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A Proofs of necessity for the assumptions made in Section 2.3

A.1 Variance proxy parameter for adversarial perturbation

We derive the variance proxy parameter of a sub-Gaussian vector A(x*). This is done by first starting with a
general random sub-Gaussian vector, z with variance proxy parameter 72 and identity covariance matrix.
The definition of sub-Gaussian vectors in (Hsu et al., 2012) states that for all v € RP:

2 2
E [exp (vT2)] < exp (”V"2> (19)

Without loss of generality, we define A(x*) = (EA)l/Qz, where X4 is the covariance matrix of A(x*).

Substituting z = 34" A(x*) in the above equation:

£ [oxp (v(22) A0 ] < e (”L)

—1/2

Substituting aT = vT(Z4) in the above equation

Elspara(e))] < exp (2o0)

2
which holds for all o € RP.

A.2 Existing adversarial attacks are a special case of our adversarial model

Lemma 2. Existing adversarial attacks (Goodfellow et al., 2015; Madry et al., 2018; Szegedy et al., 2014;
Xing et al., 2021; Yin et al., 2019; Awasthi et al., 2020; Qin et al., 2021) are a special case of our adversarial
model specified in Assumption 1.

Proof. Existing adversarial attacks (Goodfellow et al., 2015; Madry et al., 2018; Szegedy et al., 2014; Xing
et al., 2021; Yin et al., 2019; Awasthi et al., 2020; Qin et al., 2021) are deterministic and bounded as they
maximize the loss function within some e norm ball and hence are a special case of our adversarial model
specified in Assumption 1.

As seen in Lemma 6, the solution to the following maximization problem

. _ 2
At <X*(J)) = arg max (W*T <X*(J) + A) _ y*(g)>
laf<e

for any general norm constraint on A is given by

. + L’ W*Tx(i) — y® =0
Ao (x0) =3~ s*0
sign(wg'x" —y )em we'x\" — gy £0

where v € 0 ||w%]|,. It is obvious that the optima satisfies || A|| < € and hence is bounded.

Any vector with a bounded norm is a sub-Gaussian random vector, as shown below. Also, note that a random
variable is more general than a deterministic one, i.e., a deterministic quantity is a random variable with a
Dirac delta probability density function.

Assume u has bounded norm |ju| < B. Let the random variable v = aTu for a fixed . By Holder’s
inequality

VIl < llefl«]lull < fledl« B < Clle]|2 B
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where ||-]|, denotes the dual norm and is defined below for a general vector a
[bl|. = sup{bTa [ [la]| <1}
and C is related to the norm inequality ||a|. < C||e|l2. Now
Elexp(au)] = Elexp(v)] < exp(C?[|a|[357/2)

which follows by boundedness of v and is the definition in (Hsu et al., 2012). O

A.3 Huber model is a special case of our adversarial model

Lemma 3. The a-Huber-model (Prasad et al., 2020; Diakonikolas et al., 2019) corrupting only @ < 1 fraction
of samples is a special case of our adversarial model specified in Assumption 1.

Proof. In this section, we briefly discuss the Huber model or other existing models in prior literature and
show that it is a special case of our adversarial model. Thus, the requirements of sub-Gaussianity (to allow
for concentration inequalities), zero-mean (to avoid the issue described in Lemma 5) are not restrictive.

In our model, we assume noise-free measurements x**) and adversarial perturbation A(X*)(i) for any sample
i € [n] are generated from sub-Gaussian distribution, say P and N(x*) respectively:

x* ~ P, A(x*) ~ N(x*)

where we have dropped the superscript i for brevity. Furthermore, N(x*) clarifies that the distribution N
might depend on the value of x*.

Further, we assume the adversarially corrupted data is given to the learner:
x =x" + A(x"), y=wTx"+e (21)

where w* is the true parameter vector. In Lemma 5, we have already shown that adversarial perturbation
should be zero-mean otherwise support can be estimated trivially by computing the mean. Our further
analysis relies on the population covariance matrix defined as:

Ex* 2x*A 7 X*x*T x* (X* T
|:2AX* »A ] =E ({A(X*)X*T A X*)A (X*)T (22)
In the a-Huber-model (Prasad et al., 2020; Diakonikolas et al., 2019), only a < 1 fraction of samples are

corrupted and can be modeled as shown below:

z~ B(l —a), x* ~ P, I'(x*) ~ Q(x¥)
x =2x" + (1 — 2)I'(x*), y=wTx"+e (23)

where B(1 — «) denotes a Bernoulli distribution (Uspensky et al., 1937) and T'(x*) corresponds to corrupted
samples following some arbitrary distribution Q(x*). The expected value can be computed as:

E.[x] = (1 — a)x* 4+ al'(x*)
Further, the covariance matrix in this case will be:

s T ] =B ([ e e ) 2

Hence the covariance matrix in our case presented in Eq. (22) has very similar structure and mathematical

properties as compared to the covariance matrix for the Huber model presented in Eq. (24). Therefore the
analysis will follow exactly the same as ours.
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In fact, we can show that the Huber model is a special case of our model by defining our adversarial
perturbation, i.e., the distribution N(x*) as follows::

A(x") 0 with probability (1 — «)

—x* + I'(x*), where I'(x*) ~ Q(x*) with probability «
Substituting the above particular of A(x*) in Eq. (21) will lead to the Huber model in Eq. (23). Hence our
model is more general.

O

A.4 Attacking only support and non-support can be countered by computing mean

Lemma 5. If the adversary attacks only the support entries (xs) or non-support entries (xs.) with non-
zero-mean adversarial perturbation, then the learner can guess the support trivially with probability at least

1-0 (%) if n = (log(p)).

p1lg
p2lp_g
assume that the first k£ entries of x correspond to the support S and the rest correspond to the non-support
S¢. If this is not the case, the support and non-support entries will need to be properly interleaved. For the
attack on S only, we consider the case 1 # 0 and pg = 0. Similarly, for the attack on §¢ only, we consider
the case of p1 = 0 and pe # 0.

Proof. Let the non-zero-mean adversarial perturbation have the form p = { } . Also, for clarity, we

We first analyze the sample mean of the entries in the support. For n samples, that is x(9) € RP for j € [n],
we can compute the sample mean. For the i*" entry, denoted by x;, where i € S, we use the sub-Gaussian
tail bound along with the union bound:

1 — —nt?
P|(3ies) gz —m| >t SQZGXP{QU%} (25)

j=1 €S

where aii denotes the variance proxy parameter. Similarly, the mean of the entries in the non-support can
be analyzed as

t2
P (3l eS8 lej)—ug >t <22exp{ - }

lese

We substitute t = w in the above equations. Now, if p; = 0 and pg # 0, we can claim:

lzx@ < max(lpnl, pal) _ |paf
3 3

1<~ 4) 1 max([pl, [p2l) —  luel
- > - - > -t =2
- le lpa| — - Z pa| > |pz] 3 3

with high probability of 1 — O (%) if n = Q (log(p)). Note that the sample mean of the entries in the support

2

is upper-bounded by l“ , whereas the sample mean of the entries in the non-support is lower bounded by

2"‘3—2‘. Hence the learner can guess the support easily by observing the concentration of the sample mean.
Note that the case of u; # 0 and pus = 0 can be analyzed similarly.

O
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A.5 Necessity of minimum eigenvalue assumption

Lemma 17. If Assumption 7 is violated, meaning Cnin = 0, then the Lasso solution will not be unique.

