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A Proofs of necessity for the assumptions made in Section 2.3

A.1 Variance proxy parameter for adversarial perturbation

We derive the variance proxy parameter of a sub-Gaussian vector �(xı). This is done by first starting with a
general random sub-Gaussian vector, z with variance proxy parameter r2 and identity covariance matrix.
The definition of sub-Gaussian vectors in (Hsu et al., 2012) states that for all v œ Rp:

E [exp (v|z)] Æ exp
A

||v||2
2

r2

2

B
(19)

Without loss of generality, we define �(xı) = (��)1/2z, where �� is the covariance matrix of �(xı).
Substituting z = ��

≠1/2�(xı) in the above equation:

E
Ë
exp

1
v|(��)≠1/2�(xı)

2È
Æ exp

A
||v||2

2

r2

2

B

Substituting –| = v|(��)≠1/2 in the above equation

E [exp (–|�(xı))] Æ exp
3

–|��–r2

2

4
(20)

which holds for all – œ Rp.

A.2 Existing adversarial attacks are a special case of our adversarial model

Lemma 2. Existing adversarial attacks (Goodfellow et al., 2015; Madry et al., 2018; Szegedy et al., 2014;
Xing et al., 2021; Yin et al., 2019; Awasthi et al., 2020; Qin et al., 2021) are a special case of our adversarial
model specified in Assumption 1.

Proof. Existing adversarial attacks (Goodfellow et al., 2015; Madry et al., 2018; Szegedy et al., 2014; Xing
et al., 2021; Yin et al., 2019; Awasthi et al., 2020; Qin et al., 2021) are deterministic and bounded as they
maximize the loss function within some ‘ norm ball and hence are a special case of our adversarial model
specified in Assumption 1.
As seen in Lemma 6, the solution to the following maximization problem

�
opt

1
xı(j)

2
= arg max

Î�ÎÆ‘

1
wı|

1
xı(j) + �

2
≠ yı(j)

2
2

for any general norm constraint on � is given by

�
opt

1
xı(j)

2
=

I
±‘ v

ÎvÎ , wı|
S x(i) ≠ y(i) = 0

sign(wı|
S x(i) ≠ y(i))‘ v

ÎvÎ wı|
S x(i) ≠ y(i) ”= 0

where v œ ˆ Îwı
SÎú. It is obvious that the optima satisfies Î�Î Æ ‘ and hence is bounded.

Any vector with a bounded norm is a sub-Gaussian random vector, as shown below. Also, note that a random
variable is more general than a deterministic one, i.e., a deterministic quantity is a random variable with a
Dirac delta probability density function.
Assume u has bounded norm ÎuÎ Æ B. Let the random variable v = –|u for a fixed –. By Holder’s
inequality

ÎvÎ Æ Î–ÎúÎuÎ Æ Î–ÎúB Æ CÎ–Î
2

B
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where Î·Îú denotes the dual norm and is defined below for a general vector a

ÎbÎú = sup{b|a | ÎaÎ Æ 1}

and C is related to the norm inequality Î–Îú Æ CÎ–Î
2

. Now

E[exp(–|u)] = E[exp(v)] Æ exp(C2Î–Î2

2

B2/2)

which follows by boundedness of v and is the definition in (Hsu et al., 2012).

A.3 Huber model is a special case of our adversarial model

Lemma 3. The –-Huber-model (Prasad et al., 2020; Diakonikolas et al., 2019) corrupting only – < 1 fraction
of samples is a special case of our adversarial model specified in Assumption 1.

Proof. In this section, we briefly discuss the Huber model or other existing models in prior literature and
show that it is a special case of our adversarial model. Thus, the requirements of sub-Gaussianity (to allow
for concentration inequalities), zero-mean (to avoid the issue described in Lemma 5) are not restrictive.
In our model, we assume noise-free measurements xı(i) and adversarial perturbation �(xı)(i) for any sample
i œ [n] are generated from sub-Gaussian distribution, say P and N(xı) respectively:

xı ≥ P, �(xı) ≥ N(xı)

where we have dropped the superscript i for brevity. Furthermore, N(xı) clarifies that the distribution N
might depend on the value of xı.
Further, we assume the adversarially corrupted data is given to the learner:

x = xı + �(xı), y = wı|xı + e (21)

where wı is the true parameter vector. In Lemma 5, we have already shown that adversarial perturbation
should be zero-mean otherwise support can be estimated trivially by computing the mean. Our further
analysis relies on the population covariance matrix defined as:

5
�x

ı �x

ı

�

��x

ı ��

6
= E

35
xıxı| xı� (xı)|

�(xı)xı| �(xı)� (xı)|
64

(22)

In the –-Huber-model (Prasad et al., 2020; Diakonikolas et al., 2019), only – < 1 fraction of samples are
corrupted and can be modeled as shown below:

z ≥ B(1 ≠ –), xı ≥ P, �(xı) ≥ Q(xı)
x = zxı + (1 ≠ z)�(xı), y = wı|xı + e (23)

where B(1 ≠ –) denotes a Bernoulli distribution (Uspensky et al., 1937) and �(xı) corresponds to corrupted
samples following some arbitrary distribution Q(xı). The expected value can be computed as:

Ez[x] = (1 ≠ –)xı + –�(xı)

Further, the covariance matrix in this case will be:
5

�x

ı �x

ı

�

��x

ı ��

6
= E

35
(1 ≠ –)2xıxı| –(1 ≠ –)xı�(xı)|

–(1 ≠ –)�(xı)xı| –2�(xı)�(xı)|
64

(24)

Hence the covariance matrix in our case presented in Eq. (22) has very similar structure and mathematical
properties as compared to the covariance matrix for the Huber model presented in Eq. (24). Therefore the
analysis will follow exactly the same as ours.
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In fact, we can show that the Huber model is a special case of our model by defining our adversarial
perturbation, i.e., the distribution N(xı) as follows::

�(xı) ≥
I

0 with probability (1 ≠ –)
≠xı + �(xı), where �(xı) ≥ Q(xı) with probability –

Substituting the above particular of �(xı) in Eq. (21) will lead to the Huber model in Eq. (23). Hence our
model is more general.

A.4 Attacking only support and non-support can be countered by computing mean

Lemma 5. If the adversary attacks only the support entries (xS) or non-support entries (xSc) with non-
zero-mean adversarial perturbation, then the learner can guess the support trivially with probability at least
1 ≠ O

1
1

p

2
if n = � (log(p)).

Proof. Let the non-zero-mean adversarial perturbation have the form µ =
5

µ
1

1k

µ
2

1p≠k

6
. Also, for clarity, we

assume that the first k entries of x correspond to the support S and the rest correspond to the non-support
Sc. If this is not the case, the support and non-support entries will need to be properly interleaved. For the
attack on S only, we consider the case µ

1

”= 0 and µ
2

= 0. Similarly, for the attack on Sc only, we consider
the case of µ

1

= 0 and µ
2

”= 0.
We first analyze the sample mean of the entries in the support. For n samples, that is x(j) œ Rp for j œ [n],
we can compute the sample mean. For the ith entry, denoted by xi, where i œ S, we use the sub-Gaussian
tail bound along with the union bound:

P

S

U(÷i œ S)

------
1
n

nÿ
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1

------
Ø t
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ÿ
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;≠nt2

2‡2

x
i

<
(25)

where ‡2

x
i

denotes the variance proxy parameter. Similarly, the mean of the entries in the non-support can
be analyzed as

P

S
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1
n

nÿ
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2

------
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ÿ
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x
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We substitute t = max(|µ
1

|,|µ
2

|)
3

in the above equations. Now, if µ
1

= 0 and µ
2

”= 0, we can claim:
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1
n
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------
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1

|, |µ
2

|)
3 = 2 |µ
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with high probability of 1 ≠ O
1

1

p

2
if n = � (log(p)). Note that the sample mean of the entries in the support

is upper-bounded by |µ
2

|
3

, whereas the sample mean of the entries in the non-support is lower bounded by
2 |µ

2

|
3

. Hence the learner can guess the support easily by observing the concentration of the sample mean.
Note that the case of µ

1

”= 0 and µ
2

= 0 can be analyzed similarly.
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A.5 Necessity of minimum eigenvalue assumption

Lemma 17. If Assumption 7 is violated, meaning C
min

= 0, then the Lasso solution will not be unique.

Proof. Consider the simple case of �(xı) = 0 for all samples and having infinite samples, meaning n æ Œ.
In such a case, the minimum eigenvalue of the Hessian matrix derived at the end of Section D.1 will be C

min

.
It should be noted that C

min

< 0 is not possible as covariance matrices are known to be positive semidefinite.
Hence, the mild violation of the assumption only happens if C

min

= 0. As the Hessian is not positive definite,
the loss function is not strictly convex and hence the optimal solution is not unique.

A.6 Our adversarial model is more challenging than existing adversarial models

Lemma 6. The support can be trivially estimated in n = � (log(p)) with high probability of 1 ≠ O (1/p)
under existing adversarial attacks (Goodfellow et al., 2015; Madry et al., 2018; Szegedy et al., 2014; Xing
et al., 2021; Yin et al., 2019; Awasthi et al., 2020; Qin et al., 2021) aiming to maximize a per-sample loss
function.

Proof. In the existing literature, the adversarial attack is usually derived for the particular constraint of
Euclidean norm or ¸Œ norm or general ¸p norm. In the following derivation, we present the proof for any
general norm.
The attack generated by FGSM and its variants will attack only the support for each sample because it
focuses on maximizing the loss function only, rather than making the estimation of parameters tougher.
Mathematically, yı(j) = wı|xı(j) = wı|

S xı(j)

S for any sample j œ [n]. FGSM and its variants maximize the
loss function with respect to adversarial perturbation � within some ‘ ball to obtain the optimal:

�
opt

1
xı(j)

2
= arg max

Î�ÎÆ‘

1
wı|

1
xı(j) + �

2
≠ yı(j)

2
2

= arg max
Î�ÎÆ‘

1
wı|

S

1
xı(j) + �

2
≠ yı(j)

2
2

We solve the problem for two cases of wı|
S x(i) ≠ y(i) = 0 and wı|

S x(i) ≠ y(i) ”= 0.

