
Supplementary material to Generalization Error Rates in Kernel Ridge
Regression : The Crossover from the Noiseless to Noisy Regime

A Derivation of the decays

A.1 Equations for Gaussian design

In this Appendix we discuss the derivation of eqs. (13), (14) describing the excess prediction error
for the ridge regression problem with generic covariance matrix. Exact asymptotic formulas for the
excess prediction error of least-squares and ridge regression are a classic result in high-dimensional
statistics, and have been derived in many different works [23, 32, 52, 53]. In this manuscript, we
follow the presentation given in [25], which is particularly adapted to our derivation and has the
advantage to hold rigorously at large but finite number of samples n and features p.

We start by reviewing the formulas in [25]. Consider the ridge regression problem on n independent
p-dimensional samples {uµ, yµ}nµ=1, defined by a minimisation of the following empirical risk:

R̂n(w) =

n∑
µ=1

(
w · uµ
√
p
− yµ

)2

+ λ||w||22. (23)

Assume a Gaussian design uµ d
= N (0,Σ) with diagonal covariance Σ = diag(η1, ..., ηp) and labels

yµ generated from a teacher/target/oracle θ? ∈ Rp:

yµ =
θ? · uµ
√
p

+ σN (0, 1). (24)

Under the assumptions

(A1) n� 1, p� 1, n/p = O(1),
(A2) 0 < ||θ?||2/p <∞,

there exists constants C, c, c′ > 0 such that for all 0 < ε < c′,

P
(
|εg − σ2 − (ρ− 2m? + q?)| > ε

)
<
C

ε
e−cnε

2

. (25)

where ρ = θ? · Σ · θ?/p, and (m?, q?) are fixed-points of the following self-consistent equations

{
V̂ = m̂ =

n
p

1+V

q̂ = n
p
ρ+q−2m+σ2

(1+V )2

,



V = 1
p

p∑
k=1

ηk
λ+V̂ ηk

q = 1
p

p∑
k=1

q̂η2k+θ
?2
k η2km̂

2

(λ+V̂ ηk)2

m = m̂
p

p∑
k=1

θ?2k η2k
λ+V̂ ηk

. (26)

Note that the risk considered in eq. (23) slightly differs from eq. (4) by: a) a 1/n factor multiplying
the sum, b) additional

√
p scalings and c) the fact that it is written for finite p. Accounting for these

differences, we can rewrite Theorem 1 of [25] in our setting as:
εg − σ2 = lim

p→∞
(ρ− 2m? + q?), (27)

with ρ = θ?>Σθ?, and (m?, q?) fixed-points of

{
V̂ =

n
p

1+V

q̂ = n
p
ρ+q−2m+σ2

(1+V )2

,



V = 1
p

p∑
k=1

pηk
nλ+pV̂ ηk

q = p
p∑
k=1

q̂η2k+θ
?2
k η2km̂

2

(nλ+pV̂ ηk)2

m = pV̂
p∑
k=1

θ?2k η2k
nλ+pV̂ ηk

. (28)

Note, however, that rescaling from (26) to (28), sending p→∞ while keeping n finitely large, and
further allowing λ to scale with n all break the initial assumptions of Theorem 1 [25], thereby losing
the control in eq. (25). Therefore, strictly speaking the results derived hereafter are not rigorous,
and we assume that the typical excess error can still be computed from eq. (27). In fact, this is
well-justified by comparing the results obtained from extrapolating the theory with finite instance
simulation, e.g. Figs. 2, 3, and 4.
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A.2 Self-consistent equations for the excess prediction error

Defining z = n2

p
λ
V̂

, the equations (28) allow to write

z = nλ+
z

n

p∑
k=1

ηk
z
n + ηk

. (29)

An expression for the excess error εg − σ2 can be obtained combining (27) with (28):

