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Abstract

Click-Through Rate (CTR) prediction, a core task
in recommendation systems, aims to estimate the
probability of users clicking on items. Existing
models predominantly follow a discriminative
paradigm, which relies heavily on explicit inter-
actions between raw ID embeddings. However,
this paradigm inherently renders them suscepti-
ble to two critical issues: embedding dimensional
collapse and information redundancy, stemming
from the over-reliance on feature interactions over
raw ID embeddings. To address these limitations,
we propose a novel Supervised Feature Gener-
ation (SFG) framework, shifting the paradigm
from discriminative “feature interaction” to gen-
erative “feature generation”. Specifically, SFG
comprises two key components: an Encoder that
constructs hidden embeddings for each feature,
and a Decoder tasked with regenerating the fea-
ture embeddings of all features from these hid-
den representations. Unlike existing generative
approaches that adopt self-supervised losses, we
introduce a supervised loss to utilize the super-
vised signal, i.e., click or not, in the CTR predic-
tion task. This framework exhibits strong gener-
alizability: it can be seamlessly integrated with
most existing CTR models, reformulating them
under the generative paradigm. Extensive exper-
iments demonstrate that SFG consistently miti-
gates embedding collapse and reduces informa-
tion redundancy, while yielding substantial perfor-
mance gains across various datasets and base mod-
els. The code is available at https://github.
com/USTC-StarTeam/GE4Rec.
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1. Introduction
Click-Through Rate (CTR) prediction models estimate the
probability of users clicking on items based on feature in-
teractions. While conventional wisdom holds that CTR
models inherently follow a discriminative paradigm, they
are prone to embedding dimensional collapse (Guo et al.,
2024) and information redundancy (Zbontar et al., 2021)
issues, primarily due to the interactions between raw ID
embeddings (Guo et al., 2024).

Different from sequential recommendation models (Kang
& McAuley, 2018; Zhai et al., 2024; Yin et al., 2024), very
limited research has focused on formulating CTR models
under a generative paradigm. This is possibly due to the fact
that there are no explicit partial orders among the inputs of
CTR models, making it difficult to directly fit them into the
popular next-token prediction framework (Vaswani et al.,
2017; Kang & McAuley, 2018).

Next-token prediction is an autoregressive generative
paradigm (Fig. 1(a)) that treats the sequence up to position
N as the source xsource and the token at position N `1 as the
target xtarget, using the former to predict the latter. Recently,
computer-vision researchers have reconsidered the ordering
of image data to better align this modality with the autore-
gressive framework. For instance, MAR (Li et al., 2024b)
(Fig. 1(b)) employs unmasked image tokens as xsource to
generate masked tokens as xtarget, whereas VAR (Tian et al.,
2024) (Fig. 1(c)) introduces a next-scale prediction frame-
work that establishes a “coarse-to-fine” ordering. These
works design generative frameworks that align with inher-
ent data characteristics, rather than rigidly imposing the
next-token prediction paradigm.

This inspired us to reconsider the “order” or “inherent struc-
ture” of CTR prediction data. Specifically, CTR prediction
handles the multi-field categorical data (Zhang et al., 2016;
Pan et al., 2018), where there are usually no explicit partial
orders between input features. However, there are com-
plex co-occurrence relationships among those features (Ren-
dle, 2010), which motivates us to treat one side of the co-
occurrence features as xsource and the other side as xtarget.
Such a method can be regarded as a “feature generation”
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Figure 1. Different generative paradigms.
Specifically, this framework employs an
(optional) encoder to process source data
of a particular form and generate an output
embedding. Subsequently, a decoder utilizes
this embedding to generate the target, rep-
resenting data of a different form. Finally,
a loss function will be used to evaluate the
generation quality. Lacking an explicit data
structure, our feature generation paradigm
adopts an “all predict all” paradigm to predict
each feature with all features. Notably, we
employ a supervised generative loss function,
optimizing the cross-entropy loss regarding
the sample-wise label ysup, rather than the
self-supervised loss.

paradigm, which models the data distribution P pX q on the
unordered multi-field categorical data.