1. For wı|
S x(i) ≠ y(i) = 0, the problem reduces to dual norm problem as shown below:

sup
||�||Æ‘

wı|
S �

Using Holder’s inequality, we can claim:

wı|
S � Æ Îwı

SÎú Î�Î Æ ‘ Îwı
SÎú

where Î·Îú denotes the dual norm for any general norm. Therefore to compute �
opt

!
xı(j)

"
, we need to

find the solution for

�
opt

1
xı(j)

2
= {� : wı|

S � = Îwı
SÎ , Î�Îú Æ 1}

To compute the optimal point, we use the sub-di�erential of a norm defined as follows for any general
vector a:

ˆ ÎaÎ = {v : v|a = ÎaÎ , ÎaÎú Æ 1}

where Î·Îú is the dual norm to Î.Î. Using this, we claim �
opt

!
xı(j)

" œ ‘ˆ Îwı
SÎú. As the original

objective function is quadratic, ≠�
opt

!
xı(j)

"
can also be a solution.
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2. For wı|
S x(i) ≠ y(i) ”= 0, we first consider the case of wı|

S x(i) ≠ y(i) > 0. The objective function
to maximize

!
w|

Sx(i) ≠ y(i) + w|
S�

"
2 can be expressed as maximizing w|

S� because w|
Sx(i) ≠ y(i)

is a positive constant and not a function of �. As discussed earlier, the optimal solution will be
�

opt

!
xı(j)

" œ ‘ˆ Îwı
SÎú. Using similar arguments for the case of wı|

S x(i) ≠ y(i) < 0, the solution is
given by �

opt

!
xı(j)

" œ ≠‘ˆ Îwı
SÎú.

Hence, the overall solution is given by:

�
opt

1
xı(j)

2
=

I
±‘ v

ÎvÎ , wı|
S x(i) ≠ y(i) = 0

sign(wı|
S x(i) ≠ y(i))‘ v

ÎvÎ wı|
S x(i) ≠ y(i) ”= 0

where v œ ˆ Îwı
SÎú.

The important thing to note is that the optimal solution is a function of the support only. As the adversary
is attacking only the support , the learner can guess the support in n = � (log(p)) with a high probability of
1 ≠ O (1/p) as shown in Lemma 5.

A.7 Necessity of mutual incoherence assumption

Lemma 18. If for some “ > 0, if
...�x

ScS (�x

SS)≠1 sign(wı
S)

...
Œ

> 1+“, then support recovery is not possible,
meaning sign(ŵi) ”= sign(wı

i ) for some i œ S, even if we have infinite samples.

Proof. Consider the simple case with no adversarial attack, i.e., �(xı) = 0 for all samples. We can
directly use Theorem 2(a) from (Wainwright, 2009) to prove the claim. Theorem 2(a) from (Wain-
wright, 2009) shows that dual feasibility does not hold if the mutual incoherence condition is violated,
i.e., if

...�x

ScS (�x

SS)≠1 sign(wı
S)

...
Œ

> 1 + “. Hence, wı is not optimal as one of the KKT conditions
(i.e., dual feasibility) is not satisfied. Furthermore, since the solution ŵ fulfills dual feasibility, i.e.,...�x

ScS (�x

SS)≠1 sign(ŵS)
...

Œ
Æ 1, we know that sign(ŵi) ”= sign(wı

i ) for some i œ S, which proves our
claim.

B Necessary Condition: Proof of Lemma 9

Lemma 9. The condition 16b
15“

!
1 + “

4

"
3G

max

2

Æ min
iœS

|wı
i | is necessary for support recovery, even in the

population regime, where (intuitively speaking) the learner has access to an infinite number of samples.

Proof. For simplicity, assume xı follows a Gaussian distribution with zero mean. Similarly, assume �(xı)
follows a Gaussian distribution with zero mean but has certain correlation with xı. Also, assume e is
zero-mean Gaussian independent of xı and �(xı). Further, assume:

�x

ı

= E [xıxı|] = I, �x = E [xx|] = 2I

Most importantly we assume the learner does not know �x

ı

�, defined as:

�x

ı

� = E [xı�(xı)|]

The distribution of (x, y), since it is multivariate Gaussian, is fully identifiable from its first and second order
moments:

E
5
x
y

6
=

5
E[x]
E[y]

6
, E

55
x
y

6 5
x
y

6|6
=

5
2I E [xy]

E [xy]| E[y2]

6
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It is easy to observe that E[x] = E[xı] + E[�(xı)] = 0 and E[y] = E[xı]|wı + E[e] = 0. Further:

E [xy] = E [(xı + �(xı)) (xı|wı + e)]
= (E [xıxı|] + E [�(xı)xı|]) wı + E [xı + �(xı)]E [e]

=
1

I + �x

ı

�

2
wı

Similarly, note that:

E[y2] = E
Ë
(xı|wı + e)2

È

= wı|E [xıxı|] wı + 2E [xı|e] + E
#
e2

$

= ÎwıÎ2

2

+ E[e2]

Note that the learner has to estimate the support S from two quantities E [xy] =
!
I + �x

ı

�

"
wı and

E[y2] = ÎwıÎ2

2

+ E[e2] without knowing �x

ı

�.

Now let us assume there exists a case such that 16b
15“

!
1 + “

4
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max

2
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ı

S
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Œ

15“

!
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4

"
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2
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iœS

|wı
i |.

Since �x = 2I, we have G
max

=
---
---
---(�x

SS)≠1

---
---
---
Œ

= 1/2 and
---
---
---�x

ScS (�x

SS)≠1

---
---
---
Œ

= 0 Æ 1 ≠ “, which implies
“ = 1. Substituting these values, we arrive at:

16
...�x

ı
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[p]S wı
S

...
Œ

15“

1
1 + “
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2 3G
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[p]S wı
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Œ

15

3
1 + 1
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4
3
4 =
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ı

�

[p]S wı
S

...
Œ
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iœS

|wı
i |

Now we consider two cases discussed below for
...�x

ı

�

[p]S wı
S

...
Œ

Ø min
iœS

|wı
i |:

1. If wı
i > 0 and

!
�x

ı

�wı
"

i
Æ ≠wı

i , then E [xy]i =
!!

I + �x

ı

�

"
wı

"
i

= wı
i +

!
�x

ı

�wı
"

i
Æ 0.

2. If wı
i < 0 and

!
�x

ı

�wı
"

i
Ø ≠wı

i , then E [xy]i =
!!

I + �x

ı

�

"
wı

"
i

= wı
i +

!
�x

ı

�wı
"

i
Ø 0.

In both the cases, sign (E [xy]i) ”= sign (wı
i ). Hence support recovery can not be done under a case with...�x

ı

�

[p]S wı
S

...
Œ

Ø min
iœS

|wı
i |.

The final step of the proof consists on showing that there exists such a case. The distribution of (xı, �(xı))
is a multivariate Gaussian, fully identifiable from its first and second order moments:

E
5

xı

�(xı)

6
=

5
0
0

6
, � = E

55
xı

�(xı)

6 5
xı

�(xı)

6|6
=

5
I �x

ı

�

��x

ı ��

6

Example 1. The adversary can choose to set �x

ı

� = ��x

ı = ≠2I and �� = 5I, which leads to a
positive definite covariance matrix �. First, note that �x = E [xx|] = E [(xı + �(xı))(xı + �(xı))|] =
�x

ı + �x

ı

� + ��x

ı + �� = 2I. Second, note that �x

ı

�wı = ≠2wı which fits cases 1 and 2 discussed
above. Finally, to further illustrate how the adversary can perturb a sample xı, by properties of conditional
distributions for multivariate Gaussians, we have that �(xı) given xı follows a Gaussian distribution with
mean �x

ı

�(��)≠1xı = ≠ 2

5

xı and covariance �� ≠ �x

ı

���x

ı = I. That is, �(xı) ≥ N (≠ 2

5

xı, I).

Example 2. To give a more challenging case, the adversary can choose to set �x

ı

� = ��x

ı = ≠I
and �� = 3I, which leads to a positive definite covariance matrix �. First, note that �x =
E [xx|] = E [(xı + �(xı))(xı + �(xı))|] = �x

ı + �x

ı

� + ��x

ı + �� = 2I. Second, note that
E [xy] =

!
I + �x

ı

�

"
wı = 0, thus, the learner is not getting any information regarding the support.

Finally, to further illustrate how the adversary can perturb a sample xı, by properties of conditional distribu-
tions for multivariate Gaussians, we have that �(xı) given xı follows a Gaussian distribution with mean
�x

ı

�(��)≠1xı = ≠ 1

3

xı and covariance �� ≠ �x

ı

���x

ı = 2I. That is, �(xı) ≥ N (≠ 1

3

xı, 2I).
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C Proof for Uniqueness and Upper bound on ÎŵS ≠ wı
SÎŒ

C.1 Uniqueness of the solution

In this sub-section, we prove the uniqueness of the optimal solution ŵS . We need the second order derivative,#Ò2l((wS , 0))
$

SS = 1

n X|
SXS (computed in Appendix D.1) to be positive definite for the problem in Eq. (2)

to be strictly convex in the support space (See Eq. (33) in the appendix for a formal definition). The positive
definiteness of a submatrix of the sample covariance is proved in the following lemma.
Lemma 19. If Assumption 7 holds and n = � (k log(p)), then we have:

P
5
⁄

min

3
X|

SXS

n

4
Ø (C

min

+ 2F
min

+ D
min

)
2

6
Ø 1 ≠ O

3
1
p

4

Hence
#Ò2l((wS , 0))

$
SS = 1

nX|
SXS is positive definite. More importantly, as the Hessian matrix depends

only on adversarial perturbation in the support S, sample complexity in the above lemma is not impacted by
perturbation in the non-support Sc. But this does not imply allocating more budget to S to design perturbation
is recommended from the adversary’s perspective, as more budget to S may lead to increasing D

min

, which
is advantageous for the learning algorithm. In a more formal way, we need to bound ⁄

min

(�(X

ı|
S )�(X

ı

S )/n)
while proving Lemma 19, which requires n = �

!
(k log(p))/D2

min

"
samples (Eq. (65)). Hence, it is advisable

for the adversary to design perturbations such that D
min

is small.
With a brief discussion on uniqueness in this sub-section, we provide theoretical guarantees for the estimated
regression parameter vector in the next subsection.

