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A DATA
In this section, we describe details of the data usage in training and
evaluating VoiceTuner.
• For self-supervised pre-training, Librilight [18] contains 60K
hours of unlabeled speech from audiobooks in English, and
WenetSpeech [47] include 100K hours of speech in mandarin.

• For zero-shot text-to-speech, LibriTTS [46] dataset is included.
• For instruction text-to-speech, we use the dataset PromptSpeech [9].
• For singing voice synthesis,We use the female-singer OpenCPOP [42],
multi-singer dataset OpenSinger [14], and M4Singer [48] as the
singing voice data.

B MODEL CONFIGURATIONS
We list the model hyper-parameters of VoiceTuner in Table 10.

B.1 MIDI-to-F0 Converter
Singing voice synthesis (SVS) is a task that generates singing voices
from the given music score and lyrics like human singers. Fol-
lowing [28, 48], the SVS system typically includes the MIDI-to-F0
converter to predict F0 explicitly. Though the SVS system can be
further improved with the direct MIDI condition and implicit F0
prediction, this is beyond our focus.

B.2 Unit-based Vocoder
The generator of the unit-based vocoder is built from a set of look-
up tables (LUT) that embed the discrete representation, and a se-
ries of blocks composed of transposed convolution and a residual
block with dilated layers. We train the enhanced vocoder with
the weighted sum of the least-square adversarial loss, the feature
matching loss, and the spectral regression loss on mel-spectrogram,
where the training objective formulation and hyperparameters fol-
low Kong et al. [21], Lee et al. [24].

For speech generation, we train the vocoder with only the dis-
crete unit sequences as input. For singing voice generation, we fur-
ther include F0-driven source excitation to stabilize long-continuous
waveforms generation following [15, 28].

C EVALUATION
C.1 Objective Evaluation
For controlling accuracies on volume, pitch, and speaking speed,
considering that the values of generated singing may slightly devi-
ate from the boundaries used for categorization, we adopt a soft-
margin mechanism for accuracy calculation. Specifically, we take
the accuracy of data falling within the correct range as 100, and
calculate the accuracy with 100 ∗ exp (−𝑘𝜖) for data outside the
correct range, where 𝜖 is the error between the data value and the
boundary, and 𝑘 is a hyper-parameter controlling the decay rate of
accuracy at the margins, with larger 𝑘 corresponding to faster decay.
We take accuracy curves of high vocal-range of female, low speed,
and medium volume as examples and illustrate them in Figure 5.

C.2 Subjective Evaluation
For audio quality evaluation, we conduct the MOS (mean opinion
score) tests and explicitly instruct the raters to “(focus on exam-
ining the audio quality and naturalness, and ignore the differences
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Figure 5: Soft-margin accuracy curve.

of style (timbre, emotion, and prosody).)". The testers present and
rate the samples, and each tester is asked to evaluate the subjective
naturalness on a 1-5 Likert scale.

For style similarity evaluation, we explicitly instruct the raters
to “(focus on the similarity of the style (timbre, emotion, and prosody)
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Hyperparameter VoiceTuner

VoiceTuner: Transformer

Global Base

Transformer Layer 16
Transformer Embed Dim 768

Transformer Attention Headers 12
Number of Parameters 114 M

Global Medium

Transformer Layer 20
Transformer Embed Dim 1152

Transformer Attention Headers 16
Number of Parameters 320 M

Global Large

Transformer Layer 24
Transformer Embed Dim 1536

Transformer Attention Headers 32
Number of Parameters 830 M

Local

Transformer Layer 6
Transformer Embed Dim Same as global

Transformer Attention Headers 8
Number of Parameters 46/101/303 M

BigVGAN Vocoder

BigVGAN Vocoder

Upsample Rates [5, 4, 2, 2, 2, 2]
Hop Size 320

Upsample Kernel Sizes [9, 8, 4, 4, 4, 4]
Number of Parameters 121.6M

Table 10: Hyperparameters of VoiceTuner.

to the reference, and ignore the differences of content, grammar, or
audio quality.)". In the SMOS (similarity mean opinion score) tests,
we paired each synthesized utterance with a ground truth utterance
to evaluate how well the synthesized speech matches that of the
target speaker. Each pair is rated by one rater.

Our subjective evaluation tests are crowd-sourced and conducted
by 20 native speakers via Amazon Mechanical Turk. The screen-
shots of instructions for testers have been shown in Figure 6. We

paid $8 to participants hourly and totally spent about $600 on par-
ticipant compensation. A small subset of speech samples used in
the test is available at https://VoiceTuner.github.io/.

D REPRODUCIBILITY STATEMENT
We will release our code in the future. The VoiceTuner model that
we build upon is publicly available through the fairseq code repos-
itory [30]. To aid reproducibility, we have included a schematic
overview of hyperparameters in Table 10.

https://VoiceTuner.github.io/
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(a) Screenshot of MOS testing.

(b) Screenshot of SMOS testing.

Figure 6: Screenshots of subjective evaluations.
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