maintain the noise conditions from
the prompt.

6 RICH-RESOURCE FINE-TUNING RESULTS
6.1 Quantitative Findings
Our proposed self-supervised pre-training and follow-up fine-tuning
approach are essential for the early-stage training stability and final
generation capacity. To demonstrate the rich-resource performance,
we fine-tune VoiceTuner-SSL to align speech and text modalities
in downstream TTS or frame level TTS (FTTS) tasks, respectively
taking phone or duration-expanded phone sequences as inputs.

We plot the loss/accuracy curves in Figure 4 and present results
in Table 3, and have the following observations: 1) the model with
pre-training converges faster and reaches lower loss bounds than
the model trained from scratch; and 2) For the intelligibility of
the generated speech, VoiceTuner (with pre-training) has achieved
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Figure 4: Loss/accuracy curves with or without self-supervised learning (SSL).

Table 3: Low-resource TTS results. FTTS: Frame-level TTS
taking expanded phone as input. P: with or without pre-
training.

Task P WER SIM MOS SMOS

GT / 3.2 / 4.35±0.05 /
GT (voc.) / 5.6 0.93 4.23±0.07 4.20±0.05

TTS % 9.3 0.81 3.92±0.07 3.84±0.07
! 6.7 0.83 3.98±0.06 3.92±0.08

FTTS % 6.4 0.83 3.98±0.07 3.93±0.07
! 5.9 0.84 4.04±0.08 3.98±0.06

a 27%, 7.8% relatively lower WER respectively in TTS and FTTS,
indicating that self-supervised pre-training provides gains with
accessible speech of better quality. 3) To conclude, VoiceTuner-
SSL pre-trained on an arbitrary voice corpus contains speakers
with various accents, diverse demographics, and heterogeneous
recording conditions, offering distinct gains in rich-resource fine-
tuning.

6.2 Comparison With Other Models
To compare VoiceTuner with several baselines in the benchmark
rich-resource zero-shot TTS tasks, we train our model in the Libri-
light dataset and assess the audio quality and style similarity, using
a small-scale test set with the examples provided on the demo page.
We also score MOS and SMOS for subjective evaluation, rated from
1 to 5, and reported with 95% confidence intervals (CI). The results
are compiled and presented in the following table.

1) For audio quality, VoiceTuner has achieved the highest MOS
with scores of 4.03 compared with the baseline models; 2) Regard-
ing style similarity, VoiceTuner presents the SIM of 0.85, surpass-
ing baseline models in transferring the style of custom voices. To
conclude, self-supervised pre-training on an arbitrary voice cor-
pus offers distinct gains in downstream fine-tuning, and Voice-
Tuner’s direct text-to-acoustic generation avoids the cascaded error

Table 4: Low-resource zero-shot TTS results, we compare
VoiceTuner with other models.

Model MOS (↑) SMOS (↑) WER (↓) SIM (↑)
GT 4.32±0.08 / 3.2 /
GT (voc.) 4.25±0.07 4.21±0.06 5.6 0.93

YourTTS 3.91±0.07 3.81±0.06 10.3 0.79
VALL-E 3.92±0.12 3.85±0.07 8.2 0.81
Spear-TTS 3.97±0.06 3.89±0.04 7.9 0.83

VoiceTuner 4.03±0.08 3.96±0.06 6.3 0.85

in baselines (VALL-E [40]’s cascaded AR and NAR models or Spear-
TTS [50]’s cascaded semantic and acoustic tokens). We will include
this discussion in the revised version of the paper, and hope this
will resolve your concerns.

7 LOW-RESOURCE FINE-TUNING RESULTS
We hypothesize that a generative foundation model can be applied
to different downstream tasks, reducing data requirements and
computational cost, especially in low-resource scenarios. Though
it would be more helpful to investigate the real low-resource lan-
guages, it would be challenging to train a low-resource language
model due to 1) the lack of stable lexicon or grapheme-to-phoneme
(G2P) tools, and 2) the expensive and substantial amount of man-
power needed for collecting and labeling data, which are beyond our
scope. As such, we choose English/Chinese as the target languages,
and construct the 1/10/30 hours data to simulate the low-resource
languages following previous low-resource speech systems [25, 35].

To present the capability of VoiceTuner in low-resource scenarios,
we construct (1h, 10h, 30h) hours of data for three application tasks:
instruction-guided TTS (ITTS), zero-shot TTS (ZS-TTS), singing
voice synthesis (SVS), respectively generalizing to unseen instruc-
tion, speaker, and modality. For training efficiency, we investigate
full training from scratch (Full-s), full fine-tuning from VoiceTuner-
SSL (Full-p), and efficient fine-tuning with a multiscale transformer
adapter (Adapter).
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Table 5: Low-resource instruction TTS results. Full-s: Full parameter training from scratch; Full-p: Full parameter fine-tuning
from pre-trained VoiceTuner-SSL. Note that we use / to represent that the model (Full-s) cannot converges in low-resource
scenarios.