C.2 Quality of estimated regression parameter vector

In this subsection, we prove the third claim made in Theorem 10 and discuss how the adversarial perturbation
in the non-support Sc can a�ect the theoretical guarantees for ŵS (in the support) indirectly through
regularization parameter. We start with the computation of ŵS ≠ wı

S by using the first order stationary
condition specified in Eq. (4). The algebraic steps are presented in Appendix D.1 and the simplified expression
is:

ÎŵS ≠ wı
SÎŒ Æ ------A≠1

------
Œ (Îw

1

ÎŒ + Îw
2

ÎŒ) + ⁄
------A≠1

------
Œ ÎẑSÎŒ (26)

w
1

= X|
Se
n

, w
2

= X|
S� (Xı

S)wı
S

n
, A = X|

SXS

n
(27)

The last term in RHS of Eq. (26) can be easily bounded as ÎẑSÎŒ Æ 1. To further bound
------A≠1

------
Œ, we

use the triangle inequality:
------A≠1

------
Œ Æ

---
---
---A≠1 ≠ (E [A])≠1

---
---
---
Œ

+
---
---
---(E [A])≠1

---
---
---
Œ

The first term in the RHS of the above equation can be bounded using Lemma 13. We can claim

P
5---

---
---A≠1 ≠ (E [A])≠1

---
---
---
Œ

Ø G
max

2

6
Æ O

3
1
p

4
(28)

by substituting ” = G
max/2 in Lemma 13 if n = �

!
k2

log(p)/G2

max

"
. Using this, we can claim

------A≠1

------
Œ Æ 3G

max/2.
Further we proceed to bound Îw

1

ÎŒ defined in Eq. (27) by using an approach similar to Lemma 15:

Îw
1

ÎŒ =
....

X|
Se
n

....
Œ

Æ ⁄“

8 (29)

It should be noted that there is lower bound constraint on ⁄ for the above statement to hold with high
probability, as specified in Lemma 15. The lower bound value of ⁄ can be tightened slightly for this case
specifically by changing the log(p) factor to log(k) as w

1

is a k≠dimensional vector, and we need to take
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union bound over k elements only, instead of p ≠ k as done in Lemma 15. But we take the ⁄ mentioned in
Eq. (15), so that the strict dual feasibility is also verified.
Further, we proceed to bound Îw

2

ÎŒ defined in Eq. (27) by using the approach similar to Lemma 24
presented in Appendix D. We claim:

Îw
2

ÎŒ =
....

X|
S� (Xı

S)wı
S

n

....
Œ

Æ ⁄“

8 (30)

where the lower bound on ⁄ is specified in Eq. (15). Substituting the bounds derived in Eq. (29) and Eq.
(30) in Eq. (26), we obtain:

ÎŵS ≠ wı
SÎŒ Æ ⁄

1
1 + “

4

2 3G
max

2 = f(⁄) (31)

This proves the third claim in Eq. (3) of Theorem 10. From the above equation, we observe that a large value
regularization ⁄ is not desirable as it is directly proportional to the bound of ||ŵS ≠ wı

S ||Œ. But note that
the lower bound of ⁄ can be controlled by the adversary due to the presence of constants b and q in Eq. (15),
and hence the adversary can control the quality of the estimated regression parameter vector as demonstrated
shortly. Before proceeding to that discussion, we need to prove the fourth claim of sign matching in Theorem
10, which can be seen as a direct consequence of Lemma 26 in the Appendix.

D Proof for KKT conditions

D.1 First Order Stationarity condition

Consider the loss function

l(w) = 1
2n

||y ≠ Xw||2
2

. (32)

The Lasso problem is given by:

ŵS = arg min
wS œRk

l((wS , 0)) + ⁄||wS ||
1

. (33)

We start with the first-order stationary condition. Taking the first order derivative of Eq. (32), we get:

Òl(w) = 1
n

X| (X(w ≠ wı) + (� (Xı) wı ≠ e))

[Òl((ŵS , 0))]S = 1
n

X|
S (XS(ŵS ≠ wı

S) + (� (Xı
S)wı

S ≠ e))

[Òl((ŵS , 0))]Sc

= 1
n

X|
Sc

(XS(ŵS ≠ wı
S) + (� (Xı

S)wı
S ≠ e))

The stationarity condition of Eq. (33), after splitting into the support S and non-support Sc, becomes:

[Òl((ŵS , 0))]S + ⁄ẑS = 0k

[Òl((ŵS , 0))]Sc

+ ⁄ẑSc = 0
(p≠k)

Using these equations, we arrive at:
1
n

X|
S (XS(ŵS ≠ wı

S) + (� (Xı
S)wı

S ≠ e)) + ⁄ẑS = 0

(ŵS ≠ wı
S) = (X|

SXS)≠1 (X|
S (e ≠ � (Xı

S)wı
S) ≠ n⁄ẑS) (34)

Further, using triangle inequality and sub-multiplicative property of norms, we arrive at:

ÎŵS ≠ wı
SÎŒ Æ

.....

3
X|

SXS

n

4≠1

.....
Œ

3....
X|

Se
n

....
Œ

+
....

X|
S� (Xı

S)wı
S

n

....
Œ

+ ⁄ ÎẑSÎŒ

4
(35)
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Now, ẑSc can be computed as

ẑSc = ≠ 1
⁄n

X|
Sc

(XS(ŵS ≠ wı
S) + (� (Xı

S)wı
S ≠ e))

= ≠ 1
⁄n

X|
Sc

1
XS

1
(X|

SXS)≠1 (X|
S (e ≠ � (Xı

S)wı
S) ≠ n⁄ẑS)

2
+ (� (Xı

S)wı
S ≠ e)

2

= X|
Sc

;
XS (X|

SXS)≠1 ẑS +
1

In ≠ XS (X|
SXS)≠1 X|

S

2 (e ≠ � (Xı
S)wı

S)
⁄n

<
(36)

where In denotes an identity matrix of dimension n ◊ n.
The second order derivative of Eq. (32) is:

Ò2l(w) = 1
n

X|X
#Ò2l((wS , 0))

$
S,S = 1

n
X|

SXS

D.2 Simplification of
----ẑSc

t

1

----
Œ

In this sub-section, we present the simplification of the term
----ẑSc

t

1

----
Œ, which uses the triangle inequality as

shown below:

---
---
---X|

Sc

XS (X|
SXS)≠1

---
---
---
Œ

Æ
-----

-----

-----

3
1
n

X|
Sc

XS ≠ �x

ScS + �x

ScS

4 3
1
n

X|
SXS

4≠1

-----

-----

-----
Œ

Æ
-----

-----

-----

3
1
n

X|
Sc

XS ≠ �x

ScS

4 3
1
n

X|
SXS

4≠1

-----

-----

-----
Œ

+
-----

-----

-----�
x

ScS

3
1
n

X|
SXS

4≠1

-----

-----

-----
Œ

=
-----

-----

-----

3
1
n

X|
Sc

XS ≠ �x

ScS

4 A3
1
n

X|
SXS

4≠1

≠ (�x

SS)≠1 + (�x

SS)≠1

B-----

-----

-----
Œ

+
-----

-----

-----�
x

ScS

A3
1
n

X|
SXS

4≠1

≠ (�x

SS)≠1 + (�x

SS)≠1

B-----

-----

-----
Œ

Æ
-----

-----

-----

3
1
n

X|
Sc

XS ≠ �x

ScS

4 A3
1
n

X|
SXS

4≠1

≠ (�x

SS)≠1

B-----

-----

-----
Œ

+
----

----

----

3
1
n

X|
Sc

XS ≠ �x

ScS

4
(�x

SS)≠1

----

----

----
Œ

+
-----

-----

-----�
x

ScS

A3
1
n

X|
SXS

4≠1

≠ (�x

SS)≠1

B-----

-----

-----
Œ

+
---
---
---�x

ScS (�x

SS)≠1

---
---
---
Œ

Let R = 1

n X|
Sc

XS and Q = 1

n X|
SXS , and hence E [R] = �x

ScS , E [Q] = �x

SS . The above expression simplifies
to:

---
---
---X|

Sc

XS (X|
SXS)≠1

---
---
---
Œ

Æ
---
---
---E [R] (E [Q])≠1

---
---
---
Œ

+
---
---
---E [R]

1
Q≠1 ≠ (E [Q])≠1

2---
---
---
Œ

+
---
---
---(R ≠ E [R])

1
Q≠1 ≠ (E [Q])≠1

2---
---
---
Œ

+
---
---
---(R ≠ E [R]) (E [Q])≠1

---
---
---
Œ
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D.3 Proof of Lemma 12

Lemma 12. For 0 Æ ” Æ 32›k, where › = max
iœS

3
‡


�x

ii + r
Ò

��

ii

4
max
jœSc

1
‡


�x

jj + r
Ò

��

jj

2
, if n =

�
1

k2›2

”2

log(p)
2

, then

P
5----

----

----
1
n

X|
Sc

XS ≠ �x

ScS

----

----

----
Œ

Æ ”

6
Ø 1 ≠ O

3
1
p

4

Proof. We start by analyzing each entry of 1

n X|
Sc

XS . As x = xı + �(xı), we can claim xi ≥ SG(0, ‡


�x

ii +
r
Ò

��

ii ) using Lemma 27. Further as Xki and Xkj are sub-Gaussian, its product is sub-exponentially dis-

tributed, denoted by SE(8
Ô

2cij , 4cij) using Lemma 28 where cij =
3

‡


�x

ii + r
Ò

��

ii

4 1
‡


�x

jj + r
Ò

��

jj

2
.