Proof. Consider the simple case of A(x*) = 0 for all samples and having infinite samples, meaning n — oo.
In such a case, the minimum eigenvalue of the Hessian matrix derived at the end of Section D.1 will be Ciyip-
It should be noted that Ci,;, < 0 is not possible as covariance matrices are known to be positive semidefinite.
Hence, the mild violation of the assumption only happens if Cp,;, = 0. As the Hessian is not positive definite,
the loss function is not strictly convex and hence the optimal solution is not unique. O

A.6 Our adversarial model is more challenging than existing adversarial models

Lemma 6. The support can be trivially estimated in n = € (log(p)) with high probability of 1 — O (1/p)
under existing adversarial attacks (Goodfellow et al., 2015; Madry et al., 2018; Szegedy et al., 2014; Xing
et al., 2021; Yin et al., 2019; Awasthi et al., 2020; Qin et al., 2021) aiming to maximize a per-sample loss
function.

Proof. In the existing literature, the adversarial attack is usually derived for the particular constraint of
Euclidean norm or ¢, norm or general £, norm. In the following derivation, we present the proof for any
general norm.

The attack generated by FGSM and its variants will attack only the support for each sample because it
focuses on maximizing the loss function only, rather than making the estimation of parameters tougher.

Mathematically, y*() = w*Tx*() = ngx:;(j ) for any sample j € [n]. FGSM and its variants maximize the
loss function with respect to adversarial perturbation A within some € ball to obtain the optimal:

) ) 2
Agpt (X*(J)) = argmax (W*T <X*(]) + A) _ y*(])>
lAll<e

, N2
= arg max (W;T (X*(]) + A) - y*(])>

lAll<e

We solve the problem for two cases of ngx(i) —y(® =0 and W:;«TX(i) —y £ 0.

1. For W}Tx(i) — y( =0, the problem reduces to dual norm problem as shown below:

*T
sup wg A
l|Al|<e

Using Holder’s inequality, we can claim:
wi'A < [wil, Al < e[wsl,

where |||, denotes the dual norm for any general norm. Therefore to compute Aqp (x*1)), we need to
find the solution for

Ao (V) = {A Wi A = w3 A, < 1)

To compute the optimal point, we use the sub-differential of a norm defined as follows for any general
vector a:

dllaf = {v:vTa=|al,|all, <1}

where |||, is the dual norm to [|.|. Using this, we claim Agy (x*)) € €0 [|w]|,. As the original
objective function is quadratic, —Agpy (x*)) can also be a solution.
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2. For Wng(i) — 4 £ 0, we first consider the case of Wng(i) —»® > 0. The objective function
to maximize (wix(® — y() —|—w}A)2 can be expressed as maximizing wEA because whx () — 3@
is a positive constant and not a function of A. As discussed earlier, the optimal solution will be
Aoy (x*0)) € €d||w|,. Using similar arguments for the case of wg'x® — ¢y < 0, the solution is
given by Agpt (x*(j)) € —ed|wgl,.

Hence, the overall solution is given by:

v AT (1) 06 —
A, (x*m) _lFen wilx() —y@ =0
P sign(ng(’) — y(Z))EHVTH W:;TX(z) —y@ £0

where v € 0| w¥],.

The important thing to note is that the optimal solution is a function of the support only. As the adversary
is attacking only the support , the learner can guess the support in n = Q2 (log(p)) with a high probability of
1— 0O (Y/p) as shown in Lemma 5. O

A.7 Necessity of mutual incoherence assumption

Lemma 18. If for some~y > 0, if HEgcs (228)71 sign(wys)

’ > 1+, then support recovery is not possible,
o0

meaning sign(w;) # sign(w}) for some i € S, even if we have infinite samples.

Proof. Consider the simple case with no adversarial attack, i.e., A(x*) = 0 for all samples. We can
directly use Theorem 2(a) from (Wainwright, 2009) to prove the claim. Theorem 2(a) from (Wain-
wright, 2009) shows that dual feasibility does not hold if the mutual incoherence condition is violated,

> 1+ ~. Hence, w* is not optimal as one of the KKT conditions

(i-e., dual feasibility) is not satiogﬁed. Furthermore, since the solution w fulfills dual feasibility, i.e.,

ie., if HEch (Egs)_l sign(wy)

HEECS (Egs)_l sign(\?vS)H < 1, we know that sign(w;) # sign(w}) for some i € S, which proves our

claim.

O
B Necessary Condition: Proof of Lemma 9
Lemma 9. The condition % (1 + %) ?’G% < Izrélél |w?| is necessary for support recovery, even in the

population regime, where (intuitively speaking) the learner has access to an infinite number of samples.

Proof. For simplicity, assume x* follows a Gaussian distribution with zero mean. Similarly, assume A(x*)
follows a Gaussian distribution with zero mean but has certain correlation with x*. Also, assume e is
zero-mean Gaussian independent of x* and A(x*). Further, assume:

> = Ex*xT] =1, X = E[xxT] = 2I
Most importantly we assume the learner does not know ¥* 2 defined as:
XA ZE[xFA(xN)T]

The distribution of (x,y), since it is multivariate Gaussian, is fully identifiable from its first and second order
moments:
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It is easy to observe that E[x] = E[x*] + E[A(x*)] = 0 and E[y] = E[x*]Tw* + E[e] = 0. Further:

Elxyl = E[(x" + A(x")) (x"Tw" + ¢)]
= BT +E[AX)XT) W' + E[x" + A(X")]E[e]

- (I ¥ EX*A) w
Similarly, note that:
Ely?] = E [(x"Tw" +¢)°]
= w'TE [x*x*T] w* + 2E [x*Te] + E [”]
= [w*[l3 +E[e?]

Note that the learner has to estimate the support & from two quantities E [xy] = (I + EX*A) w* and
Ely?] = ||w*|3 + E[e?] without knowing 32X A,

16||2[p]$ w

; 16b 3Gmax — oo 3Gmax
Now let us assume there exists a case such that 15> (1+7) 2% 5 (1+7) 3Cpax > Ill'élél |w¥|.
Since ¥* = 2I, we have Gax = H’(EES)_I‘H =1/2 and H‘chs (2§S)_1H‘ =0 <1 -, which implies
o0 e}

v = 1. Substituting these values, we arrive at:

x*A

16 HE S (1 + ) 3Gmax 16 HE[P WSH 1+ 1)\ 3 HEX*A * > | |
= —)== \ min |w}

15y 4 2 15 4) 4 IS TS| = Yies

Now we consider two cases discussed below for EE:] 3 ng > mlg |wr]:
1€

1. If wf > 0 and (EX*AW*)Z. < —w7, then E[xy], = (I+3%'4) wh), = wi + (EX*AW*)Z. <0.

2. If wi <0and (ZX*AW*), > —w}, then E [xy], = (I+ EX*A) W*)i =wj + (ZX*AW*)Z, > 0.

(2

In both the cases, sign (E [xy];) # sign (w}). Hence support recovery can not be done under a case with

HEMS WSH >m1n|w

The final step of the proof consists on showing that there exists such a case. The distribution of (x*, A(x*))
is a multivariate Gaussian, fully identifiable from its first and second order moments:

E[A)((:c*)] - B] EZEHA?;*J [AT;*J } - [Eix* E;A]

Example 1. The adversary can choose to set ¥X' & = 34%" — _9T and ¥4 = 5I, which leads to a
positive definite covariance matrix 3. First, note that 3* = E [xxT] = E [(x* + A(x*))(x* + A(x*))T] =
2T 4 3xTA L nAXT L B1A — 9. Second, note that ¥ Aw* = —2w* which fits cases 1 and 2 discussed
above. Finally, to further illustrate how the adversary can perturb a sample x*, by properties of conditional
distributions for multivariate Gaussians, we have that A(x*) given x* follows a Gaussian distribution with

mean EX*A(EA)%X* = —2Zx* and covariance 4 — ¥’ ARAX" =T, That is, A(x*) ~ N(—Zx*,1).
Example 2. To give a more challenging case, the adversary can choose to set XA = RAX" — _J
and XA = 3I, which leads to a positive definite covariance matrix . First, note that X* =