Gender (↑) Speed (↑) Pitch (↑) Volume (↑) WER (↓) MOS(↑) SMOS(↑)
GT 96.6 86.9 86.9 78.9 5.1 4.31±0.05 /
GT (voc.) 95.8 87.4 87.0 76.0 7.1 4.20±0.07 4.20±0.05
Fine-tune with 30-hour data

Full-s 94.1 88.3 88.2 63.9 16.9 3.94±0.06 3.89±0.08
Full-p 94.7 86.1 87.3 68.3 7.1 4.01±0.08 3.97±0.07
Adapter 89.1 85.1 86.7 58.8 6.9 3.96±0.06 3.92±0.07
Fine-tune with 10-hour data

Full-s 90.1 76.5 85.7 61.1 68.7 3.90±0.08 3.86±0.08
Full-p 91.6 85.7 85.6 62.2 7.6 3.97±0.08 3.92±0.08
Adapter 86.1 83.5 86.3 62.1 7.5 3.91±0.06 3.85±0.07
Fine-tune with 1-hour data

Full-s /
Full-p 49.1 84.5 77.3 57.3 14.9 3.91±0.08 3.84±0.08
Adapter 80.0 82.9 85.1 61.3 9.6 3.87±0.06 3.82±0.07

7.1 Zero-shot Text-to-Speech

Table 6: Low-resource zero-shot TTS results.

Model WER (↓) SIM (↑) MOS (↑) SMOS (↑)
GT 3.2 / 4.32±0.08 /
GT (voc.) 5.6 0.93 4.25±0.07 4.21±0.06
Fine-tune with 30-hour data

Full-s 10.3 0.63 3.88±0.06 3.75±0.06
Full-p 7.2 0.71 4.03±0.07 3.94±0.08
Adapter 7.9 0.63 3.98±0.05 3.90±0.07
Fine-tune with 10-hour data

Full-s /
Full-p 8.1 0.64 3.96±0.06 3.91±0.08
Adapter 8.2 0.62 3.94±0.07 3.89±0.07
Fine-tune with 1-hour data

Full-s /
Full-p 8.9 0.58 3.90±0.07 3.85±0.07
Adapter 8.5 0.60 3.89±0.06 3.85±0.07

In this section, we fine-tune VoiceTuner in a zero-shot TTS task,
where we generate the speech conditioned on the acoustic tokens
of the 3-second enrolled recording and the phoneme prompt, which
constrain the speaker and content information respectively. The
results in the zero-shot TTS task are presented in Table 6, and we
have the following observations:

1) As training data is reduced in the low-resource scenario, a
distinct degradation in speech quality and similarity could be wit-
nessed. For example, VoiceTuner (Adapter) presents a distinct drop

in TTS WER of 6.9 → 7.5 → 9.6 when reducing training data from
30 to 1 hours. 2) As the amount of trainable parameters is decreased
to 1% in multiscale adapter, only a slight quality drop is observed. As
such, effective fine-tuning with the proposed multiscale adapter en-
ables us to fine-tune voice LLMs on limited data and cheap devices.
3) It is worth mentioning that in extremely low-resource scenarios,
VoiceTuner (Full-s) cannot converge when training from scratch.
As expected, a generative model (namely VoiceTuner-SSL) without
a pre-defined application can be applied to different downstream
tasks, reducing data requirements in low-resource applications.

7.2 Instruction Text-to-Speech
In this section, we fine-tune VoiceTuner in the instruction-guided
TTS task, where we take a prompt with both style and content
descriptions as input to synthesize the corresponding speech. In
this way, users are able to create speech from a prompt, resulting
in style control without the requirements for acoustic knowledge
or reference speech. The results are presented in Table 5, and we
have the following observations:

1) With 30-hour training data, VoiceTuner (full-p) presents high
perceptual quality with outperformed subjective and objective
evaluation results, which shows that the model can synthesize
speech in a consistent style with the intention of style prompts.
2) In extremely low resource scenarios (i.e., 1-hour data), Voice-
Tuner (Adapter) presents an outperformed quality compared to
full-parameter fine-tuning models (Full-p), and VoiceTuner (Full-s)
even cannot converge when training from scratch. To conclude, a
complete fine-tuning of large-scale voice LLMs can lose the gen-
eral ability of the foundation model (e.g., gender continuations),
especially in low-resource scenarios. 3) Speech volume is relatively
less distinguishable than gender and speed attributes, and thus the
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speaking volume classifier presents an accuracy of 78.9% in ground
truth data. which is lower than gender (96.6%) and speed (86.9%).