By using properties of sub-exponential distributions, we can further claim the following for entry (i, j):
3

1
n

X|
Sc

XS

4

ij

≥ SE

3
8
Ô

2›Ô
n

,
4›

n

4

where › = max
iœS

3
‡


�x

ii + r
Ò

��

ii

4
max
jœSc

1
‡


�x

jj + r
Ò

��

jj

2
. Applying Lemma 23 for 1

nX|
Sc

XS , we arrive
at:

P
5----

----

----
1
n

X|
Sc

XS ≠ �x

ScS

----

----

----
Œ

Ø ”

6
Æ 2(p ≠ k)k exp

; ≠n”2

256k2›2

<

for 0 Æ ” Æ 32›k. If we choose n = �
1

k2›2

”2

log(p)
2

, then we may claim:

P
5----

----

----
1
n

X|
Sc

XS ≠ �x

ScS

----

----

----
Œ

Æ ”

6
Ø 1 ≠ O

3
1
p

4
.

D.4 Proof of Lemma 13

Lemma 13. For any ” > 0, if n = �
1

k2

”2

(C
min

+2F
min

+D
min

)

4

log(p)
2

P
C-----

-----

-----

3
1
n

X|
SXS

4≠1

≠ (�x

SS)≠1

-----

-----

-----
Œ

Æ ”

D
Ø 1 ≠ O

3
1
p

4

Proof. We start by applying norm inequalities to arrive to the spectral norm:
-----

-----

-----

3
1
n

X|
SXS

4≠1

≠ (�x

SS)≠1

-----

-----

-----
Œ

Æ
Ô

k

.....

3
1
n

X|
SXS

4≠1

≠ (�x

SS)≠1

.....
2

Æ
Ô

k

.....

3
1
n

X|
SXS

4≠1

3
�x

SS ≠ 1
n

X|
SXS

4
(�x

SS)≠1

.....
2

Æ
Ô

k

.....

3
1
n

X|
SXS

4≠1

.....
2

....
1
n

X|
SXS ≠ �x

SS

....
2

...(�x

SS)≠1

...
2

(37)
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The term
...(�x

SS)≠1

...
2

in the above equation can be bounded as shown below:

⁄
min

(�x

SS) Ø ⁄
min

1
�x

ı

SS

2
+ 2⁄

min

1
[��x

ı

+ �x

ı

�]SS/2
2

+ ⁄
min

!
��

SS
"

= C
min

+ 2F
min

+ D
min

(38)

We use Lemma 19 to claim
...
!

1

n X|
SXS

"≠1

...
2

Æ 2

C
min

+2F
min

+D
min

with high probability of 1 ≠ O
1

1

p

2
if

n = � (k log(p)). Substituting this bound and Eq. (38) in Eq. (37):
-----

-----

-----

3
1
n

X|
SXS

4≠1

≠ (�x

SS)≠1

-----

-----

-----
Œ

Æ
Ô

k
2

(C
min

+ 2F
min

+ D
min

)2

....
1
n

X|
SXS ≠ �x

SS

....
2

(39)

We further proceed to bound
.. 1

n X|
SXS ≠ �x

SS
..

2

in Eq. (39):
....

1
n

X|
SXS ≠ �x

SS

....
2

Æ
----

----
1
n

Xı|
S Xı

S ≠ �x

ı

SS

----

----
2

+ 2
----

----
1
n

Xı|
S � (Xı

S) ≠ ��x

ı

SS

----

----
2

+
----

----
1
n

� (Xı|
S ) � (Xı

S) ≠ ��

SS

----

----
2

(40)

The first term in the RHS of the above equation can be easily bounded by substituting ” =
(C

min

+ 2F
min

+ D
min

)2 ”
1

8

Ô
k

in Eq. (66) to claim

P
C----

----
1
n

Xı|
S Xı

S ≠ �x

ı

SS

----

----
2

Æ (C
min

+ 2F
min

+ D
min

)2

8
”

1Ô
k

D
Ø 1 ≠ O

3
1
p

4
(41)

if n = �
1

k2

”2

1

(C
min

+F
min

)

4

+ log(p)
2

. The third term,
---- 1

n � (Xı|
S ) � (Xı

S) ≠ ��

SS
----

2

in the RHS of Eq. (40)
can also be bounded in similar manner with same sample complexity. The second term in Eq. (40) can be
bounded by substituting ” = (C

min

+2F
min

+D
min

)

2

8

”
1Ô
k

in Theorem 14

P
C----

----
1
n

Xı|
S � (Xı

S) ≠ ��x

ı

SS

----

----
2

Æ (C
min

+ 2F
min

+ D
min

)2

8
”

1Ô
k

D
Ø 1 ≠ O

3
1
p

4
(42)

if n = �
1

k2

”2

1

(C
min

+2F
min

+D
min

)

4

log(p)
2

. Further, we substitute Eq. (41) and Eq. (42) in Eq. (40) to claim
the following

....
1
n

X|
SXS ≠ �x

SS

....
2

Æ (C
min

+ 2F
min

+ D
min

)2

2
”

1Ô
k

(43)

with probability 1 ≠ O
1

1

p

2
. Substituting Eq. (43) in Eq. (39) and replacing the dummy variable ”

1

with ”,
we arrive at the claimed result.

D.5 Proof of Theorem 14

Theorem 14. For 0 < ” < 32r‡ab
k

n , � (Xı
S) , Xı

S œ Rn◊k, a2 = max
jœS

�jj , b2

k = k
q
iœS

(��

ii )2

P
5----

----
1
n

Xı|
S � (Xı

S) ≠ ��x

ı

SS

----

----
2

Ø ”

6
Æ 4e

≠n”

2

256r

2

‡

2

ab

k (44)

Proof. Let B = � (Xı|
S ) Xı

S and a matrix Q be defined as:

Q =
5
0k◊k B
B| 0k◊k

6
(45)
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Using Lemma 20, ||B||
2

= ||Q||
2

. Hence we work with Q instead of B.
Using Lemma 6.12 from (Wainwright, 2019), we have

P [||Q ≠ E [Q]||
2

Ø ”] Æ 2tr (�
Q

(⁄)) e≠⁄” (46)

where �
Q

is the moment generating function of a random matrix Q and can be seen as a mapping
�

Q

: R æ Sd◊d defined as:

�
Q

(⁄) = E
#
e⁄Q

$
=

Œÿ

k=0

⁄k

k! E
#
Qk

$

Therefore, we have to compute the moment generating function �
Q

(⁄) or compute the bound for tr (�
Q

(⁄))
in Eq (46). To do that, we need to study the distribution of B. Any entry (i, j) of B can be expressed as the
sum of products of pairs of sub-Gaussian random variables:

Bij = 1
n

nÿ

k=1

Xı
kj� (Xı

ki)

Since E

ki

r
Ô

�

�

ii

and X

ı

kj

‡
Ô

�

jj

are zero-mean sub-Gaussian random variables with variance proxy 1, their product

is a sub-exponential random variable with parameter
!
8
Ô

2, 4
"

by using Lemma 28. Further, we define
qij = r‡

Ò
��

ii


�jj by using properties of sub-exponential distributions:

Xı
kj� (Xı

ki) ≥ SE
1

8
Ô

2qij , 4qij

2

nÿ

k=1

Xı
kj� (Xı

ki) ≥ SE
1

8
Ô

2qij

Ô
n, 4qij

2

1
n

nÿ

k=1

Xı
kj� (Xı

ki) ≥ SE

3
8
Ô

2qijÔ
n

,
4qij

n

4

1
n

nÿ

k=1

Xı
kj� (Xı

ki) ≥ SE

3
8
Ô

2qiÔ
n

,
4qi

n

4

where qi = r‡
Ò

��

ii

3
max
jœS

�jj

4
1/2

. Therefore Q follows sub-exponential distribution with parameter (V
1

, 4q),

where q = r‡

3
max
iœS

��

ii

4
1/2

3
max
jœS

�jj

4
1/2

, and V
1

is a matrix of dimension k ◊ k:

V
1

=
128r2‡2 max

jœS
�jj

n

S

WWWU

��

11

��

11

. . . ��

11

��

22

��

22

. . . ��

22

...
... . . . ...