Specifically, the feature-generation paradigm employs an
Encoder to transform xsource into a latent space, yielding
a new representation for each feature. A Decoder then
projects these latent representations back to the original
space to generate all original features as xtarget. Since the
Encoder takes all original features as input and simultane-
ously generates all original features, this framework adheres
to an All-Predict-All framework. Such a design avoids di-
rect interaction (product) between vanilla ID embeddings as
done in traditional CTR models (Rendle, 2010; Guo et al.,
2017; Sun et al., 2021; Wang et al., 2021), and hence pre-
vents the embeddings from dimensional collapse due to
Interaction-Collapse Theory (Guo et al., 2024). Moreover,
the Encoder produces sample-specific representations that
are decorrelated from the original embeddings, reducing the
redundancy of feature embeddings.

Conventionally, generative paradigms are accompanied by
a self-supervised loss. In the next-prediction paradigm in
sequential modeling, the label of the next item is usually
a self-supervised signal, that is, whether the next item is
the ground-truth one or just a random one. However, in
CTR prediction, it is unnecessary since natural supervised
signals, i.e., click or not in CTR prediction, already exist.
Therefore, we adopt a supervised loss with the proposed fea-
ture generation paradigm. The feature generation, together
with the supervised loss, leads to a novel Supervised Feature
Generation framework for CTR prediction.

This framework can reformulate nearly every existing fea-
ture interaction model, ranging from FM to DeepFM,
xDeepFM, and DCN V2. Comprehensive experiments
demonstrate that this new framework significantly improves

performance, achieving an average of 0.272% AUC lift and
0.435% Logloss reduction, while incurring only a marginal
increase in computational overhead—an average increase of
3.14% in computation time and 1.45% in GPU memory con-
sumption. It can produce feature embeddings with reduced
collapse and redundancy compared to raw ID embeddings.
Additionally, we conduct extensive ablation studies to vali-
date the framework design. We successfully deployed it to
Tencent’s advertising platforms for click prediction, with a
2.68% GMV lift on a primary scenario, leading to one of
the largest revenue lift in 2024.

2. Preliminaries
In this section, we present the traditional CTR prediction
problem in the discriminative paradigm and its challenges.

2.1. Problem definition

The CTR prediction task predicts the probability of users
clicking items based on multiple features. It can be formally
defined using features X P t0, 1uN and a label set Y P

t0, 1u, indicating whether users click the candidate item.
Typically, X consists of hundreds of features from user,
item, or the context sides, each belonging to a feature field.

2.2. CTR prediction in a discriminative paradigm

Formulation. Existing CTR models are usually formu-
lated under a discriminative form, by first conducting ex-
plicit and/or implicit feature interactions between all fea-
tures through ginterp¨q, then employing a classifier fcls, e.g.,
MLPs, upon its output, to get the final prediction score, and
lastly optimizing a binary cross-entropy loss regarding the
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supervised label ysup:

LBCEpysup, fclspginterptviuqq. (1)

where vi P Rd is the embedding for feature i,d denotes the
embedding dimension. Taking the classic DCN V2 (Wang
et al., 2021) model as an example, it can be formalized as:

Lpysup,DNNp

L
ÿ

l“1

N
ÿ

i“1

N
ÿ

j“1

vj d v
plq
i M

plq
F piqÑF pjq

qq, (2)

where L denotes the number of cross layers; l denotes the
layer index; N denotes the total number of features; i and j

denote the feature indices; vplq
j denotes the embedding of

the j-th feature in the l-th layer; M plq
F piqÑF pjq

denotes the
projection matrix between the F piq and F pjq field pair in
the l-th layer; and F piq and F pjq denote the field of the
feature i and j, respectively.

Limitations of the Discriminative Paradigm. Despite
the great success of many existing discriminative models
for CTR prediction (Rendle, 2010; Juan et al., 2016; Pan
et al., 2018; He & Chua, 2017; Guo et al., 2017; Lian et al.,
2018; Sun et al., 2021; Wang et al., 2021), they still suffer
from the following issues:

1. Dimensional Collapse due to raw ID embedding Inter-
action. Existing CTR models usually capture the correla-
tion between features via the feature interaction function.
The feature embeddings in these models tend to span a
low-dimensional space due to the Interaction-Collapse-
Theory (Guo et al., 2024): feature fields with low in-
formation abundance, i.e., with collapsed dimensions,
constrain the information abundance of other fields.