εg − σ2 =
(a)

lim
p→∞

1

p

p∑
k=1

[
θ?2k pηk +

q̂p2η2k + θ?2k p
2η2km̂

2

(nλ+ V̂ pηk)2
− 2m̂θ?2k p

2η2k
nλ+ V̂ pηk

]

=
(b)

lim
p→∞

p∑
k=1

θ?2k ηk

(
nλ+ V̂ pηk

)2
+ p2

n η
2
kV̂

2εg + V̂ 2θ?2k pη
2
k − 2θ?2k V̂ pη

2
k

(
nλ+ V̂ pηk

)
(nλ+ V̂ pηk)2

(30)

= lim
p→∞

p∑
k=1

p2

n η
2
kV̂

2εg + n2λ2θ?2k ηk

(nλ+ V̂ pηk)2
, (31)

thus

εg = lim
p→∞

z2

n2

p∑
k=1

θ?2k ηk

(z 1
n+ηk)

2 + σ2

1− 1
n

p∑
k=1

η2k
(z 1
n+ηk)2

. (32)

Therefore, for the excess prediction error:

εg − σ2 = lim
p→∞

z2

n2

p∑
k=1

θ?2k ηk

(z 1
n+ηk)

2 + σ2

n

p∑
k=1

η2k
(z 1
n+ηk)2

1− 1
n

p∑
k=1

η2k
(z 1
n+ηk)2

. (33)

We now assume power-law form for the covariance spectrum and the teacher coordinates (8)

ηk = k−α, θ?2k ηk = k−1−2rα, (34)

Then equation (32) can be simplified to

εg − σ2 = lim
p→∞

z2

n2

p∑
k=1

k−1−2rα

(z 1
n+k−α)

2 + σ2

n

p∑
k=1

k−2α

(z 1
n+k−α)2

1− 1
n

p∑
k=1

k−2α

(z 1
n+k−α)2

, (35)

which has a meaningful limit as p→∞ (with n, λ kept fixed):

εg − σ2 =

∞∑
k=1

k−1−2rα

(1+nz−1k−α)2
+ σ2n

z2

∞∑
k=1

k−2α

1+nz−1k−α)2

1− n
z2

∞∑
k=1

k−2α

(1+nz−1k−α)2

. (36)

Therefore, the excess prediction error suggestively decomposes into two terms, the first accounting
for the variance due to sampling, while the second reflects the additional variance entailed by the
label noise. Unlike a typical bias-variance decomposition, the effect of the bias (as manifested by the
λ-dependent z term) is subsumed in both terms. For simplicity, the first term in the numerator shall
be referred to in the rest of the derivation as the sample variance term, and the second sum in the
numerator as the noise variance term.
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In the same limit, the equation defining z (29) is amenable to being rewritten:

z = nλ+
z

n

∞∑
k=1

1

1 + z
nk

α
, (37)

or, approximating the Riemann sum by an integral

z ≈ nλ+
( z
n

)1− 1
α

∫ ∞
( zn )

1/α

dx

1 + xα
. (38)

A.3 Infinite sample limit and the scaling of the generalisation error

Consider now the limit n� 1 with λ scaling with n

λ ∼ n−`. (39)

Note that the scalings of z with respect to n differ according to the regularisation λ, depending
on which of the two terms on the right hand side of equation (37) dominates. If the first nλ
term dominates, then (37) simplifies to z ≈ nλ. For this to be self-consistent, we must have
(z/n)1−

1
α ≈ λ1−

1
α � nλ, i.e. n � λ−

1
α . In the converse case where the second term in (37)

dominates, z ∼ n1−α. For this to consistently hold, one needs (z/n)1−
1
α ≈ n1−α � nλ, i.e.

n� λ−
1

α−1 . Depending on which term dominates in (37), two regime may be distinguished:

• In the effectively non-regularized ` > α regime, n� λ−
1
α so z ∼ n1−α. In this regime the

regularization totally disappears from the analysis and KRR behaves just as if λ = 0.

• in the effectively regularized ` < α regime, n� λ−
1
α regime, z ≈ nλ.