E[xxT] = E[(x* + A(x*))(x* + A(x*))T] = ¥ + XA L A" 1 A4 — 9. Second, note that
Elxy] = (I+ EX*A) w* = 0, thus, the learner is not getting any information regarding the support.
Finally, to further illustrate how the adversary can perturb a sample x*, by properties of conditional distribu-
tions for multivariate Gaussians, we have that A(x*) given x* follows a Gaussian distribution with mean

TXA(RA) Ixr = —1x* and covariance ¥4 — SX AXAX" — o That is, A(x*) ~ N (—3x*, 2I). O

19



Published in Transactions on Machine Learning Research (12/2024)

C Proof for Uniqueness and Upper bound on |[Ws — wk||

C.1 Uniqueness of the solution

In this sub-section, we prove the uniqueness of the optimal solution ws. We need the second order derivative,
[V2I((ws,0))] g5 = »XEXs (computed in Appendix D.1) to be positive definite for the problem in Eq. (2)
to be strictly convex in the support space (See Eq. (33) in the appendix for a formal definition). The positive
definiteness of a submatrix of the sample covariance is proved in the following lemma.

Lemma 19. If Assumption 7 holds and n = 2 (klog(p)), then we have:

T . . .
P |:)\min <X3XS) Z (Cmm + 2F’mm + Dmm>:| Z 1-0 (1)
n 2 P

Hence [V2I((ws,0))] g5 = +X5Xs is positive definite. More importantly, as the Hessian matrix depends
only on adversarial perturbation in the support S, sample complexity in the above lemma is not impacted by
perturbation in the non-support S¢. But this does not imply allocating more budget to S to design perturbation
is recommended from the adversary’s perspective, as more budget to S may lead to increasing Dy, which
is advantageous for the learning algorithm. In a more formal way, we need to bound Ay (AXSHAXE) /)
while proving Lemma 19, which requires n = Q ((klog(p))/D2;,) samples (Eq. (65)). Hence, it is advisable
for the adversary to design perturbations such that Dy, is small.

With a brief discussion on uniqueness in this sub-section, we provide theoretical guarantees for the estimated
regression parameter vector in the next subsection.

C.2 Quality of estimated regression parameter vector

In this subsection, we prove the third claim made in Theorem 10 and discuss how the adversarial perturbation
in the non-support S¢ can affect the theoretical guarantees for ws (in the support) indirectly through
regularization parameter. We start with the computation of Wws — w by using the first order stationary
condition specified in Eq. (4). The algebraic steps are presented in Appendix D.1 and the simplified expression
is:

IWs = willoo < [[]AT][ o (Wl + Iwall) + A [[JATH[]  llzsll (26)
wy o XEe o XEAXZwE , XIXs 27)
n n n

The last term in RHS of Eq. (26) can be easily bounded as ||zs| ., < 1. To further bound |HA‘1H’OC, we
use the triangle inequality:

a7l < ||[a - @ian™|||_+ |||

o0

The first term in the RHS of the above equation can be bounded using Lemma 13. We can claim

lla - w2 S <o(3) (28)

by substituting § = Gmax/2 in Lemma 13 if n = Q (k*log(r)/c2,,, ). Using this, we can claim ’HA‘1 | ’ ’oo < 3Gmax/2.

max

Further we proceed to bound ||w1 ||, defined in Eq. (27) by using an approach similar to Lemma 15:

T
Xse

n

i
8

< (29)

il = H
o0

It should be noted that there is lower bound constraint on A\ for the above statement to hold with high
probability, as specified in Lemma 15. The lower bound value of A can be tightened slightly for this case
specifically by changing the log(p) factor to log(k) as wy is a k—dimensional vector, and we need to take

20



Published in Transactions on Machine Learning Research (12/2024)

union bound over k elements only, instead of p — k as done in Lemma 15. But we take the A mentioned in
Eq. (15), so that the strict dual feasibility is also verified.

Further, we proceed to bound |wa| ., defined in Eq. (27) by using the approach similar to Lemma 24
presented in Appendix D. We claim:

XEA (X)W
n

<M
- 8

o

(30)

Iwall., = ]

where the lower bound on A is specified in Eq. (15). Substituting the bounds derived in Eq. (29) and Eq.
(30) in Eq. (26), we obtain:

GII]'IX
s —whlle <A (14 2) 22 = o) (31)

This proves the third claim in Eq. (3) of Theorem 10. From the above equation, we observe that a large value
regularization A is not desirable as it is directly proportional to the bound of ||Ws — wk|| . But note that
the lower bound of A can be controlled by the adversary due to the presence of constants b and ¢ in Eq. (15),
and hence the adversary can control the quality of the estimated regression parameter vector as demonstrated
shortly. Before proceeding to that discussion, we need to prove the fourth claim of sign matching in Theorem
10, which can be seen as a direct consequence of Lemma 26 in the Appendix.

D Proof for KKT conditions

D.1 First Order Stationarity condition

Consider the loss function

1
I(w) = 5 lly — Xwf3. (32)
The Lasso problem is given by:
ws = argminl((ws,0)) + A|ws]|:. (33)
wsERF

We start with the first-order stationary condition. Taking the first order derivative of Eq. (32), we get:
1
Viw) ==XT (X(w—-w") + (A (X*)w" —e))
n

1 A~ *
[Vi((Ws,0))]s = X§ (Xs(Ws —ws) + (A (X5)ws —e))
1 A, * * *
[Vi((Ws,0)]se =~ X5 (Xs(Ws —w5) + (A (X5)ws —e))
The stationarity condition of Eq. (33), after splitting into the support S and non-support S¢, becomes:

[VI((Ws,0))]s + Azs = O,
[Vi((Ws, 0))lse + Azse = 0(p—)

Using these equations, we arrive at:
1 A * * * S
SX§ (Xs(Ws —ws) + (A (X5)ws —e)) +Azs =0
(Ws —ws) = (X;Xs) ' (XL (e — A (X5)W§) — n)is) (34)

Further, using triangle inequality and sub-multiplicative property of norms, we arrive at:
XLXs\ XZLe
n n
o0

21

[Ws = Wil <

R o
n

. ||zs||oo) (35)

o0
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Now, Zse can be computed as

. 1 . .
Zse =~ X5 (Xs(Ws — wg) + (A (X5)ws — e))

_ _/\inxgc (Xs ((x‘gxs)‘1 (XL (e — A (X5)wE) — nAis)) + (A (X5)ws — e>)

— X1, {Xs (XLXs) s + (In ~ X (XLXs) ! Xg) (e — AA(HXE)WE) } (36)

where I,, denotes an identity matrix of dimension n x n.