2. Limitation to learn data distribution. Discriminative
paradigms learn the distribution P pY | X q while ignor-
ing P pX q, focusing solely on establishing a decision
boundary for classification (Harshvardhan et al., 2020;
Oussidi & Elhassouny, 2018). This makes these models
unable to capture the rich co-occurence correlation be-
tween the input (features), and hence limits the quality
of the learned representations.

3. Information redundancy. Redundancy-reduction prin-
ciple (Barlow et al., 1961) has been fruitful in different
application domains (Barlow, 2001; Grill et al., 2020;
Zbontar et al., 2021). This principle necessitates mini-
mizing information redundancy between the two views,
that is, their mutual correlation. We have empirically
verified this principle in Sec. 4.3.2, and find that models
with redundancy-reduced interacted embeddings achieve
better recommendation performance (Fig. 4). Existing
models mainly use the same raw ID embeddings in the in-
teraction function, exhibiting a strong tendency towards
learning redundant representations.

These limitations call for rethinking existing feature interac-
tion models in CTR prediction and motivate us to resort to
generative approaches.

3. Method
3.1. Revisit Generative Paradigm for Recommendation

Next-item prediction is one of the most popular genera-
tive paradigms, which predicts the next item in a sequence
based on preceding inputs, and is widely adopted in re-
cent generative recommendation models (Zhai et al., 2024;
Rajput et al., 2023). Recently, VAR (Tian et al., 2024) re-
considered the “order” of images and proposed a next-scale
prediction paradigm. It designs generative frameworks that
align with inherent data characteristics, i.e., the “multi-scale,
coarse-to-fine nature” of images. As long as the data or-
der xsource ă xtarget is defined, a generative model can be
applied to generate xtarget upon xsource.

This inspired us to reconsider the “order” or the “inherent
data structure” in CTR prediction. The data used in CTR
prediction is the multi-field categorical data (Zhang et al.,
2016; Pan et al., 2018), with categorical features from the
user, item, and context sides. Even though there are hierar-
chies between some features, for example, the item ID
belongs to a fine-grained category ID, and the
latter belongs to a coarse-grained category ID,
there is no global partial order between all features.

However, the most essential characteristic of multi-field
categorical data is the co-occurrence of features (Rendle,
2010; Koren et al., 2009). Denote the active features of the
s-th sample (i.e., an explicit click or an implicit non-click)
as Xpsq “ txiu, the joint occurrence of each feature pair,
such as pxi, xjq : xi, xj P Xpsq denotes the collaborative
signal regarding users’ explicit or implicit feedbacks. Such
co-occurrence of features is the inherent “order”, or more
precisely, the inherent “structure” of data in CTR prediction.

3.2. The Feature-Generation Paradigm

To this end, we propose treating one side of the co-
occurrence features as the Source and the other side as the
Target. Specifically, given all feature pairs tpxi, xjq|@pi, jqu

and their corresponding embedding tpvi,vjq|@pi, jqu, we
define xsource and xtarget as :

xsource “ tvi | i P t1, 2, . . . , Nuu, (4)
xtarget “ tvj | j P t1, 2, . . . , Nuu, (5)

where N is the number of features, and vi and vj is the
embedding vector of feature i and j.

Given xsource and xtarget, we employ an Encoder
fencoder : V Ñ Z to transform xsource into a hidden space
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Figure 2. The feature generation framework builds an en-
coder based on all features as the xsource, generates an output
embedding, and utilizes it to predict all features simultane-
ously as the xtarget. For multi-layer generation, generated
representations in each layer will serve as the xsource and
xtarget in the next layer generation. Specifically, the encoder
is implemented as a field-wise single-layer non-linear MLP,
while the decoder is implemented with feature interaction
functions in previous CTR models.

Z to build new representations for each feature. We then
employ a Decoder fdecoder : Z Ñ V to map the hidden space
Z back to the original input space V , to generate all features.
Taking feature i as an example, the encoder constructs a new
representation zi for i, and the decoder further maps zi to
generated representation f iÑj

decoderpfencoderpviqq, or viÑj for
abbreviation. Notably, each encoded feature representation
generates all features, i.e., txju, simultaneously, which fol-
lows an All Predict All framework. Implementations of the
Encoder and Decoder will be detailed in Section 3.3.