A.4 Effectively non-regularized regime

Sample variance term: As before, depending on 1 + 2rα, α, it is sometimes possible to rewrite
the sample variance term in integral form. If r < 1,

∞∑
k=1

k−1−2rα

(1 + nz−1k−α)2
∼ n−2rα

∞∑
k=1

(
k
n

)−1−2rα
(1 +

(
k
n

)−α
)2

1

n
∼ n−2rα

∞∫
0

x−1+2(1−r)α

(1 + xα)2
= O(n−2rα).

(40)

If r > 1, it is no longer possible to write the Riemann sum as an integral, and
∞∑
k=1

k−1−2rα

(1 + nz−1k−α)2
=

n∑
k=1

k−1−2rα

(1 + nαk−α)2
+ n−2rα

∞∑
k=n

(
k
n

)−1−2rα
(1 +

(
k
n

)−α
)2

1

n
= O(n−2α). (41)

Noise variance term: It is possible to similarly decompose the sum in the noise variance term to
find

nσ2

z2

∞∑
k=1

k−2α

(1 + nz−1k−α)2
= O(σ2). (42)

From this, it follows that:

• for n� σ−
2

2αmin(r,1) the sample variance term dominates the numerator, and

εg − σ2 = O(n−2αmin(r,1)) (43)

• for n� σ−
2

2αmin(r,1) the noise variance term dominates the numerator, and determines the
decay of the excess prediction error

εg − σ2 = O(σ2) (44)

These two subregimes are amenable to being written in the more compact form (9):

εg − σ2 = O
(

max
(
σ2, n−2αmin(r,1)

))
(45)
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A.5 Effectively regularized regime

Sample variance term: By the same token, in the second ` < α regularized regime, provided
r < 1, one can write the sample variance term as a Riemann sum (since λ ∼ n−` = o(1)):

∞∑
k=1

k−1−2rα

(1 + nz−1k−α)2
∼ λ2r

∞∑
k=1

(kλ
1
α )−1+2(1−r)α(

(kλ
1
α )α + 1

)2 λ
1
α ∼ λ2r

∞∫
0

x−1+2(1−r)α

(1 + xα)2

= O(n−2`r). (46)

In the r > 1 case,

∞∑
k=1

k−1−2rα

(1 + nz−1k−α)2
=

n
`
α∑

k=1

k−1−2rα

(1 + 1
λk
−α)2

+ λ
−2rα
α

∞∑
k=n

`
α

(kλ
1
α )−1+2(1−r)α(

(kλ
1
α )α + 1

)2 λ
1
α . (47)

Upper and lower bounds can be straightfowardly found for the first sum and the following equivalence
established

n
`
α∑

k=1

k−1−2rα

(1 + 1
λk
−α)2

∼ n−2`
n
`
α∑

k=1

k−1+2(1−r)α = O(n−2`), (48)

while the second sum is a Riemann sum of order O(n
(−2rα)`

α ) = o(n−2`). Therefore, the first sum in
the numerator scales like

∞∑
k=1

k−1−2rα

(1 + nz−1k−α)2
= O

(
n−2`min(r,1)

)
(49)

Noise variance term: The scaling of the noise variance term is found along similar lines to be

nσ2

z2

∞∑
k=1

k−2α

(1 + nz−1k−α)2
= O(σ2n

`−α
α ). (50)

If the noise variance term decays faster in n, then the sample variance term always dominates (since
σ2 is at most O(1)). This is the case when

0 < ` <
α

2αmin(r, 1) + 1
(51)

and then the generalization excess prediction error scales like

εg − σ2 = O
(
n−2`min(r,1)

)
. (52)

In the case where α > ` > α
2αmin(r,1)+1 there exist two regimes depending on how n compares with

the noise strength

• if n� σ
2

1− `
α

(1+2αmin(r,1)) the sample variance term dominates and we recover the noiseless
case

εg − σ2 = O
(
n−2`min(r,1)