The second order derivative of Eq. (32) is:

1
Vi(w) = —XTX
n

[v%((ws,o))]&s = %xgxs

D.2 Simplification of ||2s-, ||__

In this sub-section, we present the simplification of the term Higctl HOO, which uses the triangle inequality as
shown below:

_ 1 1 -t
‘HX}UXS (XLXs) 1”‘00 < (nxgcxs 5 It zgcs) (nxgxs>
1 1 -t 1 -t
< —XT X — 3%, —XIX pIpN —XIX
s <n5 S ss)(n 58> + ss(n SS)
1 T x 1 T - x \—1 x \—1
= gXScXS — Y%es EXSXS - (¥5s)  +(25s)
(o]
1 -t .
X x - x —1
+ Ses ((nX‘TsXS> - (¥5s) +(25s) )
<

1 1 -t .
~XIL.Xs — X%, —XIxX — (X%
’(n SeS 55> ((n S S> ( ss) )

1 x x \—1
+ ’H(HXTSCXS - 2303) (X3s) ‘

%s ((;ngs)_l ~ §s>‘1>

Let R = %X}CXS and Q = %X}XS, and hence E [R] = ¥%. 5, E[Q] = X¥. The above expression simplifies
to:

oo

. ez

oo

[xaxs ey < | et |_ [ (- - el )
+|[|®-Em) (@ - ®@))|||_+||®-ER)EQ)

oo
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D.3 Proof of Lemma 12

Lemma 12. For 0 < § < 32&k, where & = max (O’ 2;‘i+m/2£) max (0 X%+ EA), ifn =
1€

JES® )
Q (k§§2 log(p)), then

=210l

Proof. We start by analyzing each entry of %XTCXS. As x = x* + A(x*), we can claim x; ~ SG(0,0,/%% +

1
P Hngcxs -
n

74/ Eﬁ) using Lemma 27. Further as Xj; and X, are sub-Gaussian, its product is sub-exponentially dis-

tributed, denoted by SE(8v/2¢;j, 4¢;;) using Lemma 28 where ¢;; = <O’ XX 41y / Eﬁ) (U X%y E]A])

By using properties of sub-exponential distributions, we can further claim the following for entry (4, j):

1 BV2E 46
QXECX‘S)M ~SE (\/ﬁ ’n>

where £ = max <0’ XX+ T\/EA) max (a X+ 1y /24). Applying Lemma 23 for lXECXS, we arrive
e 21 i jese 77 27 n

at:

1
[
n

—nd?
> 6| <2(p—Fk)kexp 256282

‘ o0

for 0 < 9§ < 32¢k. If we choose n = §) (k2§2 log(p)), then we may claim:

5
‘ <ol z1-0(3).
o0 p

1
P ||ixsxs - =5
n

D.4 Proof of Lemma 13

Lemma 13. For any 6 > 0, if n = Q ( K 1 log(p))

52(Cmin+2Fmin+Dmin)
1
P <§l>1-0 <>
- p

Proof. We start by applying norm inequalities to arrive to the spectral norm:

1 - o
(1xx) o

H‘QXEXS)l‘( Bs) ||| VR (;xgxs)l_( x )

0o 2

1 -t 1 _
<Vk (nX}XS> < ﬁsnXIsXs>( %)

2

1
—XIXs — X35
n

<Vk ( XI;X5> -

1 .
- =507, e
n 9 2

2

23
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The term H(EES)AH in the above equation can be bounded as shown below:
2
Amin <2§$) > Amin ( §fs) + 2Amin ([EAX* + EX*A]SS/Q) + Amin (E?S)
= C’min + 2Fnin + Dmin (38)

We use Lemma 19 to claim H( XT Xs H < m with high probability of 1 — O (%) if

n = Q (klog(p)). Substituting this bound and Eq. (38) in Eq. (37):

-1
1 2 1
XTXS) — (=Xt <Vk XIXg— X% 39
H‘(n I (5%s) I T KT )
We further proceed to bound ||1XTXs — 2’§$H2 in Eq. (39):
1 x * x* 1 * x*
“HXEXS - X355 < H XX — B5s|| +2 HnXETA (X5) - =53
2
+racmas -4 (a0
2

The first term in the RHS of the above equation can be easily bounded by substituting § =

(Chin + 2Fmin + Dmin) ﬁ in Eq. (66) to claim

(Cmin + 2Fmin + Dmin)2 61

- 5 m} 21-0(;) ()

. 2 . * * .

ifn=20 (W + log(p)). The third term, ||1A (XT) A (X%) — 55|, in the RHS of Eq. (40)
can also be bounded in similar manner with same sample complexity. The second term in Eq. (40) can be
bounded by substituting § = (Cmi‘“HF‘g‘”Dmi“) % in Theorem 14

1 3
P lHnX?XE - X3s

) s vk p> (42)

ifn=0 (6%(Cm;,,+211!€~12n;n+Dmm)4 log(p)). Further, we substitute Eq. (41) and Eq. (42) in Eq. (40) to claim

the following

1 * min 2F‘min Dmin 2 4 1
Pmnxgm(xg)—zgg < (Coin + + Dinin) 1]21—0(

1 (Cmin + 2-Fmin + -Dmin)2 51
“XLXs — X% < — 43
H pshs T Hss| S > 7E (43)
with probability 1 — O (%) Substituting Eq. (43) in Eq. (39) and replacing the dummy variable é; with J,
we arrive at the claimed result. O
D.5 Proof of Theorem 14
Theorem 14. For 0 < § < 32129%: - A (X%), X% € R™F o? = maxE”, =k (X )2
Je i€S
1 *T * Ax +‘f
P 7XS A (Xs) - ESS Z ) S 4e256r202aby, (44)
n 2
Proof. Let B = A (X$") X% and a matrix Q be defined as:
_|Owxr B
Q - |: BT 0k:><k:| (45)
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Using Lemma 20, ||B||, = ||Q||,. Hence we work with Q instead of B.
Using Lemma 6.12 from (Wainwright, 2019), we have

P(lQ-E[Qlll, > 0] < 2tr (Tq(A) e (46)

where Wq is the moment generating function of a random matrix Q and can be seen as a mapping
Uq : R — 8¢ defined as:

E

x| >

Yq(A) = =>

k=0

Therefore, we have to compute the moment generating function Uq(A) or compute the bound for tr (Tq(A))
in Eq (46). To do that, we need to study the distribution of B. Any entry (7, ;) of B can be expressed as the
sum of products of pairs of sub-Gaussian random variables:

-1y,

k=1

3\H

, v X
Since —Eii_ and &

r\/Zﬁ U\/Ejj

is a sub-exponential random variable with parameter (8\@, 4) by using Lemma 28. Further, we define

qij = ro\/ X581 /3;; by using properties of sub-exponential distributions:

are zero-mean sub-Gaussian random variables with variance proxy 1, their product

1A (X7) ~ SE (8v205,4a;)
Zx ~ SE (3v2a;;v/n. 4a;5)
8v2qi; 4qi;
s ()

. 8v2q; 4g;
—ZX (X5,) ~ SE(ﬁ,n>

1/2
where ¢; = ro4/ Eﬁ (mag Ejj> . Therefore Q follows sub-exponential distribution with parameter (V1,4q),
VIS ’

1/2 1/2
where ¢ = ro (magc Eﬁ) (max EJJ) , and V7 is a matrix of dimension k X k:
1€

jES
A A RA
1287202 max X 21A1 ElAl ElAl
= 22 22 - 22
V= . . ) (47)
n : : - :
DI IED S S

Further, it is easy to observe that the random matrix Q is sub-exponential with parameter (V, 4n—q), where V
is described as

v=lvr Y] )

The moment generating function ¥q(A) can be expressed as:
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Substituting the above in Eq. (46) and by replacing § with nd, we get:

P[”Q B E[Q]HQ > ﬂ(ﬂ < 2tr (eﬂTv> e~ A

o] )\,L- .
> 6| <2t Vi | e
, ]— r<22%! )e

=0

_ - )‘l % —né
=2 tr (21,“ (D) > e

=0

oo )\’L i .
= 2tr <Z 212' (D) ) € A9

i=0
2k R
A
— 267’”‘)\6 § eri
=1

The next step is to compute the eigenvalues of the matrix V which is done in Lemma 22. It can be easily
observed that V has only two non-zero eigenvalues equal to 2, where