��

kk ��

kk . . . ��

kk

T

XXXV
(47)

Further, it is easy to observe that the random matrix Q is sub-exponential with parameter (V, 4q
n ), where V

is described as

V =
5

0 V
1

V|
1

0

6
(48)

The moment generating function �
Q

(⁄) can be expressed as:

�
Q

(⁄) 4 e
⁄

2

V

2
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Substituting the above in Eq. (46) and by replacing ” with n”, we get:

P [||Q ≠ E [Q]||
2

Ø n”] Æ 2tr
1

e
⁄

2

V

2

2
e≠n⁄”

P
5----

----
1
n

Q ≠ E [Q]
----

----
2

Ø ”

6
Æ 2tr

A Œÿ

i=0

⁄i

2ii!V
i

B
e≠n⁄”

= 2
Œÿ

i=0

tr
3

⁄i

2ii! (D)i

4
e≠n⁄”

= 2tr
A Œÿ

i=0

⁄i

2ii! (D)i

B
e≠n⁄”

= 2e≠n⁄”
2kÿ

i=1

e
⁄

2

2

d
i

The next step is to compute the eigenvalues of the matrix V which is done in Lemma 22. It can be easily
observed that V has only two non-zero eigenvalues equal to c

2

n , where

c
2

= 128r2‡2 max
jœS

�jj

Û
k

ÿ

iœS
(��

ii )2 (49)

If we use all the zero eigenvalues of V to compute
q

2k
i=1

e
⁄

2

2

d
i = 2 exp

Ó
n ⁄2

2

c
2

Ô
+ 2k ≠ 2, this would lead to

ultimately non-optimal bounds. Hence the trick here is that the matrix V can be expressed as V = UDU|,
where U is a 2k ◊ 2 matrix instead of 2k ◊ 2k because we know (2k ≠ 2) eigenvalues of V are zero. If we use
the first two columns of U, then

q
2k
i=1

e
⁄

2

2

d
i = 2 exp

Ó
n ⁄2

2

c
2

Ô
. Substituting this in Eq. (46):

P
5----

----
1
n

Xı|
S � (Xı

S) ≠ ��x

ı

SS

----

----
2

Ø ”

6
Æ 2e≠⁄” ◊ 2 exp

;
⁄2c

2

2n

<
’⁄ <

n

4q

Substituting the optimal ⁄ = n”
c

2

, we get:

P
5----

----
1
n

Xı|
S � (Xı

S) ≠ ��x

ı

SS

----

----
2

Ø ”

6
Æ 4e

≠n”

2

2c

2 = 4 exp

Y
__]

__[

≠n”2

256r2‡2 max
jœS

�jj

Ú
k

q
iœS

(��

ii )2

Z
__̂

__\
(50)

for 0 < ” < 32
Ô

kr‡ max
jœS

�jj

Òq
iœS (��

ii )2. Hence, a slightly simplified version of ” can be 0 < ” <

32
Ô

kr‡
Ò

max
iœS

��

ii

Ò
max
jœS

�jj .

This lemma helps us to work with a symmetric matrix (M) instead of non-symmetric matrix (B).
Lemma 20. For matrix B œ Rk◊k, we claim ||B||

2

= ||M||
2

, where M =
Ë

0

k◊k

B

B

|
0

k◊k

È
.

Proof. Using M defined as above, M2 can be computed as:

M2 =
5
BB| 0k◊k

0k◊k B|B

6

The spectral norm of M2 can be computed as:
----M2

----
2

= max {⁄
max

(BB|) , ⁄
max

(B|B)}
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From basic linear algebra properties, it is easy to observe that eigenvalues of BB| and B|B are the same:

BB|x = ⁄x
B|BB|x = ⁄B|x

B|B (B|x) = ⁄ (B|x)
B|By = ⁄y

Using the above, we can claim,
----M2

----
2

= ⁄
max

(BB|)

We also know that ||M||2
2

=
----M2

----
2

. Therefore ||M||
2

=


⁄
max

(BB|) = ||B||
2

.

D.6 Simplification of ẑSc

t

2

ẑSc

t

2

= X|
Sc

(P/⁄n) (e ≠ � (Xı
S)wı

S) , where P =
1

In ≠ XS (X|
SXS)≠1 X|

S

2
(51)

Using triangle inequality and sub-multiplicative property of norms:

..ẑSc

t

2

..
Œ Æ 1

⁄

....
1
n

X|
Sc

Pe
....

Œ
+ 1

⁄

....
1
n

X|
Sc

� (Xı
S)wı

S

....
Œ

+ 1
⁄

...X|
Sc

XS (X|
SXS)≠1

...
Œ

....
1
n

X|
S� (Xı

S)wı
S

....
Œ

Further using the bound for
...X|

Sc

XS (X|
SXS)≠1

...
Œ

derived in Section 3.1.1 or Eq. (12):

..ẑSc

t

2

..
Œ Æ 1

⁄

....
1
n

X|
Sc

Pe
....

Œ
+ 1

⁄

....
1
n

X|
Sc

� (Xı
S)wı

S

....
Œ

+ 1
⁄

3
1 ≠ 3“

4

4 ....
1
n

X|
S� (Xı

S)wı
S

....
Œ

(52)

D.7 Proof of Lemma 15

Lemma 15. If the regularization parameter ⁄ = ⁄
1

Ø 8q
1

‡
e

“

Ò
4 log(p)

n , where constant q2

1

=

3 (C
max

+ 2F
max

+ D
max

), then
... X

|
Sc

Pe

n⁄

...
Œ

Æ “
8

with probability of at least 1 ≠ O
1

1

p

2
.

Proof. Consider the random vector of dimension (p ≠ k):

t
1

= X|
Sc

Pe
n⁄

(53)

whose each entry is zero-mean sub-Gaussian conditioned on X. The variance parameter for each entry is
given by:

‡2

t
1

= 1
⁄2n2

..X|
Sc

PE
#
ee|

y

$
PXSc

..
2

= ‡2

e

⁄2n

....
X|

Sc

XSc

n

....
2

Æ ‡2

e

⁄2n

3
Î�x

ScSc

Î
2

+
....

X|
Sc

XSc

n
≠ �x

ScSc

....
2

4

Æ 3‡2

e

2⁄2n
(C

max

+ 2F
max

+ D
max

) (54)

where we have used Lemma 21 in the first step. In the last step, we decompose
... X

|
Sc

XSc

n ≠ �x

ScSc

...
2

as done
in Eq. (40) and further use Eq. (66) and Theorem 14 to claim the resulting bound with high probability of
at least 1 ≠ O

1
1

p

2
, if n = k log(p).
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Further we use union-bound along with sub-Gaussian tail bounds to claim:

P [Ît
1

ÎŒ Ø ”] Æ 2 exp
; ≠”2

2‡2

t
1

+ log(p ≠ k)
<

(55)

Substituting ” = “
16

, we can claim the above state with high probability of at least 1 ≠ O
1

1

p

2
if

⁄ Ø ‡e

“


3 (C

max

+ 2F
max

+ D
max

)
Ú

2 log(p)
n

(56)

which completes the proof.

The following lemma helps us to bound the spectral norm of P.
Lemma 21. P defined in Eq. (6) is a projection matrix and hence ||P||2

2

= 1.

Proof. We use the fact that P is a projection matrix i� I ≠ P is a projection matrix. Hence we focus only on
T = I ≠ P = XS (X|

SXS)≠1 X|
S

T = XS (X|
SXS)≠1 X|

S

T2 = XS (X|
SXS)≠1 X|

SXS (X|
SXS)≠1 X|

S = XS (X|
SXS)≠1 X|

S = T

Hence P defined in Eq. (6) is a valid projection matrix.

D.8 Proof of Lemma 16

Lemma 16. If ⁄ = ⁄
2

Ø 16

“ max
;..�x

ı

�

SS wı
S + ��

SSwı
S

..
Œ , q

2

Ò
4 log(p)

n

<
, then

P
5....

X|
S� (Xı

S)wı
S

n⁄

....
Œ

Æ “

8

6
Ø 1 ≠ O

3
1
p

4

where q
2

= r
Ò

wı|
S ��

SS wı
S max

iœSc

3
‡


�x

ii + r
Ò

��

ii

4
.

Proof. Consider t
2

= 1

n X|
Sc

� (Xı
S)wı

S which is a (p ≠ k) ◊ 1 random vector whose ith entry can be expressed
as the mean of n samples:

t
2i = 1

n

nÿ

j=1

x(j)

i

A
ÿ

lœS
�

1
xı(j)

l

2
wı

l

B

E [t
2i] = 1

n

nÿ

j=1

ÿ

lœS
E

Ë
xı(j)

i �
1

xı(j)

l

2
wı

l

È
+ 1

n

nÿ

j=1

ÿ

lœS
E

Ë
�

1
xı(j)

i

2
�

1
xı(j)

l

2
wı

l

È

= �x

ı

�

iS wı
S + ��

iSwı
S

where i œ Sc. Since x

(j)

i!
‡
Ô

�

x

ii

+r
Ô

�

�

ii

" and

q
lœS

�

!
x

ı(j)

l

"
w

ı

l

‡
t

, where ‡t = r
Ò

wı|
S ��

SS wı
S are zero-mean sub-

Gaussian random variables with variance proxy 1, their product is a sub-exponential random variable with
parameter

!
8
Ô

2, 4
"

by using Lemma 28. Therefore the sample mean will also be a sub-exponential random
variable with the following parameters:

1
n⁄

nÿ

j=1

x(j)

i

ÿ

lœS
�

1
xı(j)

l

2
wı

l ≥ SE

3
8
Ô

2ci

⁄
Ô

n
,

4ci

⁄n

4
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where ci =
3

‡


�x

ii + r
Ò

��

ii

4
‡t. By using sub-exponential tail bounds and union bound, we further claim:

P
5

1
⁄

Ît
2

≠ E[t
2

]ÎŒ > ”

6
Æ 2 exp

3
≠n”2⁄2

2q2

2

+ log(p ≠ k)
4

for 0 < ”⁄ Æ 32q
2

, where q
2

= max
iœSc

ci. Substituting ” = “
16

in the above equation, we arrive at:

1
⁄

Ît
2

≠ E[t
2

]ÎŒ Æ “

16 (57)

with high probability of at least 1 ≠ O
1

1

p

2
, if the regularization parameter satisfies:

⁄ Ø 16q
2

“

Ú
2 log(p)

n
(58)

Using triangle inequality, we can claim:

Ît
2

ÎŒ
⁄

Æ 1
⁄

Ît
2

≠ E[t
2

]ÎŒ + ÎE[t
2

]ÎŒ
⁄

Æ “

16 + “

16 = “

8

with a high probability if the regularization parameter satisfies:

⁄ Ø 16 ÎE[z
1

]ÎŒ
“

= 16
“

1...�x

ı

�

ScS wı
S + ��

ScSwı
S

...
Œ

2
(59)

Combining Eq. (58) and Eq. (59) for the regularization parameter:

⁄ Ø 16
“

max
I...�x

ı

�

ScS wı
S + ��

ScSwı
S

...
Œ

, q
2

Ú
4 log(p)

n

J

D.9 Proof of Lemma 19

Lemma 19. If Assumption 7 holds and n = � (k log(p)), then we have ⁄
min

!
1

n X|
SXS

" Ø C
min

+2F
min

+D
min

2

> 0
with probability at least 1 ≠ O

1
1

p

2
.