)
. (53)

• if n� σ
2

1− `
α

(1+2αmin(r,1)) the noise variance term dominates and

εg − σ2 = O(σ2n
`−α
α ). (54)

All those regimes can be written more compactly as (10)

εg − σ2 = O
(

max
(
σ2, n1−2`min(r,1)− `

α

)
n
`−α
α

)
. (55)
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Case ` < 0: We give here for completeness the case in which the regularization grows with n.
Then the sample variance term scales like

∞∑
k=1

k−1−2rα

(1 + nz−1k−α)2
= O(1). (56)

To see this, use a lower and upper bound starting from 0 ≤ nz−1k−α ∼ n`k−α ≤ 1 for all k ≥ 1
and all n. The noise variance term scales like

σ2n

z2

∞∑
k=1

k−2α

(1 + nz−1k−α)2
∼ σ2n2`−1 = o(1), (57)

meaning
εg − σ2 = O(1) (58)

A.6 Continuity across the regularization crossover line

The ` = α is actually comprised in the ` > 0 case of the ` < α regimes. On the ` = α separation line,
there is no discontinuity between the non-regularized exponents and the regularized exponents, since

max
(
σ2, n1−2`min(r,1)− `

α

)
n
`−α
α

`=α
= max

(
σ2, n−2αmin(1,r)

)
. (59)

A.7 Asymptotically optimal regularization

The derivation in subsections A.4 and A.5 effectively delimit the four regimes in Fig. 1: the effec-
tively non-regularized noiseless green regime, the effectively regularized noiseless blue regime, the
effectively non-regularized noisy red regime, and the effectively regularized noisy orange regime.

For any given n, we define the asymptotically optimal ` as the regularization decay yielding fastest
decay of the excess prediction error. This corresponds to finding the ` with maximal excess error
decay along a vertical line at abscissa n in the phase diagram Fig. 1.

If n� n?1 ≈ σ
− 1
αmin(r,1) (effectively noisy regime), the noise-induced crossover line is crossed for

`c ≈
(

1− 2
lnσ

lnn

)
α

1 + 2αmin(r, 1)
. (60)

The asymptotically optimal `? is found as

`? = argmax
`

(
2`min(r, 1)10<`<`c +

α− `
α

1`c<`<α + 0× 1α<`
)
. (61)

Since the argument of the argmax is an increasing function of ` on (0, `c) and a decreasing function
on (`c,∞) the maximum is found for `? = `c. The corresponding decay for the excess error is

max

(
2`?min(r, 1),

α− `?

α

)
= 2`?min(r, 1) ≈ 2αmin(r, 1)

1 + 2αmin(r, 1)

(
1− 2

lnσ

lnn

)
. (62)

It is nonetheless ill-defined to talk about an aymptotically optimal rate for the regularization that
continuously varies with n when n is comparable with σ−2, since (62) means that the excess
error is not even a power law in this region. An asymptotic statement can be however made. For
n� n?2 ≈ max(n?1, σ

−2),
`? ≈ α

1 + 2αmin(r, 1)
, (63)

and the excess error decays like (12)

ε?g − σ2 = O
(
n−

2αmin(r,1)
1+2αmin(r,1)

)
. (64)

For n� σ−
2

2αmin(r,1) (effectively noiseless regime), we have
`? = argmax

`
(2`min(r, 1)10<`<α + 2αmin(r, 1)1α<`) , (65)

which means that any `? ∈ (α,∞) is optimal (in particular, vanishing regularization is optimal), and
we recover (11)

ε?g − σ2 = O
(
n−2αmin(r,1)

)
. (66)
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B A dictionary of notation in the literature

While the capacity and source conditions are assumed in almost all works concerned with the decay
rates of Kernel methods, the actual notations for the capacity and source terms α, r greatly vary. We
provide in this appendix a table summarizing notations for the references [8–15, 18]

Reference α[8] r[8]
[13] b a−1

2b

[12] αS
d

1
2 (αTαS − d)

[9] β 2δ+β−1
2β

[10, 14] b c
2

[11, 15] 1
p

β
2

[18] b β

Table 2: Dictionary between different notations previously used in the KRR literature.