Finally, a classifier is employed to calculate the relevance
(e.g., dot or Hadmard product, or a simple concatenation)
between the output of the decoder, i.e., viÑj , and the target
representation vj , pooling these results across all feature
pairs tpi, jqu, and then get the final prediction score. The
choice of classifier largely depended on the architecture
of the original CTR model, and corresponds to the Layer
Pooling and Layer Aggregator in (Kang et al., 2025). For
example, in the generative FM, we just need to sum up
the inner products between viÑj and vj across all feature
pairs, i.e., ŷ “ σp

ř

i

ř

jxviÑj ,vjyq, where σ is the sig-
moid function. We ignore the linear and bias terms here for
simplicity.

The entire generative paradigm is formalized in Eq. 3 and
depicted in Fig. 2. In Eq. 3, we first employ fencoderi to trans-
form xsource (the set of all feature embeddings tvkuNk“1) to
obtain hidden representation of feature i. fdecoderiÑj

further
maps the hidden representation back to the original input
space. Then, a classifier fcls will be used to calculate the
final prediction score. Finally, the entire model will be
optimized with a supervised label ysup.

3.3. Architecture Design

Encoder The encoder transforms the input into a hidden
space, generating new representations for each feature. We
employ a simple field-wise single-layer non-linear MLP,
which takes all feature representations as input, then applies
a field-wise projection matrix WF piq and a ReLU activation
function. Specifically, the encoder for feature i is:

fencoderiprvsq “ σprtvkuNk“1sWF piqq, (6)

where σ is the ReLU activation function, rtvkuNk“1s P RNd

denotes the concatenation of all feature embeddings1, F piq
denotes the field of feature i, and WF piq P RNdˆd denotes
the projection matrix for the field of feature i. The Eq. 6 fol-
lows the principle of minimal sufficient complexity: ablation
of any constituent element results in significant performance
deterioration, whereas augmentations with more sophisti-
cated components fail to demonstrate performance gains.
Refer to Sec. 4.4 for details.

Decoder The decoder aims to transform the encoder out-
put in a hidden space Z back to the original space V . It may
consist of multiple stacked layers, with each layer conduct-
ing the space mapping through a projection matrix W :

fdecoderiÑj
pziq “ ziW . (7)

Notably, W with different properties correspond to vari-
ous feature interaction functions(Wang et al., 2021; Kang
et al., 2025). For example, a field-pair wise scale iden-
tity matrix W :“ diagpwF piqÑF pjq, . . . , wF piqÑF pjqq “

1For single-value fields, we can simply concatenate the em-
beddings of the active features from them; while for multi-value
fields, we need to first aggregate the multiple values for each field
through sum or mean pooling.

Lp ysup , fcls p fdecoderiÑj
p fencoderi p tvkuNk“1 qq, vj qq (3)

Supervised label xsource xtarget

E.g., fencoderiprvsq “ σprtvkuNk“1sWF piqq

E.g., fdecoderiÑj “ WF piqÑF pjq P RKˆK
Classifier
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wF piqÑF pjqI correspond to the field-weighted interac-
tion function used in FwFM (Pan et al., 2018) and
xDeepFM (Lian et al., 2018), while a field-pair wise full
matrix W :“ WF piqÑF pjq correspond to the one used in
FmFM (Sun et al., 2021) and DCN V2 (Wang et al., 2021).
Using FmFM as an example, it can be reformulated into our
feature generation paradigm as:

L

˜

y,
N
ÿ

i,j“1

`

σprtvkuNk“1sWF piqqWF piqÑF pjq

˘

d vj

¸

.

(8)

More formal generative reformulations of popular CTR
models can be found in Appendix A.

3.4. Loss

Existing generative approaches for recommendation usually
employ self-supervised losses (Kang & McAuley, 2018;
Zhai et al., 2024). For example, next-item prediction treats
the next item as an unsupervised label and adopts a cross-
entropy loss to evaluate the generation quality. However,
in our feature generation paradigm, we need to be careful
when we try to employ such a self-supervised loss. For
example, if we follow the next-item prediction, and use
a similar “another feature prediction” loss, that is, utilize
the encoder to predict whether the another feature is true
or not, then it would lead to label leakage since the true

“another feature” is already in the input. Instead, employing
a supervised loss in our paradigm would force the encoder to
learn the collaborative information about the input regarding
the supervised label ysup.