= 1281252 o B (ZA)? 49
¢z = 128r%0 max ;| ;( ) (49)

2
If we use all the zero eigenvalues of V to compute Z?il eFdi = 2 exp {H%QCQ} + 2k — 2, this would lead to

P[HiQ—E[Q]

ultimately non-optimal bounds. Hence the trick here is that the matrix V can be expressed as V= UDUT,
where U is a 2k x 2 matrix instead of 2k x 2k because we know (2k — 2) eigenvalues of V are zero. If we use

2
the first two columns of U, then Zfil erdi = 2 exp {n’\;(:g}. Substituting this in Eq. (46):

PllExTA Xy - 28| > 6] <20 x 2ex ey VA< —
no ¢ S S8 A P 2n 4q
Substituting the optimal A = ’C‘—g, we get:
]. *T * Ax* ﬁ —’17,(52
Pl|-XSTA (Xs) — 253 >0| <4de?=z =4exp (50)
n 2

2561202 max 5, [k Y (24)°
J€S i€s

for 0 < & < 32Vkro max i\ 2ies (23)2. Hence, a slightly simplified version of ¢ can be 0 < § <
J

32Vkro, /max ¥4 /max¥;;.
€S jES

This lemma helps us to work with a symmetric matrix (M) instead of non-symmetric matrix (B).

Lemma 20. For matriz B € R¥** we claim ||B||, = ||[M]|,, where M = |%xx B |
2 2 B Ok xk

Proof. Using M defined as above, M? can be computed as:

BBT 0
2 _ kxk
M" = |:0k><k BTB]

The spectral norm of M? can be computed as:
Jh%s

||, = max {Amax (BBT), Amax (BTB)}
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From basic linear algebra properties, it is easy to observe that eigenvalues of BBT and BTB are the same:

BBTx = \x
B™BB'x = AB"x
B™B (B™x) = A(BTx)
B™By = \y

Using the above, we can claim,
|IM2[[, = Amax (BBT)
We also know that ||[M][5 = ||M?]|,. Therefore |[M]|, = \/Amax (BBT) = |[B]|,. O

D.6 Simplification of zsc,

250, = XL (P/n) (e— A (X3)ws),  where P = (1n ~ Xs (XLXs) ! xg) (51)
Using triangle inequality and sub-multiplicative property of norms:

. 11
s . < 5[ 7x5Pe

11 1
—||=XT, A (Xe)wWe “XTA (XE)wE
oo+>\Hn S A (X5)w s (X5)ws

1 _
#xxaxs oo

oo

Further using the bound for

X5 Xs (X‘TSXS)_l"oo derived in Section 3.1.1 or Eq. (12):

11
s < 5| s x8Pe

<3 (52)

111
#5 [axs Ak

1 37\ |1 .

o0 o0 oo

D.7 Proof of Lemma 15

Lemma 15. If the regularization parameter A = X\ > %\/MOTM, where constant ¢? =

3 (Cmax + 2Fmax + Dmax), then ‘ % < ¢ with probability of at least 1 — O (%)

Proof. Consider the random vector of dimension (p — k):

_ XL.Pe

t
! nA

(53)

whose each entry is zero-mean sub-Gaussian conditioned on X. The variance parameter for each entry is
given by:

1 0?2 [|XT.Xge
2 _ Sc S
i = 3,3 | XE.PE [ee]] PXs:||, = )\;n |,
0'2 x X:rchSc x
<o (z CSC||2+Hn—zSCSC 2)
< 3% (Cran + 2Fman + D) (54)
— 2)\2n °

as done
in Eq. (40) and further use Eq. (66) and Theorem 14 to claim the resulting bound with high probability of
at least 1 — O (%), if n = klog(p).

T c
where we have used Lemma 21 in the first step. In the last step, we decompose H@ — X%ege
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Further we use union-bound along with sub-Gaussian tail bounds to claim:

—52
Pl > 3 < 20 { 35

ty

+ log(p — k;)} (55)

Substituting § = we can claim the above state with high probability of at least 1 — O (%) if

ﬁa

2log(p)

)\ > 7\/3 max + 2Fmax + Dmax) n

(56)
which completes the proof. O

The following lemma helps us to bound the spectral norm of P.

Lemma 21. P defined in Eq. (6) is a projection matriz and hence ||PH§ =1

Proof. We use the fact that P is a projection matrix iff I — P is a projection matrix. Hence we focus only on
T=I-P=Xs(XLXs) ' X}

T = X5 (XLXs) ' XT
T? = X5 (XLXs) ' XIXs (XIXs) ' XL = X5 (XIXs) ' XL =T

Hence P defined in Eq. (6) is a valid projection matrix. O
D.8 Proof of Lemma 16

Lemma 16. If A = Ay > lfmax{HExS W +E§Swg”m G2 4107;5(1’)}, then

< ] >1-0 (1>
=302
where go = 1/ W5 E8s Wit max (a % -H“w/EiAi)

Proof. Consider ty = 1XT. A (X%)w¥ which is a (p— k) x 1 random vector whose i*" entry can be expressed
as the mean of n samples:

o [ XEA (Xg)ws
nA

b= ixgﬁ (; A (x) wl*>
E[to;] = %i ZE [x:(j)A (x;(j)) Wﬂ + % i ZE [A (x:(j)) A (Xl*(j)) Wl*}

j=11e8 j=11e8

o NXTA & A x
= X" ws + Miswg

W E A(x;(ﬂ)w*

J

. . X les _ *Ty YA *

where 7 € S°. Since L and where 0, = 7/ We X% W are zero-mean sub-
(o/Z5+r/=8) e ’ t Vs sss s

Gaussian random variables with variance proxy 1, their product is a sub-exponential random variable with
parameter (8\/5, 4) by using Lemma 28. Therefore the sample mean will also be a sub-exponential random
variable with the following parameters:

1 & (4 N 8v2¢; 4c;
LS A () wi NSE(M;,A;)

j=1 les
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where ¢; = (a XX 417y Eﬁ) o¢. By using sub-exponential tail bounds and union bound, we further claim:

21y2

P B 62 — Efta]]. > 5} < 2exp (— +log(p — k))

for 0 < 60X < 32¢s, where g = max ;. Substituting 6 = & in the above equation, we arrive at:
€8¢
1 ol
Zlts — Elt L o7
2~ Eftalll. < 12 (57)

with high probability of at least 1 — O (%), if the regularization parameter satisfies:

16 21
y n
Using triangle inequality, we can claim:
[t [E[t.]]| A |
2leo <~ 1t, —E[t Elelee ¢ 7 4 7 7
) )\”2 ellloe + =3 < 16+ 16 = 5

with a high probability if the regularization parameter satisfies:

16 |E
)\Z”L/Zlﬂoo_ (stcsw‘g‘f'zscsws

) (59)

Combining Eq. (58) and Eq. (59) for the regularization parameter:

4 1o
- g(p) }

n

]-6 *
A > — max {HE@?W:@ + 5w
Y

D.9 Proof of Lemma 19

Lemma 19. If Assumption 7 holds and n = Q (klog(p)), then we have Apin (1 XIXs) > Cuint2FmintDuin >
with probability at least 1 — O (%)

Proof. The minimum eigenvalue of %X}Xs can be expressed as:

1 oo, 1 1 1
i (4XTXs ) = Ao (LXETX5 4 LA KT X5+ XTAKE) + LA KT A (X))

1

1 1
Z )\min (X?;TX§> + )\min (A (X*T) + X*TA (X* )) + )‘min (A (X:;‘T) A (X§)>
n n n