C Details on real data sets

C.1 Feature map to diagonal covariance for real datasets

In the general case where the data x is drawn from a generic distribution ρx, we remind the equations
defining the feature map ψ (3):

ψ(x) = Σ
1
2φ(x) (67)

Ex∼ρx
[
φ(x)φ(x)T

]
= 1p (68)

Ex′∼ρx [K(x, x′)φ(x′)] = Σφ(x) (69)

In the of a real dataset D = {xµ, yµ}ntot
µ=1 from which both the train and test set are uniformly drawn,

the distribution is then the empirical uniform distribution over D,

ρx(·) =
1

ntot

ntot∑
µ=1

δ(· − xµ). (70)

Defining the Gram matrix (Kµν)ntot
µ,ν=1

def
= (K(xµ, xν))ntot

µ,ν=1 ∈ Rntot×ntot , the equations defining
the feature map (3) can be rewritten in the simpler matricial form

ψ = φΣ
1
2 ,

1

ntot
φTφ = 1ntot ,

1

ntot
Kφ = φΣ (71)

where φ, ψ, λ,K ∈ Rntot×ntot , and the feature space is of dimension p = ntot, with the µth line of
ψ (resp. φ) corresponding to ψ(xµ) (resp. φ(xµ)). To access the coordinates θ?k in the basis of the
features ψ, remember ψθ? = y, hence

θ? =
1

ntot
Σ−1ψT y (72)

C.2 Estimation of source and capacity

The capacity and source terms α, r can be empirically estimated for the datasetD from the eigenvalues
{λk}ntot

k=1 of the Gram matrixK and the components {θ?k}
ntot

k=1 of the teacher vector. Supposing decays
like (8), the cumulative functions read:

ntot∑
k′=k

λk′ ∼ k1−α,
ntot∑
k′=k

λk′θ
?2
k′ ∼ k−2rα. (73)
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These functions are plotted in Fig. 7 and the terms α, r estimated therefrom. The use of the cumulative
functions, rather than a direct estimation from the coordinates, allows the integration to smoothen out
the curves and get a more consistent estimation. The values of α, r thereby measured are summarized
in Table. 1. Note that the power-law form (8) and the assumption p =∞ fail to hold for real data, and
the series (73) have power-law form only on a range of indices k, before a sharp drop due to the finite
dimensionality ntot of the feature space, see Fig. 7. The range of indices k where the power-law form
(8) seems to hold was qualitatively assessed, and linear regression run thereon to estimate α, r. Since
there is no clear objective way to determine the range the fit should be conducted on, the estimates
slightly vary depending on the precise choice of the regression range, without however overly hurting
the qualitative agreement with simulations Fig. 6 and 5.

C.3 Details on simulations

We close this appendix by providing further detail on the simulations on real data (Figs. 6 and 5).

For each simulation at sample size n a train set was created by subsampling n samples from the
total available dataset D. To mitigate the effect of spurious correlations due to sampling a finite
dataset, the whole dataset D has been used as a test set, following [25, 49]. A kernel ridge regressor
was fitted on the train set with the help of the scikit-learn KernelRidge package [47]. For
Fig. 6, the best regularization λ was estimated using the scikit-learn GridSearchCV [47] default
5−fold cross-validation procedure on the Grid λ ∈ {0} ∪ (10−10, 105), with logarithmic step size
δlogλ = 0.026. The excess test error was averaged over 10 independent samplings of the train set
and noise realizations.