Proof. The minimum eigenvalue of 1

n X|
SXS can be expressed as:

⁄
min

3
1
n

X|
SXS

4
= ⁄

min

3
1
n

Xı|
S Xı

S + 1
n

� (Xı|
S ) Xı

S + 1
n

Xı|
S � (Xı

S) + 1
n

� (Xı|
S ) � (Xı

S)
4

Ø ⁄
min

3
1
n

Xı|
S Xı

S

4
+ ⁄

min

3
1
n

� (Xı|
S ) Xı

S + 1
n

Xı|
S � (Xı

S)
4

+ ⁄
min

3
1
n

� (Xı|
S ) � (Xı

S)
4

(60)

We need to further derive lower bounds for ⁄
min

!
1

n Xı|
S Xı

S
"

and ⁄
min

!
1

n � (Xı|
S ) � (Xı

S)
"
. Substituting ” = 1

2

in Eq. (63) and Eq. (65) of Lemma 25, we can claim ⁄
min

!
1

n Xı|
S Xı

S
" Ø C

min

2

and ⁄
min

!
1

n � (Xı|
S ) � (Xı

S)
" Ø

D
min

2

with probability
1

1 ≠ 2 exp
Ó

≠c
1

C2

min

n
4

+ k
Ô2

and
1

1 ≠ 2 exp
Ó

≠c
2

D2

min

n
4

+ k
Ô2

respectively. Using this
information, we claim:

⁄
min

3
1
n

X|
SXS

4
Ø C

min

2 + ⁄
min

3
1
n

� (Xı|
S ) Xı

S + 1
n

Xı|
S � (Xı

S)
4

+ D
min

2
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For general square matrices A and B, we have ⁄
min

(A + A|) = ⁄
min

(B + B| + (A ≠ B) + (A ≠ B)|) Ø
⁄

min

(B + B|) ≠ Î(A ≠ B) + (A ≠ B)|Î
2

Ø ⁄
min

(B + B|) ≠ 2 ÎA ≠ BÎ
2

. Thus:

⁄
min

3
1
n

� (Xı|
S ) Xı

S + 1
n

Xı|
S � (Xı

S)
4

Ø ⁄
min

1
��x

ı

SS + �x

ı

�

SS

2
≠ 2

....
1
n

� (Xı|
S ) Xı

S ≠ ��x

ı

SS

....
2

= 2⁄
min

1
[��x

ı

+ �x

ı

�]SS/2
2

≠ 2
....

1
n

� (Xı|
S ) Xı

S ≠ ��x

ı

SS

....
2

= 2F
min

≠ 2
....

1
n

� (Xı|
S ) Xı

S ≠ ��x

ı

SS

....
2

The next step is to bound
.. 1

n � (Xı|
S ) Xı

S ≠ ��x

ı

SS
..

2

which is done in Theorem 14. Substituting ” = F
min

2

in
Eq. (9), we can claim the following with high probability

⁄
min

3
1
n

� (Xı|
S ) Xı

S + 1
n

Xı|
S � (Xı

S)
4

Ø 2F
min

≠ F
min

= F
min

(61)

if n = �(k log(p)). Hence we claim

⁄
min

3
1
n

X|
SXS

4
Ø C

min

+ 2F
min

+ D
min

2 > 0

with probability 1 ≠ O
1

1

p

2
if n = � (k log(p)).

Lemma 22. The two non-zero eigenvalues of the matrix V defined in Eq (48) are equal to c
2

n , where
c

2

= 128r2‡2 max
jœS

�jj

Ú
k

q
iœS

(��

ii )2. The rest of the 2k ≠ 2 eigenvalues are zero.

Proof. We leave the multiplicative factor
128r2‡2

max

jœ[p]

�

jj

n aside and focus on the matrix structure now. Let
ai = ��

ii for the ease of notation. Hence the transformed matrix VÕ
1

has the following form:

V
Õ

1

=

S

WWWU

a
1

a
1

. . . a
1

a
2

a
2

. . . a
2

...
... . . . ...

ak ak . . . ak

T

XXXV

We use the idea used in Lemma 20 and compute the eigenvalues of VÕ2 instead of VÕ directly:

V
Õ
2 =

C
VÕ

1

V
Õ|
1

0k◊k

0k◊k V
Õ|
1

VÕ

1

D

V
Õ

1

V
Õ|
1

= k

S

WWWU

a2

1

a
1

a
2

. . . a
1

ak

a
1

a
2

a2

2

. . . a
2

ak

. . . . . .
. . . ...

aka
1

aka
2

. . . a2

k

T

XXXV

To compute the eigenvalues of VÕ2, we focus on VÕ
1

V
Õ|
1

and V
Õ|
1

VÕ
1

separately. To compute the eigenvalues
of VÕ

1

V
Õ|
1

, we first determine its rank by using some elementary row operations: Ri æ Ri ≠ R
1

a
i

a
1

for
i œ [2, 3, . . . , k]. The resulting matrix becomes:

k

S

WWWU

a2

1

a
1

a
2

. . . a
1

ak

0 0 . . . 0
...

... . . . ...
0 0 . . . 0

T

XXXV
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Therefore, VÕ

1

V
Õ|
1

is a rank 1 matrix and hence the one non-zero eigenvalue can be computed using the trace
of the matrix, which is

Ú
k

q
iœS

a2

i . By using Lemma 20, we can claim that the eigenvalues of VÕ

1

V
Õ|
1

and

V
Õ|
1

VÕ

1

are the same, and hence the two non-zero eigenvalues of VÕ can be derived as:

⁄(V
Õ
) =

Û
k

ÿ

iœS
a2

i =
Û

k
ÿ

iœS
(��

ii )2

Accounting for the scaling factor that was kept aside in the first step:

⁄(V) =
128r2‡2 max

jœS
�jj

n

Û
k

ÿ

iœS
(��

ii )2

Lemma 23. Let each entry of X œ Rk
1

◊k
2 be sub-exponentially distributed, denoted by SE(‹, –), then for

any 0 Æ ” Æ k
2

‹2

– .

P [|||X ≠ E[X]|||Œ > ”] Æ 2k
1

k
2

exp
;

≠ ”2

2k2

2

‹2

<
.

Proof. We start with the use of basic norm inequalities and further use a union bound.

P [|||X ≠ E[X]|||Œ > ”] Æ P [k
2

ÎX ≠ E[X]ÎŒ > ”]

Æ P
5
(’i œ [k

1

], j œ [k
2

]) |Xij ≠ E[Xij ]| >
”

k
2

6

Æ k
1

k
2

P
5
|Xij ≠ E[Xij ]| >

”

k
2

6

Æ 2k
1

k
2

exp
;

≠ ”2

2k2

2

‹2

<

for 0 Æ ” Æ k
2

‹2

– , where we have used sub-exponential tail bounds in the last step.

Lemma 24. If ⁄ = ⁄
3

Ø 16

“

!
1 ≠ 3“

4

"
max

;..�x

ı

�

SS wı
S + ��

SSwı
S

..
Œ , q

3

Ò
4 log(p)

n

<
, then

P
C....

X|
S� (Xı

S)wı
S

n⁄

....
Œ

Æ “

8
1!

1 ≠ 3“
4

"
D

Ø 1 ≠ O
3

1
p

4
(62)

where q
3

= r
Ò

wı|
S ��

SS wı
S max

iœS

3
‡


�x

ii + r
Ò

��

ii

4
.

Proof. The proof of this lemma is analogous to proof of Lemma 16. We need to take union bound over k
terms only, as we are working with S. Also, we substitute ” = “

16

1

(1≠ 3“

4

) in Eq. (57), which is the reason we
see the scaling factor of

!
1 ≠ 3“

4

"
.

Lemma 25. If Assumption 7 holds, then for some 0 Æ ” < 1, we have:

P
5
⁄

min

3
1
n

Xı|
S Xı

S

4
Æ (1 ≠ ”) C

min

6
Æ 2 exp

)≠c
1

C2

min

”2n + k
*

(63)

or equivalently P
C-----

-----

3
1
n

Xı|
S Xı

S

4≠1

-----

-----
2

Ø 1
(1 ≠ ”) C

min

D
Æ 2 exp

)≠c
1

C2

min

”2n + k
*

(64)

and independently, P
5
⁄

min

3
1
n

� (Xı|
S ) � (Xı

S)
4

Æ (1 ≠ ”) D
min

6
Æ 2 exp

)≠c
2

D2

min

”2n + k
*

(65)
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where c
1

, c
2

are some positive constants. If n = � (k + log(p)), the probability bound 1 ≠
2 exp

)≠c
1

C2

min

”2n + k
*

and 1 ≠ 2 exp
)≠c

1

D2

min

”2n + k
*

simplify to 1 ≠ O
1

1

p

2
.