(60)

LXCTXE) and Ain (LA (X5T) A (X3)). Substituting § = &

in Eq. (63) and Eq. (65) of Lemma 25, we can claim Apin (2X57X%) > Coin and Apin (LA (X5 A (X%)) >
Duin with probability (1 — 2exp {% + k}) and (1 — 2exp {% + k:}) respectively. Using this

information, we claim:

We need to further derive lower bounds for Ayin (f

Dmin
2

1 min 1 * *
Amin (X§X3> > 02 + Amin (A (X§) X5 + XSTA (X*))
n n
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For general square matrices A and B, we have Apin(A + AT) = A\in(B+BT+ (A-B)+ (A -B)T) >
Amin(B+BT) — [[(A —=B) + (A —B)T||, > Anin(B +BT) —2||A — BJ|,. Thus:

1 *
A(XT) X5 - =65

n

1 1 * x
Amin (nA (X&) X5+ -XFTA (X;)) > Amin (zgg + zgsA) ~9

2

* * ]_ *
— 2\min ([zAx + 3% A]SS/2) —9 H A (X5 X% — n4x

n

2

1 .
= 2F i — 2 HnA (X)) X5 — =48

2

The next step is to bound H%A (X X5 — =4% H2 which is done in Theorem 14. Substituting § = —F‘g“‘ in
Eq. (9), we can claim the following with high probability

1 1
Amin (A (X X5+ -XTA (Xg)) > 2Fmin — Fruin = Fain (61)
n n

if n = Q(klog(p)). Hence we claim

1 min 2-Fmin Dmin
Amin (XLX5> > Cmin 5 * >0
n

with probability 1 - O (1) if n = Q (klog(p)).
O

Lemma 22. The two non-zero eigenvalues of the matrix 'V defined in Eq (48) are equal to <2, where

n’

ey = 1281202 max Sk > (E$)2 The rest of the 2k — 2 eigenvalues are zero.
Je i€eS

2 2
1287“0~ max X

JE[p]

Proof. We leave the multiplicative factor aside and focus on the matrix structure now. Let

a; = X2 for the ease of notation. Hence the transformed matrix V} has the following form:

ap ax ai

, az a2 az
Vv, = :

ap ag ag

We use the idea used in Lemma 20 and compute the eigenvalues of V'2 instead of V' directly:

V/2 _ [V;VlT Ok;xk; ]

! /
T
Owxr V1V,
a% aia9 ... Qrag
2
" a1a9 as co. Q20
Vi,V =k
2
ara; agas ... Q.

To compute the eigenvalues of V2, we focus on V’IV;T and V;TV’l separately. To compute the eigenvalues

of V’lV;T, we first determine its rank by using some elementary row operations: R; — R; — ng—i for
i €1[2,3,...,k]. The resulting matrix becomes:

a% a1as ... a1ag

0 0 0
k .

0 0 0
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Therefore, V'1V/1T is a rank 1 matrix and hence the one non-zero eigenvalue can be computed using the trace
of the matrix, which is [k > a?. By using Lemma 20, we can claim that the eigenvalues of V/lV/lT and
i€S

! 4 . / .
VTV, are the same, and hence the two non-zero eigenvalues of V' can be derived as:

V) = \/kza% - \/kZ(zﬁf

i€S i€S
Accounting for the scaling factor that was kept aside in the first step:

1287?02 max X;;

A(V) = 2 kY (38
i€S

Lemma 23. Let each entry of X € RF1*F2 be sub-exponentially distributed, denoted by SE(v, ), then for
any 0 <6 < ]ﬂg%z.

O

62
P[] X —E[X]|||. > 4] < 2kiks exp {_%gﬂ } .

Proof. We start with the use of basic norm inequalities and further use a union bound.

PIIX - EX][[l > 0] < P[ks [ X - E[X][|, > 4]
<P|ti €l € l) X~ BIXs] >
< kykolP {|Xij - E[X;;]| > :2]
52
< 2kq1ks exp {_W}
for 0< < kzg”g, where we have used sub-exponential tail bounds in the last step. O]

Lemma 24. If A = A3 > 1,76 (1 — 3%) max {HEéngwg + Egswgnoo,qgw 4105(”)}, then
T * *
p|[|XFs2Xws| v 1., ol (62)
n o 8(1-31) p

A
where g3 = ry/wo X5 Wi max (o X+ m/Eﬁ).

Proof. The proof of this lemma is analogous to proof of Lemma 16. We need to take union bound over k
terms only, as we are working with S. Also, we substitute § = L —1 j in Eq. (57), which is the reason we

16 17%

see the scaling factor of ( — %7) O

—~

Lemma 25. If Assumption 7 holds, then for some 0 < § < 1, we have:

P {/\min (ngTXg) < (1—=9)Chin| <2exp {—chéin(Pn + k} (63)
-
(1 —0) Crin

1 —1
‘<nX§TX3)
2 A

1
and independently, P [)\min (A (X5 A (Xg)) < (1 —=0) Diin | < 2exp{—coD2;,6°n + k} (65)
n

v

<2exp{—c1C2,,6°n+ k} (64)

or equivalently P l

min
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where ¢1, co are some positive constants. If n = Q(k+log(p)), the probability bound 1 —
2 exp {fclcfninﬁn + k} and 1 — 2exp {701D2 n + k} simplify to 1 — O (l)

min P

Proof. Let A = %X:‘STX};. To derive an upper bound on the maximum eigenvalue of A~!, we derive a lower
bound on the minimum eigenvalue of A:

)\min (A) = )\min (A - ESS + z]SS)
Z )\min (ESS) — max (>\max (A - 285) ) 7)\min (A - 258))
= Ciin — ||A — Zss]l,

Using Proposition 2.1 of (Vershynin, 2012), we can bound ||A — Xss||, as follows:
P[||A — Sssll, > €] < 2exp {—ce’n + k} (66)
where ¢ is a constant. Substituting € = §Cp,;, in the above equation, we get
P[||A = Zsslly > 0Cmin] < 2exp {—cdChyn + k}
Hence, we can claim Ayin (A) > (1 — §) Ciyin with probability 1—2exp { —cC2;,6%n + k}. If n > C(k+log(p)),

then we claim A, (A) > % with probability 1 — O (%) Therefore HA—1H2 < C?{ .

The bound on Apin (1A (XS) A (X%)) can be proved using the same approach. O
Lemma 26. For any a,b € R, fir € > 0. If we have |a — b| < € A |b| > 2¢, then sign(a) = sign(b)

Proof. Consider the two cases for |b] > 2¢
Case 1: if b > 2e and |a — b| < ¢, then a > e. This implies a and b are both positive and have the same sign.

Case 2: if b < —2¢ and |a — b| < ¢, then a < —e. This implies a and b are both negative and have the same
sign. O

Lemma 27. Let X ~ SG(0,0;,) and Y ~ SG(0,0,), then
1. X +Y ~ SG(0, (oﬁ + 05)1/2) if X andY are mutually independent.
2. X+Y ~ SG(0, (0, +0y)) if X and Y are dependent.
where SG(u,0,) denotes a sub-Gaussian distribution with mean p and parameter o .

Proof. We start with the easier case of X and Y being independent. We compute the moment generating
function for X + Y

E [6)\(X+Y)} = E[*XeNY] =[] E [Y]

A202 Mo N (o2 + o))
< exp 5 exp 5 = exp — s

which completes the proof for mutually independent random variables X and Y.