D More crossovers

D.1 Regularization-induced crossover

On top of the distinction between effectively noiseless regimes (green, blue regions in Fig. 1) and
effectively noisy regimes (red, orange in Fig. 1), the four regimes can also be classified in effectively
non-regularized (green, red) and effectively regularized (blue, orange), see also the discussion in
Section 4. In Fig. 1, the non-regularized regions lie above the horizontal separation line ` = α,
while the regularized ones lie below. In this appendix, we discuss a more generic setting for which
this separation line ceases to be horizontal, thereby creating a new crossover line. Similarly to the
noise-type crossover line discussed in the main text, a learning curve that crosses this regularization-
induced crossover line transitions from an non-regularized regime (green, red) to a regularized one
(blue, orange), characterized by differing decays for the excess error εg − σ2. In Fig. 8 and Fig. 9,
the noise-type crossover line is depicted in red, while the regularization-type crossover line is in blue.

In this section we thus detail the more general setting

λ = λ0n
−`, (74)

with, compared to the setup studies in the main text and Appendix A, an additional prefactor λ0 to
the regularization λ that is allowed to be� 1. The particular case ` = 0, λ0 small, has been studied
in [13], and has been shown to give rise to a crossover due to the regularization, on top on the one
evidenced in the present work due to the noise.

• For small n, KRR focuses on fitting the spiked subspace comprising large variance di-
mensions, and satisfies the norm constraint introduced by the regularization on the lower
importance subspace. This phenomenon can be loosely regarded as the bias version of the
benign overfitting for noise variance ([38, 44]) : the bias induced by the loss of expressivity
due to the norm constraint is effectively diluted over less important dimensions, thereby not
impacting the generalization.

• For larger n, decreasing the excess error εg − σ2 requires a good KRR fit also on the
subspace of lesser importance, and the regularization effect is felt. In a noiseless green-blue
crossover, this results in a slower decay because of the bias introduced by regularizing. On a
noisy red-orange crossover, the regularization conversely helps to mitigate the noise and
enables the excess risk to decay again.
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Figure 7: Measurement of empirical values for capacity and source α, r for real datasets (Fashion
MNIST t-shirt and coat, MNIST) and RBF, polynomial kernels. Because the feature space is of finite
dimension ntot all the curves exhibit a sharp drop at ntot. A power-law was fitted on the functions
(73) on a range of k where these looked reasonnably like power-laws.
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Figure 8: Phase diagram for λ0 � 1 and σ < λ
min(r,1)+ 1

2α
0 .As for Fig. 1. The solid red line

corresponds to the noise-type crossover line, while the blue line indicates the regularization-type
crossover line. Note that for low enough values of the regularization, the two crossover lines can be
intercepted by a same horizontal line. This means that a double crossover is in theory observable
(green-blue-orange), the first induce by regularization (see also [13]) and the second being noise-
induced.
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0

2
m

in
(r,

1)

2 min(r, 1)

Figure 9: Phase diagram for λ0 � 1 and σ > λ
min(r,1)+ 1

2α
0 . As for Fig. 1, the asymptotically optimal

decays `? are indicated in solid red. The solid red line corresponds to the noise-type crossover line,
while the blue line indicates the regularization-type crossover line. Note that for low enough values
of the regularization, the blue crossover line can be intercepted by a horizontal line, alongside the red
crossover line twice. Consequently a triple crossover is in theory observable (green-red-orange-blue),
with two noise-induced and one regularization-induced.
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D.2 Outline of the computation

The derivation for the general case (74) follows very closely Appendix A.

• If n� λ
− 1
α−`

0 or ` > α, n� λ−
1
α so z ∼ n1−α,

• If n� λ
− 1
α−`

0 and ` < α, n� λ−
1
α and z ≈ nλ.