3.5. Discussion

Representation Learning Our core contribution is to em-
ploy an Encoder network to build a new representation for
each feature, thereby overcoming the limitation of original
ID embeddings (Guo et al., 2024). Many existing works also
pay attention to constructing new representations. Guo et al.
(2024) proposed to build several independent embeddings
tv

pmq

i u for each feature i by constructing multiple indepen-
dent embedding tables, and such multi-embedding paradigm
can be further attributed back to FFM (Juan et al., 2016).
Rajput et al. (2023) proposed to first map the LLM em-
bedding of each feature into a hidden space through an RQ-
VAE, and then quantize the hidden representation to discrete
Semantic IDs. We study the quality of these newly built em-
beddings by the dimensional collapse analysis (Sec. 4.3.1)
and redundancy-reduction analysis (Sec. 4.3.2).

Relationship with Gating Mechanism Our encoder can
be seen as a generalization to existing works (Huang et al.,

2019; Mao et al., 2023; Chang et al., 2023), which treat it as
a gating mechanism to generate attentive weights. For exam-
ple, Fibinet (Huang et al., 2019) introduced a SENET mecha-
nism, which also resembles our encoder, to “pay more atten-
tion to the feature importance”. Inspired by LHUC (Swieto-
janski et al., 2016), PEPNet (Chang et al., 2023) proposed
a Gate Neural Unit to “personalize network parameters”,
which takes the domain-side features as inputs, conducts
nonlinear activation, and then interacts with the results with
the embeddings of the backbone models. Mao et al. (2023)
employed a context-aware feature aging layer for feature
selection. Our work offers an alternative representation
learning interpretation of these methods.

4. Experiments
In this section, we aim to address these research questions:

• RQ1: To what extent can the paradigm shift improve
existing discriminative feature interaction models?

• RQ2: Can the generative paradigm mitigate the inher-
ent drawbacks of raw ID embeddings in discriminative
paradigms, specifically in terms of embedding dimen-
sional collapse and information redundancy reduction?

• RQ3: Is the current paradigm design optimal for feature
generation? What will happen if we use different xsource,
Encoder, or xtarget?

4.1. Setup

Datasets & Evaluation protocols. In this work, we have
conducted experiments based on two widely adopted large-
scale datasets, namely Criteo (cri, 2014) and Avazu (ava,
2014). Dataset statistics are summarized in Appendix B.1.
As for evaluation, we evaluate the recommendation perfor-
mance with AUC and Logloss.

Baselines. To verify versatility of our method, we in-
tegrate it with various representative models, including
explicit feature interaction models FM (Rendle, 2010),
FmFM (Sun et al., 2021), CrossNetv2 (Wang et al., 2021),
and DNN-based models DeepFM (Guo et al., 2017),
IPNN (Qu et al., 2016), xDeepFM (Lian et al., 2018), DCN
V2 (Wang et al., 2021). All experiments are based on a pop-
ular library FuxiCTR (Zhu et al., 2020; 2022). More details
can be found in Appendix B.2. Besides, the computational
complexity are provided in Sec. B.4.

4.2. Recommendation performance comparison between
discriminative and generative paradigms (RQ1)

Offline results. We apply the feature generation frame-
work with various recommendation models, with results
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Table 1. Recommendation performance of models with the DIScriminative (DIS) and GENrative (GEN) paradigm. We conduct a
two-tailed T-test to calculate the statistical significance, with results presented in a form of mean(variance). Bolded values refer to the
best performance, and * means the corresponding p-values are less than 0.05.

Model Criteo Avazu
AUCÒ LoglossÓ AUCÒ LoglossÓ

E
xplicit

FM DIS 0.80236(9e-05) 0.44889(7e-05) 0.78877(1e-04) 0.37529(4e-05)
GEN 0.81108(1e-04)* 0.44077(1e-04)* 0.79260(1e-04)* 0.37279(6e-05)*

FmFM DIS 0.80552(3e-04) 0.44626(3e-04) 0.78990(2e-04) 0.37519(7e-04)
GEN 0.80992(7e-04)* 0.44258(8e-04)* 0.79266(9e-05)* 0.37287(2e-04)*

CrossNet V2 DIS 0.81312(1e-04) 0.43918(2e-04) 0.79106(1e-04) 0.37319(2e-04)
GEN 0.81540(4e-05)* 0.43661(5e-05)* 0.79301(2e-04)* 0.37200(5e-05)*