Proof. Let A = 1

n Xı|
S Xı

S . To derive an upper bound on the maximum eigenvalue of A≠1, we derive a lower
bound on the minimum eigenvalue of A:

⁄
min

(A) = ⁄
min

(A ≠ �SS + �SS)
Ø ⁄

min

(�SS) ≠ max (⁄
max

(A ≠ �SS) , ≠⁄
min

(A ≠ �SS))
= C

min

≠ ||A ≠ �SS ||
2

Using Proposition 2.1 of (Vershynin, 2012), we can bound ||A ≠ �SS ||
2

as follows:

P [||A ≠ �SS ||
2

Ø ‘] Æ 2 exp
)≠c‘2n + k

*
(66)

where c is a constant. Substituting ‘ = ”C
min

in the above equation, we get

P [||A ≠ �SS ||
2

Ø ”C
min

] Æ 2 exp
)≠c”2C2

min

n + k
*

Hence, we can claim ⁄
min

(A) Ø (1 ≠ ”) C
min

with probability 1≠2 exp
)≠cC2

min

”2n + k
*

. If n > C(k+log(p)),
then we claim ⁄

min

(A) Ø C
min

2

with probability 1 ≠ O
1

1

p

2
. Therefore

----A≠1

----
2

Æ 2

C
min

.

The bound on ⁄
min

!
1

n � (Xı|
S ) � (Xı

S)
"

can be proved using the same approach.

Lemma 26. For any a, b œ R, fix ‘ > 0. If we have |a ≠ b| Æ ‘ · |b| > 2‘, then sign(a) = sign(b)

Proof. Consider the two cases for |b| > 2‘

Case 1: if b > 2‘ and |a ≠ b| Æ ‘, then a Ø ‘. This implies a and b are both positive and have the same sign.
Case 2: if b < ≠2‘ and |a ≠ b| Æ ‘, then a Æ ≠‘. This implies a and b are both negative and have the same
sign.

Lemma 27. Let X ≥ SG(0, ‡x) and Y ≥ SG(0, ‡y), then

1. X + Y ≥ SG(0,
!
‡2

x + ‡2

y

"
1/2) if X and Y are mutually independent.

2. X + Y ≥ SG(0, (‡x + ‡y)) if X and Y are dependent.

where SG(µ, ‡z) denotes a sub-Gaussian distribution with mean µ and parameter ‡z.

Proof. We start with the easier case of X and Y being independent. We compute the moment generating
function for X + Y :

E
Ë
e⁄(X+Y )

È
= E

#
e⁄Xe⁄Y

$
= E

#
e⁄X

$
E

#
e⁄Y

$

Æ exp
3

⁄2‡2

x

2

4
exp

A
⁄2‡2

y

2

B
= exp

A
⁄2(‡2

x + ‡2

y)
2

B

which completes the proof for mutually independent random variables X and Y .
Further proceeding to the general case and writing the moment generating function:

E
Ë
e⁄(X+Y )

È
= E

#
e⁄Xe⁄Y

$ (i)

Æ !
E

#
e⁄pX

$"
1/p !

E
#
e⁄qX

$"
1/q

Æ exp
3

⁄2‡2

xp2

2
1
p

4
exp

A
⁄2‡2

yq2

2
1
q

B
= exp

A
⁄2

!
‡2

xp + ‡2

yq
"

2

B
(67)
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where (i) uses Hölder’s inequality where 1

p + 1

q = 1. To upper bound the above, we optimize with respect to
variable p and solve:

max f(p) = max
!
‡2

xp + ‡2

yq
"

= max
3

‡2

xp + ‡2

y

p

p ≠ 1

4

Taking the first order derivative:

df(p)
dp

= ‡2

x ≠ ‡2

y

1
(p ≠ 1)2

= 0

which gives p = 1 + ‡
y

‡
x

, and therefore q = 1 + ‡
x

‡
y

. Substituting this in Eq. (67), we arrive at:

E
Ë
e⁄(X+Y )

È
Æ exp

A
⁄2

!
‡2

x + ‡x‡y + ‡2

y + ‡x‡y

"

2

B
= exp

A
⁄2 (‡x + ‡y)2

2

B

which completes the proof for the general case.

Lemma 28. Let X ≥ SG(0, 1) and Y ≥ SG(0, 1), then

1. XY ≥ SE(4
Ô

2, 4) if X and Y are independent

2. XY ≥ SE(8
Ô

2, 4) if X and Y are dependent.

where SG(µ, ‡z) denotes a sub-Gaussian distribution with mean µ and parameter ‡z, and SE(‹, –) denotes a
sub-exponential distribution with parameters ‹, –.

Proof. We first start with the case of mutually independent X and Y . Their product can be expressed as:

XY = (X + Y )2 ≠ (X ≠ Y )2

4 (68)

So, we derive the distribution of (X + Y )2 and (X ≠ Y )2. We use Lemma 27 to derive the distribution for
the sum of a pair of independent random variables

X + Y ≥ SG(0,
Ô

2)

Further, by scaling of sub-Gaussian random variables, we claim:

X + YÔ
2

≥ SG(0, 1)

In the next step, we use Lemma 8 from (Barik & Honorio, 2023) to derive the distribution of the square of a
sub-Gaussian random variable:

3
X + YÔ

2

4
2

≥ SE(4
Ô

2, 4)

In a similar manner, we can claim the following for the di�erence of two sub-Gaussian random variables:
3

X ≠ YÔ
2

4
2

≥ SE(4
Ô

2, 4)

By scaling of sub-exponential random variables, we claim:

(X + Y )2 ≥ SE(8
Ô

2, 8)
(X ≠ Y )2 ≥ SE(8

Ô
2, 8)
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To derive the distribution of the sum of (X + Y )2 and (X ≠ Y )2, we use Lemma 27 for dependent variables:

(X + Y )2 ≠ (X ≠ Y )2 ≥ SE(16
Ô

2, 8)

Further, by scaling of sub-exponential random variables:

(X + Y )2 ≠ (X ≠ Y )2

4 ≥ SE(4
Ô

2, 2)

This completes the proof for the first claim of the lemma. Proceeding in a similar manner for the general
case, we use Lemma 27 for dependent variables to claim the following:

X + Y ≥ SG(0, 2)

Proceeding in a similar manner as done for the case of independent random variables, but now for dependent
random variables, we arrive at:

(X + Y )2 ≠ (X ≠ Y )2

4 ≥ SE(8
Ô

2, 4)

D.10 Gaussian Adversarial Error

In this section, we prove that the sample complexity for Gaussian adversarial perturbation improves to
�(k log(p)) as compared to the sub-Gaussian case where it is �(k2 log(p)) as presented in Theorem 10. Since
xı ≥ N (0, �) and �(xı) ≥ N (0, ��), we can claim that x ≥ N (0, �a), where

�a = � + ��

The first step is to verify the strict dual feasibility condition by bounding the infinity norm of ẑSc defined in
Eq. (5). In the case of the Gaussian distribution, we can express XSc in Eq. (5) in terms of XS using the
conditional expectation of jointly normal distribution:

X|
Sc

= �a
ScS (�a

SS)≠1 X|
S + � (Xı|

Sc

) (69)

where � (Xı|
Sc

(i, j)) ≥ N (0, [�a
Sc|S ]jj) and

�a
Sc|S = �a

ScSc

≠ �a
ScS (�a

SS)≠1 �a
SSc

(70)

This simplifies the expression of ẑSc to:

ẑSc = �a
ScS (�a

SS)≠1 ẑS + � (Xı|
Sc

)
;

XS (X|
SXS)≠1 ẑS + P (e ≠ � (Xı

S)wı
S)

⁄n

<
(71)

The first term can be bounded using mutual incoherence assumption. The second term is similar to Eq. 37(a)
in (Wainwright, 2009) and can be bounded with O (k log(p)) samples using the same approach Gaussian
tail bounds and ‰2 tail bounds (Appendix J in (Wainwright, 2009)). This will ensure strict dual feasibility.
Similarly, the uniqueness of the solution can be claimed with O (k log(p)) samples by using Lemma 9 from
(Wainwright, 2009).
For bounding ÎŵS ≠ wı

SÎŒ, we need to bound
------A≠1

------
Œ which requires O !

k2 log(p)
"

samples according
to Lemma 13 for the sub-Gaussian case, where A is defined in Eq. (27). The sample complexity can be
shown to be of order O (k log(p)) for the Gaussian case by using Lemma 5 of (Wainwright, 2009). Bounds for
Îw

1

ÎŒ and Îw
2

ÎŒ can be guaranteed with high probability by choosing an appropriate value of ⁄. Hence
the sample complexity is O (k log(p)).
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E Experiments

E.1 Synthetic data

Continuing the discussion in Section 4 of the main manuscript, we present the experimental settings in more
detail here.
First we discuss the settings used for generating Figure 1 shown in the main manuscript. We start with the
data generation process:

1. We randomly generate the support S of size k = 20, and hence Sc = [p] \ S.

2. We generate a random regression parameter vector, wı
S . We generate a random regression parameter

vector by choosing wi uniformly over [≠1, ≠0.1] fi [0.1, 1] for i œ S and wj = 0, ’j œ Sc.

3. We generate the noise-free features, denoted by xı œ Rp. For the ease of analysis, we chose
xı

i = N (0, 1), ’i œ [p] and generate n independent samples. The next step is to generate yı(j) by
using yı(j) = wı|xı(j) for j œ [n].

4. We corrupt the measurements using Eq. (1), where e ≥ N (0, ‡2

1

) and �(xı) ≥ N (0, ‡2

2

I). We chose
the values of ‡

1

= 0.05 and ‡
2

= 0.1.

5. Further we estimate the parameter vector, denoted by ŵ using Lasso and check if S(ŵ) = S(wı) by
setting ⁄ twice of the lower bound derived in Eq. (15).

6. We repeat the above five steps 200 times and count the number of success for S(ŵ) = S(wı) in step
5, which helps to compute the probability of success.

7. We repeat the above six steps for di�erent values of n for a given value of p. We consider a rescaled
sample size n

log(p)

.