Note that the introduction of λ0 � 1 means the limits between regularized and non-regularized
regime are now involving both n, ` as opposed to just ` in Appendix A (see also Fig. 1). In the first

n � λ
− 1
α−`

0 regime, the regularization effect is not sensed and the computation is identical to the

λ0 = 1 case in Appendix A. In the regularized n� λ
− 1
α−`

0 , keeping track of the prefactors yields

εg − σ2 = O
(
λ
2min(r,1)
0 n−2`min(r,1)

)
+O

(
σ2n

`−α
α λ

−1
α
0

)
, (75)

so the excess risk decays like

εg − σ2 = O

λ2min(r,1)
0 n

`−α
α max

( σ

λ
min(r,1)+ 1

2α
0

)2

, n−2`min(r,1)+1− `
α

 . (76)

Depending on whether the maximum in (76) is always realized by one of its two arguments, or by
one then the other as n is varied, there may be a noise-induced crossover.

• if σ < λ
min(r,1)+ 1

2α
0 and ` ≤ α

1+2αmin(r,1) , the second argument of the maximum in (76)
dominates for all n ≥ 1 so no crossover is to be observed (see Fig. 8), and

εg − σ2 = O
(
λ
2min(r,1)
0 n−2`min(r,1)

)
. (77)

• if σ > λ
min(r,1)+ 1

2α
0 and ` ≥ α

1+2αmin(r,1) , the first argument of the maximum in (76)
dominates for all n ≥ 1 so no crossover is to be observed (see Fig. 9), and

εg − σ2 = O
(
σ2n

`−α
α λ

−1
α
0

)
. (78)

• in any other case, a crossover between the decays (77) and (78) is observed, at a sample size

n?1 =

(
σ

λ
min(r,1)+ 1

2α
0

) 2

1− `
α

(1+2αmin(r,1))

. (79)

The crossover is from (77) to (78) if ` ≥ α
1+2αmin(r,1) an in the other order if ` ≤

α
1+2αmin(r,1) .

The determination of the asymptotically optimal decays carries through as Appendix A, with the
same conclusions. The four regimes and their respective limit, as well as the optimal ` at very large n
(purple point), are summarized in Figs. 8 and 9.

D.3 Double and triple crossovers

We therefore recover the regularization induced crossover reported in [13] for the special case
` = 0, σ = 0. It corresponds to the green-to-blue transition for the lowest ` in Fig. 8 9. We stress that
such a mechanism is entirely due to the regularization, and hence happens on top of the noise-induced
crossover studied in the present work. It is therefore possible in theory to observe both crossovers in
succession.

We detail as an example a double green-to-blue-to-orange crossover (see blue curves in Fig.10).
For small n (non-regularized noiseless green regime), KRR fits the heavy dimensions. Both noise
overfitting and bias are benign. As n is increased, the blue regularization type crossover line in Fig. 8
is crossed and the regularized noiseless blue region entered. More of the less important dimensions
need to be fitted well: bias is felt and entails a slower decay, but the noise overfitting is diluted over
even less important dimensions and remains benign. As the red noise-type crossover line is passed
into the regularized noisy orange region, the overfitting ceases to be benign and hurts the decay rate.
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Figure 10: Excess risk learning curves for α = 2.5, r = 0.5, λ0 = 10−4, ` = 1. The noise level
σ is varied and the corresponding phase diagrams given on the right. For σ = 0 (green curve and
top diagram on the right), a simple regularization-induced crossover (green-to-blue) is observed.
For σ = 3.10−4 and σ = 10−3 (blue curves on the left, middle diagram on the right) a double
crossover green-to-blue-to-orange is observed. The first is regularization induced, while the second
is due to noise. For σ = 10−2 and σ = 10−1 (orange, red curves and bottom diagram), a double
green-to-red-to-orange crossover is observed, respectively noise and regularization induced.

E Relation to worst-case bounds

In this section, we sketch informally how the blue and orange exponents (10) can also be derived
from the worst case bounds [18, 19]. Note that the recovery from worst case bounds of the exponents
(10), which were here derived in the Gaussian design setting, suggests that for these regimes the
worst case exponents are also equal to the typical case exponents. We remind the reader that this
has also already been shown to be the case for the asymptotically optimal lambda, see section 3,
exponents (12) and [10, 14].