7.3 Singing Voice Synthesis
Table 7: Low-resource instruction SVS results.

FFE (↓) SIM (↑) MOS (↑) SMOS (↑)
GT / / 4.12±0.06 /
GT (voc.) 0.01 0.95 4.08±0.04 4.02±0.06
Fine-tune with 30-hour data

Full-s /
Full-p 0.31 0.93 3.97±0.06 3.92±0.05
Adapter 0.43 0.90 3.93±0.05 3.88±0.07
Fine-tune with 10-hour data

Full-s /
Full-p 0.47 0.91 3.93±0.07 3.89±0.06
Adapter 0.44 0.88 3.91±0.06 3.85±0.08
Fine-tune with 1-hour data

Full-s /
Full-p 0.58 0.83 3.85±0.07 3.69±0.06
Adapter 0.61 0.78 3.84±0.08 3.71±0.07

In this section, we fine-tune VoiceTuner in the singing voice
synthesis task, where we generate the singing voice conditioned on
the acoustic tokens of the 3-second enrolled recording, F0 prompt
(fromMIDI), and the phoneme prompt, which constrain the speaker,
pitch, and content information respectively. Detailed information
on the MIDI-to-F0 converter has been included in Appendix B.1.
The results are presented in Table 7, and we have the following
observations:

1) In all data usage settings, VoiceTuner (Full-s) cannot converge
when training from scratch. Besides, a distinct quality drop can
be witnessed when decreasing data usage, which is more signif-
icant than those in zero-shot TTS or instruction TTS tasks. To
sum up, singing voice synthesis resembles the prosodic style of the
F0 prompt and requests a precise pitch reconstruction, and thus
it can be more sensitive to data scarcity in low-resource scenar-
ios; and 2) Regarding computational cost, though full parameter
fine-tuning systems demonstrate better results in most cases, the
multiscale transformer adapter has still achieved the comparable
results (e.g., FFE and SIM of 0.61, 0.78 in 1-hour SVS). It indicates
that the adapter enjoys high-fidelity generation with only around
1% learnable parameters, which enables us to fine-tune voice LLMs
on cheap devices;

8 ANALYSIS AND ABLATION STUDIES
To verify the capabilities of VoiceTuner, we conduct ablation stud-
ies on model scalability and few-shot adaptation, and discuss key
findings as follows.

8.1 Scalability to improve performance
As illustrated in Table 8, we report results for different model sizes,
namely 160M (base), 459M (medium), and 1.1B (large) parameter

Table 8: We compare VoiceTuner among different sizes (Base,
Medium, and Large).

Size Params Mem TFLOPs WER SIM

B 160M 4332M 76.3 7.8 0.81
M 459M 5259M 181.4 6.7 0.83
L 1B 5638M 408.1 5.9 0.84

models. As expected, scaling the size of VoiceTuner results in better
scores. However, this comes at the expense of longer training and
inference time. Increasing the model size from 459M to 1.1B leads
to additional gains of a further 40% reduction in WER for TTS tasks
with a similar style.

8.2 Efficient fine-tuning with multiscale
transformer adapter

Table 9: Ablation studies. We obtain VoiceTuner in low-
resource (10-hour) instruction TTS task and report attributes
accuracy and WER.

Tuning Params Gender Speed Pitch WER

GT / 96.6 86.9 86.9 5.1

Lora 8.97M 86.6 83.2 85.8 7.6
Adapter 12.0M 86.1 83.5 86.3 7.5

To enable few-shot learning without losing the general abilities,
we fine-tune VoiceTuner in 10-hour instruction TTS data, and com-
pare the results among different adaptation methods. Illustrated in
Table 9, as a lightweight plug-and-play module, the proposed mul-
tiscale transformer adapter enjoys superior training efficiency with
only around 1% parameters in contrast to full fine-tuning, demon-
strates the 9.2%WER drop and outperformed attributes accuracy
(gender, speed, and pitch) compared to Lora [12]. This enables us
to fine-tune voice LLMs on cheap devices.

9 CONCLUSION
In this work, we propose VoiceTuner with a pre-training and effi-
cient fine-tuning approach for low-resource voice generation. To
mitigate the data scarcity and high computational cost for train-
ing voice LLMs, we 1) leveraged large-scale unlabeled dataset and
pre-trained VoiceTuner-SSL in a next-token prediction task, which
could be fine-tuned in downstream tasks with reduced data; 2) in-
troduced an efficient multiscale transformer adapter to fine-tune
only around 1% parameters in downstream applications, further
eliminating the computational cost. Experimental results demon-
strated that VoiceTuner-SSL presented strong speech continuations.
VoiceTuner achieves state-of-the-art results in rich-resource TTS
evaluation compared with competitive baseline models. VoiceTuner
exhibited superior quality and style similarity with reduced data
requirement and computational cost in three low-resource (1h, 10h,
30h) voice generation tasks, including zero-shot TTS, instruction
TTS, and singing voice synthesis. We envisage that our work serves
as a basis for future low-resource voice synthesis studies.
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