D
N

N
-based

DeepFM DIS 0.81380(8e-05) 0.43804(6e-05) 0.79285(1e-04) 0.37224(1e-04)
GEN 0.81396(6e-05)* 0.43788(5e-05)* 0.79333(7e-05)* 0.37181(1e-04)*

xDeepFM DIS 0.81365(1e-04) 0.43819(1e-04) 0.79222(1e-04) 0.37246(5e-05)
GEN 0.81421(7e-05)* 0.43775(9e-05)* 0.79429(1e-04)* 0.37123(7e-05)*

IPNN DIS 0.81341(5e-05) 0.43850(2e-05) 0.79348(3e-04) 0.37159(1e-04)
GEN 0.81415(8e-05)* 0.43776(1e-04)* 0.79451(8e-05)* 0.37105(1e-04)*

DCN V2 DIS 0.81387(6e-05) 0.43826(4e-05) 0.79282(2e-04) 0.37222(1e-04)
GEN 0.81472(6e-05)* 0.43713(5e-05)* 0.79342(5e-05)* 0.37180(5e-05)*

presented in Tab.4. Overall, the proposed method ex-
hibits promising effectiveness and achieves consistent per-
formance lift across different models, achieving an average
of 0.272% AUC lift and 0.435% Logloss reduction. Usually,
a 0.1% AUC (gAUC) lift is regarded as a huge improvement
in recommendation systems (Zhu et al., 2022).

Specifically, the generative paradigm on explicit feature in-
teraction models can bring an average of 0.428% AUC lift
and 0.689% Logloss reduction. Notably, DCN V2 incorpo-
rates a DNN based on CrossNet, enhancing its modeling
capability. The discriminative DCN V2 surpasses the dis-
criminative CrossNet by 0.157% lift in AUC and 0.235%
in Logloss reduction. Surprisingly, when CrossNet is refor-
mulated within our generative paradigm, it can even outper-
form the discriminative DCNv2 by 0.106% lift in AUC and
0.089% reduction in Logloss, verifying the promising poten-
tial of generative paradigms. For DNN-based models, the
improvement is less pronounced. Nevertheless, even with
complex DNN-based models, the paradigm shift still brings
significant enhancements, achieving an average improve-
ment of 0.116% in AUC and 0.181% in Logloss reduction.

Moreover, our generative paradigm can narrow the per-
formance gap caused by different model architectures.
For example, the strongest discriminative model (DCNv2)
surpasses the weakest (FM) by 1.151% AUC on Criteo,
whereas the gap between their generative counterparts
shrinks to 0.364%. In detail, Appendix B.3 compares the

coefficient of variation for each paradigm, and Fig. 6 shows
that the results of the generative paradigm are markedly
smaller, corroborating its ability to reduce the gap between
different models. These findings further underscore the
importance of the paradigm shift.

In summary, our framework consistently improves the per-
formance of various existing feature interaction models un-
der the original discriminative paradigm and markedly nar-
rows inter-architectural performance gaps.

Online A/B Testing. We deployed the proposed genera-
tive paradigm in one of the world’s largest advertising plat-
forms. The production model employs Heterogeneous Ex-
perts with Multi-Embedding architecture (Guo et al., 2024;
Su et al., 2024; Pan et al., 2024). We switch the IPNN expert
in the production model into a generative paradigm, which
models the interactions between more than five hundred
user-, ad-, and context-side features. During the one-week
20% A/B testing, demonstrated promising results, achiev-
ing 2.68% GMV lift and 2.46% CTR lift on several vital
scenarios, including Moments pCTR, Content and Platform
pCTR, and DSP pCTR. These improvements were statisti-
cally significant according to t-tests. The proposed feature
generation framework has been successfully deployed as the
production model in the above-mentioned scenarios, leading
to a revenue lift by hundreds of millions of dollars per year.
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(c) CrossNet
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(d) DCN V2

Figure 3. Normalized singular value spectrum of embeddings used to interact with raw ID embeddings. It is the concatenation of raw ID
embeddings for the discriminative paradigm, while the embedding immediately constructed by the encoder for the generative paradigm.