E.1 Optimal rates for spectral algorithms with least-squares regression over Hilbert spaces
[19]

To relate the notations employed in [19] to ours, the correspondances

γ ∈]0, 1] =
1

α
, ζ ∈ [0, 1] = r, θ ∈ [0, 1] = 1− `, (80)

L = Σ, fH = f?, (81)

should be used, see also section B. With respect to their equation (18) defining the source condition,
the setting considered in the present work corresponds to the special case φ(u) = uζ . Note that the
assumption ` ≤ 1 is slightly more restrictive than those employed in this paper. The main result of
[19] is their Theorem 4.2, which in our notations loosely translates to the following. With probability
1− δ, there exist constants C̃1, C̃2, C̃3 such that

(εg − σ2)
1
2 ≤

(
C̃1n

−max( 1
2 ,1−r) + C̃2n

− 1
2λ
−1
2α + C̃3λ

r
)

ln
6

δ

(
ln

6

δ
+

max( 1
1−l , lnn)

α

)
, (82)
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i.e., expliciting the scalings,

(εg−σ2)
1
2 ≤

(
C̃1n

−1+min( 1
2 ,min(r,1)) + C̃2n

− 1
2
α−`
α + C̃3n

−`min(r,1)
)

ln
6

δ

(
ln

6

δ
+

max( 1
1−l , lnn)

α

)
.

(83)

We replaced ζ by min(r, 1) since [19] work under the assumption ζ = r ∈ [0, 1] in order to make even
clearer contact with the exponents in the present paper. Up to logarithmic corrections, one recognizes
the blue (C̃3 term in (83)) and orange (C̃2 term in (83)) exponents, the effectively unregularized red
and green regimes (9) being inaccessible in this setting because of the restriction ` ≤ 1. One can
further show that the first C̃1 term in (83) is always subdominant, since:

• if r ≥ 1
2 , n−

1
2+

`
2α � n−

1
2 and the C̃2 term dominates the C̃1 term.

• if r ≤ 1
2 , n−1+min(1,r) � n−

1
2 � n−`min(r,1) since `r ≤ r ≤ 1

2 and the C̃3 term
dominates C̃1 term.

The relative competition between the C̃2,3 contributions in (83) determine the blue to orange crossover
(10), see discussion in section 3 of the main text. This suggests in particular that typical and worst
case coincide within these two regimes.

E.2 Kernel Truncated Randomized Ridge Regression: Optimal Rates and Low Noise
Acceleration [18]

The notations can be mapped to those employed in the present paper in the following way:

β ∈ [0,
1

2
] = r, b ∈ [0, 1] =

1

α
. (84)

Note that in [18], it is further assumed that the labels are bounded by a constant Y while this only
holds with high probability in our setting. The Theorem 3 in [18] then informally reads as: the error
gap given by the KTR3 algorithm [18] is approximately bounded by, for any εr, εα > 0, for the power
law ansatz (34):

εg − σ2 ≤ λ2r−2εr 1

2αεr
+ min

[
4Y 2

αεαλ
1
α+εαn

min

(
ln

(
1 +

1

λ

)1− 1
α−εα

,
α

1 + αεα

)
,

λ2r−2εr−1

2αεrn
+
σ2

λn

]
, (85)

so in the particular setting λ = n−`

εg − σ2 ≤ n−2r`+2`εr
1

2αεr
+ min

[
4Y 2

αεα
n−

α−`
α +εα`min

(
ln
(
1 + n`

)1− 1
α−εα ,

α

1 + αεα

)
,

n−2r`+2`εr+`−1

2αεr
+ σ2n−1+`

]
. (86)

If σ 6= 0, the σ2n−1+` term dominates in the second argument of the minimum and the minimum is
realized by its first argument, leading to

εg − σ2 = O(n−2`r) +O(n−
α−`
α ) (87)

namely the blue/orange crossover (10). If σ = 0 the bound is necessarily looser than O(n−2`r)
which is coherent since in the noiseless setting only the blue exponent can be observed.
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