Further proceeding to the general case and writing the moment generating function:
O]
E [6)\(X+Y)} - [BAXe/\Y] < (E [e,\pX])l/p (IE [e,\qx])wq

N2o2p2 1 NoZq?q M\ (02p+ 02
§exp( O;Ip p) exp( qu p = exp (I;y(]) (67)
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where (i) uses Holder’s inequality where % + % = 1. To upper bound the above, we optimize with respect to
variable p and solve:

max f(p) = max (aip + ng) = max (U?Ep + azpf 1)

Taking the first order derivative:

df (p) 2 2 1

Tap T 0

p Uy(p_1)2 -

which gives p =1+ Z—y, and therefore ¢ = 1 + Z=. Substituting this in Eq. (67), we arrive at:
x Y

N2 (02 + 0p0y + 0 + 0y 2 2
E{e’\(x+y)}§exp< (01 TxTy T 9y on) = exp M

2 2

which completes the proof for the general case. O

Lemma 28. Let X ~ SG(0,1) and Y ~ SG(0,1), then

1. XY ~ SE(4v/2,4) if X and Y are independent
2. XY ~ SE(8v2,4) if X and Y are dependent.

where SG(, 0,) denotes a sub-Gaussian distribution with mean p and parameter o, and SE(v,«) denotes a
sub-exponential distribution with parameters v, a.

Proof. We first start with the case of mutually independent X and Y. Their product can be expressed as:

(X+Y) = (X -Y)?
4

XY = (68)

So, we derive the distribution of (X 4+ Y)? and (X — Y)?. We use Lemma 27 to derive the distribution for
the sum of a pair of independent random variables

X +Y ~ SG(0,V?2)

Further, by scaling of sub-Gaussian random variables, we claim:

X+Y
V2

In the next step, we use Lemma 8 from (Barik & Honorio, 2023) to derive the distribution of the square of a
sub-Gaussian random variable:

~ SG(0,1)

(X\};Y)z ~ SE(4v/2,4)

In a similar manner, we can claim the following for the difference of two sub-Gaussian random variables:

(X\;;)Q ~ SE(4v/2,4)

By scaling of sub-exponential random variables, we claim:

(X +Y)* ~ SE(8V2,8)
(X —Y)* ~ SE(8V2,8)
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To derive the distribution of the sum of (X + Y)? and (X — Y)?, we use Lemma 27 for dependent variables:
(X 4+Y)? = (X —Y)* ~ SE(16V2,8)
Further, by scaling of sub-exponential random variables:

(X+Y)? - (X-Y)?
4

~ SE(4v2,2)

This completes the proof for the first claim of the lemma. Proceeding in a similar manner for the general
case, we use Lemma 27 for dependent variables to claim the following:

X +Y ~ SG(0,2)

Proceeding in a similar manner as done for the case of independent random variables, but now for dependent
random variables, we arrive at:

(X+Y) = (X -Y)?

1 ~ SE(8V2,4)

D.10 Gaussian Adversarial Error
In this section, we prove that the sample complexity for Gaussian adversarial perturbation improves to
Q(klog(p)) as compared to the sub-Gaussian case where it is Q(k? log(p)) as presented in Theorem 10. Since
x* ~ N(0,X) and A(x*) ~ N(0,£2), we can claim that x ~ N (0, 2%), where

=3 +34
The first step is to verify the strict dual feasibility condition by bounding the infinity norm of Zg. defined in

Eq. (5). In the case of the Gaussian distribution, we can express Xgse in Eq. (5) in terms of X s using the
conditional expectation of jointly normal distribution:

XI. = Bhes (Bhs) ' XL+ A (XE) (69)
where A (XGL(i,5)) ~ N(0,[2%. 5];5) and

a a a a \—1sa
256\5 = YGege — Bses (Ess) 88¢ (70)

This simplifies the expression of Zge to:

_ N . A (XE)wh
bse = Bhes (Bhs) ™ 2s + A (XE) {XS (XIXs) '2s +P & ( S)WS)} (71)

n

The first term can be bounded using mutual incoherence assumption. The second term is similar to Eq. 37(a)
in (Wainwright, 2009) and can be bounded with O (klog(p)) samples using the same approach Gaussian
tail bounds and x? tail bounds (Appendix J in (Wainwright, 2009)). This will ensure strict dual feasibility.
Similarly, the uniqueness of the solution can be claimed with O (klog(p)) samples by using Lemma 9 from
(Wainwright, 2009).

For bounding ||[Ws — w||_, we need to bound |||A*1H|Oo which requires O (k2 log(p)) samples according
to Lemma 13 for the sub-Gaussian case, where A is defined in Eq. (27). The sample complexity can be
shown to be of order O (klog(p)) for the Gaussian case by using Lemma 5 of (Wainwright, 2009). Bounds for
[|lw1]|,, and [|[wz| ., can be guaranteed with high probability by choosing an appropriate value of A. Hence
the sample complexity is O (klog(p)).
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E Experiments

E.1 Synthetic data

Continuing the discussion in Section 4 of the main manuscript, we present the experimental settings in more
detail here.

First we discuss the settings used for generating Figure 1 shown in the main manuscript. We start with the
data generation process:

1. We randomly generate the support S of size k = 20, and hence §¢ = [p] \ S.

2. We generate a random regression parameter vector, w. We generate a random regression parameter
vector by choosing w; uniformly over [-1,—0.1] U [0.1,1] for i € S and w; = 0,Vj € S°.

3. We generate the noise-free features, denoted by x* € RP. For the ease of analysis, we chose
*

x} = N(0,1),¥i € [p] and generate n independent samples. The next step is to generate y*U) by
using *() = w*Tx*U) for j € [n)].

4. We corrupt the measurements using Eq. (1), where e ~ N'(0,0%) and A(x*) ~ N(0,03I). We chose
the values of o1 = 0.05 and o5 = 0.1.

5. Further we estimate the parameter vector, denoted by w using Lasso and check if S(W) = S(w*) by
setting A twice of the lower bound derived in Eq. (15).

6. We repeat the above five steps 200 times and count the number of success for S(w) = S(w*) in step
5, which helps to compute the probability of success.

7. We repeat the above six steps for different values of n for a given value of p. We consider a rescaled
sample size %.

8. We repeat all the seven steps for different values of p € {128,256, 512}.

Figure 1 shows that the probability of support recovery increases as we increase the number of samples.
Note that the probability reaches 1 when the rescaled sample size @ = 1150. More importantly, the plot
for each value of p overlaps which confirms the hypothesis of sample complexity being logarithmic in the

dimension of the regression vector.

o o o
U o o =
—
s o o
U % o -
—
L

S
T

S |
/7 ]

—o—p- 1284

—0—p =256
- p=512]
. n n

L L L L L L L L L L L L L L L L
27 69 110 151 192 233 275 27 450 872 1295 1717 2140 2562 2985 3407 3830 4252 4675 5097
Rescaled Sample size (n/log(p)) Rescaled Sample size (n/log(p))

S
T

205t
[s}
Soar /

Prob. of success
o o o
o
T

o o
o
-
o o
SR
—
.

o
T

o
T

Figure 2: Probability of support recovery vs rescaled Figure 3: Probability of support recovery vs rescaled
sample size for A(x*) =0 sample size for o9 = 0.2
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We compare our results to the classical support recovery problem with no adversarial attack (Wainwright,
2009) by making A(x*) = 0 via 03 = 0 in our experiments. We repeat the above experiment for the same
value k and p with different values of sample size. The results are presented in Figure 2, which shows a
similar trajectory as in Figure 1. The key difference is that we reach the probability of 1 in Figure 2 when the
rescaled sample size @ = 275 which was 1150 for Figure 1. Comparison of Figure 1 and Figure 2 helps us
to understand the effect of an adversary.