8. We repeat all the seven steps for di�erent values of p œ {128, 256, 512}.

Figure 1 shows that the probability of support recovery increases as we increase the number of samples.
Note that the probability reaches 1 when the rescaled sample size n

log(p)

= 1150. More importantly, the plot
for each value of p overlaps which confirms the hypothesis of sample complexity being logarithmic in the
dimension of the regression vector.
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Figure 2: Probability of support recovery vs rescaled
sample size for �(xı) = 0
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Figure 3: Probability of support recovery vs rescaled
sample size for ‡

2

= 0.2
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We compare our results to the classical support recovery problem with no adversarial attack (Wainwright,
2009) by making �(xı) = 0 via ‡

2

= 0 in our experiments. We repeat the above experiment for the same
value k and p with di�erent values of sample size. The results are presented in Figure 2, which shows a
similar trajectory as in Figure 1. The key di�erence is that we reach the probability of 1 in Figure 2 when the
rescaled sample size n

log(p)

= 275 which was 1150 for Figure 1. Comparison of Figure 1 and Figure 2 helps us
to understand the e�ect of an adversary.
In order to understand the e�ect of �(xı), we increase ‡

2

= 0.2 in the step 4 of the procedure mentioned
above. Note that we have doubled ‡

2

as compared to our default analysis. From Eq. (15), we can observe
that for a constant lower bound on ⁄, the sample size (n) has to increase linearly with

----��

SS
----

2

. We are
discussing the case of constant lower bound because min

iœS
|wı

i | Ø 2f (⁄) as per the fourth claim of Theorem
10. As we double ‡

2

,
----��

SS
----

2

will increase 4 times and hence the minimum the number of samples required
should also increase 4 times.
We actually observe this phenomenon in our experiments. The results for ‡

2

= 0.2 are presented in Figure
3. Note that the probability of success reaches 1 when the rescaled sample size n

log(p)

= 4600 u 4 ◊ 1150 in
Figure 3 which is four times the rescaled sample size needed (1150) for success probability one for the case of
‡

2

= 0.1 presented in Figure 1. Hence our theoretical claim is justified empirically.
We further conduct experiments with more complicated forms of adversarial perturbation (�(xı)). These
cases are discussed below.

E.2 Mixture of two distributions

The adversarial perturbation for jth sample is chosen as a combination of Bernoulli distribution and Gaussian
distribution as shown below:

�(xı(j)) = rv(j)

..v(j)

..
2

, where v(j) ≥
I

v(j)

i ≥ 2Bernoulli(0.5) ≠ 1 with probability 0.5 for i œ [p]
N (0, I) with probability 0.5

(72)

where r denotes the per sample budget for adversarial perturbation and j œ [n]. Compared to the previous
case of all adversarial samples being drawn from Gaussian distribution, now 50% of the samples will be drawn
from scaled Bernoulli distribution such that each entry is +1 or ≠1 with equal probability. As Bernoulli
distribution is bounded, we can claim it is sub-Gaussian, and the final distribution of � (xı) is sub-Gaussian.
Note that � (xı) is designed in such a way that

..�
!
xı(j)

"..
2

= ‘ for all j œ [n] to respect the budget
constraint. We chose ‘ = 0.1 in our simulations.
After generating the adversarial perturbation, we repeat the same exercise as described previously and present
the plot for the probability of support recovery in Figure 4. The plot confirms that Lasso performs successful
support recovery and also confirms that the sample complexity is logarithmic with respect to the size of the
regression parameter vector. Further, we move to another method for adversarial perturbation generation.
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Figure 4: Probability of support recovery vs rescaled
sample size when adversarial perturbations are
drawn from a mixture of Bernoulli distribution and
Gaussian distribution
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Figure 5: Probability of support recovery vs rescaled
sample size when adversarial perturbations are cor-
related with uncorrupted regressors

E.3 Adversary uses uncorrupted data

In this approach, we design the adversarial perturbation in such a way that it is correlated with uncorrupted
regressors (xı) in 50% of the samples as shown below:

�(xı(j)) = rv(j)

..v(j)

..
2

, where v(j) ≥
I

(2Bernoulli(0.5) ≠ 1) xı with probability 0.5
N (0, I) with probability 0.5

(73)

where j œ [n]. The above equation indicates the adversarial perturbation may be positively or negatively
correlated with uncorrupted regressors with the probability of 0.5. We further repeat the experiment as
discussed at the beginning of Section 4 and present the support recovery plot in Figure 5. The plot verifies
that the algorithm can successfully recover the support even when the adversarial perturbation is correlated
with the uncorrupted features.

E.4 Di�erent cases of regularization parameter

In Theorem 10, we saw the regularization parameter is given by:

⁄ Ø max {⁄
1

, ⁄
2

, ⁄
3

}

= max
I

16b

“
,

q
1

‡e

“

Ú
2 log(p)

n
,

16q

“

Ú
4 log(p)

n

J
(74)

In this section, we analyze the support recovery by simulating the data for three cases such that regularization
parameter:

1. b ”= 0 and ⁄ = ⁄
1

= 16b
“

2. b = 0 and ⁄ = ⁄
2

= q
1

‡
e

“

Ò
2 log(p)

n

3. b = 0 and ⁄ = ⁄
3

= 16q
“

Ò
4 log(p)

n

For all the three cases, we present the plots of three probabilities computed empirically:

1. P [S (ŵ) = S], which denotes exact support recovery.
2. P [’i œ S : ŵi ”= 0], which denotes correct recovery of support.
3. P [’i /œ S : ŵi = 0], which denotes correct recovery of non-support.
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Figure 6: For the case when b = 0 and ⁄ = ⁄
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Figure 7: For the case when b = 0 and ⁄ = ⁄
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Figure 8: For the case when b ”= 0 and ⁄ = ⁄
1

= 16b
“

Note that S denotes the true support. We start from case 3, when b = 0 and ⁄ = ⁄
3

. The support recovery
plots presented in Figure 6 shows that the support is recovered successfully with high probability when the
rescaled sample size (presented in x-axis) is around 1200. Further, we move onto case 2, when b = 0 and
⁄ = ⁄

2

. We increase ‡e by 4 times, so that ⁄
2

> ⁄
3

. The plots presented in Figure 7 shows that we can still
do successful support recovery when the rescaled sample size is around 4800. This indicates that the learner
now requires more number of samples for support recovery.

For the above two cases, we chose �x

ı

�

[p]S = 0p◊k so that b =
...�x

ı

�

[p]S wı
S

...
Œ

= 0, and we can choose ⁄ = ⁄
2

or
⁄

3

. To study case 1, when b ”= 0 and ⁄ = ⁄
1

, we generate the data with �x

ı

�

[p]S ”= 0p◊k. The plots presented
in Figure 8 shows that 100% exact support recovery is not possible even for a large sample size. Figure 8 (b)
shows that we can recover the support successfully but not the non-support as shown in Figure 8 (c). This
presents a case in which the adversary can dominate over Lasso.
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But, it should be noted that it might be possible to obtain the correct support even in the case of �x

ı

�

[p]S ”= 0p◊k

as shown in the Section E.3 or Figure 5. This can happen when the entries in wı are large enough or b is
small such that Eq. (17) holds as shown in our theoretical analysis. Hence, the practical use of Lasso is still
viable.

E.5 Real-world data

We used the BlogFeedback dataset (Buza, 2014) which contains 52397 samples and 276 features extracted
from blog posts and the task is to predict how many comments a post will receive using these features.
First, the “true” support is obtained by solving Lasso on the original Blogfeedback dataset (Buza, 2014). Let
the “perturbed” support be defined as the support obtained by solving Lasso on the perturbed Blog-Feedback
dataset. To construct the perturbed dataset, we add zero-mean Gaussian white noise in each feature. The
variance of Gaussian noise is chosen in proportion to the feature variance of the original data. After obtaining
the “true” and “perturbed” support, we compute the standard F1-score defined below:

Recall = Number of elements in the “true” support that are in the “perturbed” support
Number of elements in the “perturbed” support (75)

Precision = Number of elements in the “true” support that are in the “perturbed” support
Number of elements in the “true” support (76)

F1-score = 2Recall ◊ Precision
Recall + Precision (77)

The F1-score of the recovered support from the perturbed data is 0.9462, which e�ectively implies that Lasso
is able to recover most of the support in real-world data as well. Further, we test the algorithm against other
approaches for generating adversarial perturbations.
We modify the approach of a mixture of two distributions in Eq. (72) by scaling with standard deviations in
regressors to handle large variations in regressors as shown below:

�(xı(j)) = rv(j)

..v(j)

..
2

, where v(j) ≥
I

v(j)

i ≥ (2Bernoulli(0.5) ≠ 1)std(xı
i ) with probability 0.5 for i œ [p]

N (0, �) with probability 0.5
(78)

where j œ [n]. The F1-score is reported to be 0.9393 for r = 1000, proving that the algorithm can recover the
support.
We further test the algorithm against the correlated adversarial perturbation by modifying Eq. (73) to handle
large variations in regressors as shown below:

�(xı(j)) = rv(j)

..v(j)

..
2

, where v(j) ≥
I

(2Bernoulli(0.5) ≠ 1) xı with probability 0.5
N (0, �) with probability 0.5

(79)

where j œ [n]. We repeat the experiment in the same procedure and report the F1-score to be 0.9485, which
confirms that Lasso performs successful support recovery even when the adversarial perturbation is correlated
with the uncorrupted regressors. Note that F1-score is reported to be 1 in all the cases if we do not use the
standard deviation scaling to normalize the adversarial perturbation. Hence, by modifying the procedure of
adversarial perturbation introduction, we are solving a more challenging problem.
Note that we do not need to verify the assumptions mentioned in Section 2.3 to run the algorithm. They are
only needed for theoretical analysis to derive the sample complexity for support recovery.
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