In order to understand the effect of A(x*), we increase oo = 0.2 in the step 4 of the procedure mentioned
above. Note that we have doubled o5 as compared to our default analysis. From Eq. (15), we can observe
that for a constant lower bound on A, the sample size (n) has to increase linearly with HE?A ‘2. We are
discussing the case of constant lower bound because Ill’élél |w¥| > 2f (\) as per the fourth claim of Theorem

10. As we double 03, ||Z85]|,
should also increase 4 times.

will increase 4 times and hence the minimum the number of samples required

We actually observe this phenomenon in our experiments. The results for oo = 0.2 are presented in Figure
n

3. Note that the probability of success reaches 1 when the rescaled sample size Tog@) = 4600 = 4 x 1150 in

Figure 3 which is four times the rescaled sample size needed (1150) for success probability one for the case of
o2 = 0.1 presented in Figure 1. Hence our theoretical claim is justified empirically.

We further conduct experiments with more complicated forms of adversarial perturbation (A(x*)). These
cases are discussed below.

E.2 Mixture of two distributions

The adversarial perturbation for j" sample is chosen as a combination of Bernoulli distribution and Gaussian
distribution as shown below:

(72)

rv) - v\~ 2Bernoulli(0.5) — 1  with probability 0.5 for ¢ € [p]
, where v\ ~ {7
N(0,1) with probability 0.5

where r denotes the per sample budget for adversarial perturbation and j € [n]. Compared to the previous
case of all adversarial samples being drawn from Gaussian distribution, now 50% of the samples will be drawn
from scaled Bernoulli distribution such that each entry is +1 or —1 with equal probability. As Bernoulli
distribution is bounded, we can claim it is sub-Gaussian, and the final distribution of A (x*) is sub-Gaussian.
Note that A (x*) is designed in such a way that |[|A (x*@))||, = € for all j € [n] to respect the budget
constraint. We chose ¢ = 0.1 in our simulations.

After generating the adversarial perturbation, we repeat the same exercise as described previously and present
the plot for the probability of support recovery in Figure 4. The plot confirms that Lasso performs successful
support recovery and also confirms that the sample complexity is logarithmic with respect to the size of the
regression parameter vector. Further, we move to another method for adversarial perturbation generation.
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drawn from a mixture of Bernoulli distribution and sample size when adversarial perturbations are cor-
Gaussian distribution related with uncorrupted regressors

E.3 Adversary uses uncorrupted data

In this approach, we design the adversarial perturbation in such a way that it is correlated with uncorrupted
regressors (x*) in 50% of the samples as shown below:

A(x*0)) =

(73)

|v@)|| N(0,1) with probability 0.5

rv) where o) {(2Bernoulli(0.5) —1)x* with probability 0.5
2

where j € [n]. The above equation indicates the adversarial perturbation may be positively or negatively
correlated with uncorrupted regressors with the probability of 0.5. We further repeat the experiment as
discussed at the beginning of Section 4 and present the support recovery plot in Figure 5. The plot verifies
that the algorithm can successfully recover the support even when the adversarial perturbation is correlated
with the uncorrupted features.

E.4 Different cases of regularization parameter
In Theorem 10, we saw the regularization parameter is given by:

A zmax {)\1, /\2,/\3}

vy Voon vV o n

In this section, we analyze the support recovery by simulating the data for three cases such that regularization
parameter:

1. b;éOand)\:)\l—lTﬁb

2. b=0and A = \p = 07 /21oalr)
¥ n

3bzoand)\:A3:m 41073;(17)

o n
For all the three cases, we present the plots of three probabilities computed empirically:

1. P[S (W) = 8], which denotes exact support recovery.
2. P[Vi € §: w; # 0], which denotes correct recovery of support.
3. P[Vi ¢ S:w; =0], which denotes correct recovery of non-support.
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Figure 8: For the case when b # 0 and A = A\ = ~

Note that S denotes the true support. We start from case 3, when b = 0 and A = A3. The support recovery
plots presented in Figure 6 shows that the support is recovered successfully with high probability when the
rescaled sample size (presented in x-axis) is around 1200. Further, we move onto case 2, when b = 0 and
A = Ay. We increase o, by 4 times, so that Ao > A3. The plots presented in Figure 7 shows that we can still
do successful support recovery when the rescaled sample size is around 4800. This indicates that the learner
now requires more number of samples for support recovery.

w5

For the above two cases, we chose Ef‘p*]g = 0pxj so that b = HZE:]? = 0, and we can choose A = Ay or
o0

As. To study case 1, when b # 0 and A = A1, we generate the data with EE}E? # 0px%. The plots presented
in Figure 8 shows that 100% exact support recovery is not possible even for a large sample size. Figure 8 (b)
shows that we can recover the support successfully but not the non-support as shown in Figure 8 (c). This
presents a case in which the adversary can dominate over Lasso.
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But, it should be noted that it might be possible to obtain the correct support even in the case of Ef;:] g 7# O0pxcie
as shown in the Section E.3 or Figure 5. This can happen when the entries in w* are large enough or b is
small such that Eq. (17) holds as shown in our theoretical analysis. Hence, the practical use of Lasso is still
viable.

E.5 Real-world data

We used the BlogFeedback dataset (Buza, 2014) which contains 52397 samples and 276 features extracted
from blog posts and the task is to predict how many comments a post will receive using these features.

First, the “true” support is obtained by solving Lasso on the original Blogfeedback dataset (Buza, 2014). Let
the “perturbed” support be defined as the support obtained by solving Lasso on the perturbed Blog-Feedback
dataset. To construct the perturbed dataset, we add zero-mean Gaussian white noise in each feature. The
variance of Gaussian noise is chosen in proportion to the feature variance of the original data. After obtaining
the “true” and “perturbed” support, we compute the standard F1-score defined below:

Number of elements in the “true” support that are in the “perturbed” support

Recall = (75)

Number of elements in the “perturbed” support

L. Number of elements in the “true” support that are in the “perturbed” support
Precision =

76
Number of elements in the “true” support (76)

Recall x Precision
Fi- =2 77
seore Recall + Precision (77)

The F1-score of the recovered support from the perturbed data is 0.9462, which effectively implies that Lasso
is able to recover most of the support in real-world data as well. Further, we test the algorithm against other
approaches for generating adversarial perturbations.

We modify the approach of a mixture of two distributions in Eq. (72) by scaling with standard deviations in
regressors to handle large variations in regressors as shown below:

rvi) 4 vi) o (2Bernoulli(0.5) — 1)std(x}) with probability 0.5 for i € [p]
. where v\@W ~ {71 v
N(0,%) with probability 0.5

(78)
where j € [n]. The Fl-score is reported to be 0.9393 for » = 1000, proving that the algorithm can recover the
support.

We further test the algorithm against the correlated adversarial perturbation by modifying Eq. (73) to handle
large variations in regressors as shown below:

A(x*)) =

rvi) . where O™ {(2Bern0ulli(0.5) —1)x* with probability 0.5 (79)

N(0,%) with probability 0.5

where j € [n]. We repeat the experiment in the same procedure and report the Fl-score to be 0.9485, which
confirms that Lasso performs successful support recovery even when the adversarial perturbation is correlated
with the uncorrupted regressors. Note that Fl-score is reported to be 1 in all the cases if we do not use the
standard deviation scaling to normalize the adversarial perturbation. Hence, by modifying the procedure of
adversarial perturbation introduction, we are solving a more challenging problem.

Note that we do not need to verify the assumptions mentioned in Section 2.3 to run the algorithm. They are
only needed for theoretical analysis to derive the sample complexity for support recovery.
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