4.3. How does the generative paradigm work? (RQ2)

4.3.1. GENERATIVE PARADIGM MITIGATES
EMBEDDING DIMENSIONAL COLLAPSE

Dimensional collapse evaluation protocols. Dimen-
sional collapse means that the embeddings only span a
low-dimensional subspace of the available representation
space (Jing et al., 2021; Guo et al., 2024). With a slight
abuse of notation, we will detail how to measure the di-
mensional collapse issue by singular value decomposition.
Specifically, we evaluate the dimensional collapse issue at
the sample level. We begin by obtaining the sample em-
bedding matrix Z P RBˆd using the validation dataset,
where B denotes the batch size and d the dimension size
(Notably, this batch-wise setting will greatly enhance the
analysis efficiency, and we have verified the robustness
of this setting in Appendix B.5). The covariance matrix
is then derived as C “ 1

B

řB
i“1pzi ´ z̄qpzi ´ z̄qT , with

z̄ “ 1
B

řB
i“1 zi. Subsequently, we determine the singular

values S “ diagpσkq of C via singular value decomposition
(SVD) and normalize them by the maximum singular value:
S1 “ diag

´

σk

maxpσkq

¯

. Finally, we present these normalized
singular values in descending order, as shown in Fig. 3.

Evaluated embeddings. We focus on the direct impact of
the feature generation framework on the embedding space.
Specifically, we analyze the embedding used to interact with
raw ID embeddings. In the discriminative paradigm, it is
the concatenation of raw ID embeddings, formally defined
as rtvkuNk“1s. In the generative paradigm, it is the concate-
nation of feature embedding immediately constructed by
the Encoder, i.e., rtzkuNk“1s. We study this embedding to
investigate the direct influence of the generative paradigm.

Generative paradigm mitigates dimensional collapse.
For brevity, we illustrate the singular value spectrum of the
embedding space for four representative models in Fig. 3.
Visualization of all models can be found in Appendix C.1.
In each sub-figure, the spectrum exhibits a rapid decay. Tak-
ing Fig. 3d as an example, the singular values of DCN V2
on Criteo remain high up to index 250, with values around

1 ˆ 10´5. However, they drop dramatically to 1 ˆ 10´15 at
index 280, a reduction of 1010 times. This indicates an ex-
treme imbalance among dimensions, i.e., only a minority of
dimensions dominate the embedding space. After index 280,
the singular values remain around 1 ˆ 10´15, essentially
zero. These singular values account for approximately 30%
of the total singular values, implying that 30% of the dimen-
sions in the embedding carry no meaningful information,
which is clearly unfeasible.

These phenomena are significantly mitigated in the gener-
ative one. With the exception of FM, the singular value
spectra of the other methods do not exhibit the abrupt de-
cay mentioned earlier. Instead, they decline at a relatively
slower rate, indicating a more balanced embedding space.
Even for simple models like FM, our generative paradigm
can increase the number of meaningful dimensions by 25%.
We attribute this improvement to the integration of all fea-
ture fields when constructing embeddings using the feature
generation framework. We conclude the following result:

Result 2. The generative paradigm substantially miti-
gates the issue of embedding dimensional collapse.

4.3.2. REDUNDANCY REDUCTION VIA GENERATIVE
FEATURE LEARNING

Information redundancy evaluation protocols. Accord-
ing to the information redundancy reduction principle (Bar-
low et al., 1961; Zbontar et al., 2021), the two interacted
embeddings are expected to exhibit low correlation. To
quantify this, we employ the Pearson Correlation Coeffi-
cient between each dimension of the two interacted embed-
dings, defined as ρX,Y “

CovpX,Y q

sXsY
. For the discriminative

paradigm, X and Y are the two interacted embeddings,
while X and Y are the transformed xsource and xtarget embed-
dings for the generative paradigm. sX and sY denote their
respective standard deviations.

Negative connection between redundancy metric and
recommendation performance. We have visualized the
correlation matrix of FM, DeepFM, DCN V2 in Fig. 4. More
visualizations are provided in Appendix C.3. In Fig. 4a,
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(a) FM (DIS) (b) DeepFM (DIS) (c) DCN V2 (DIS) (d) DCN V2 (GEN)

Figure 4. Pearson correlation matrix between two interacted embeddings. (a)Ñ(b)Ñ(c) means more complex models, which also exhibits
a trend of redundancy reduction. This reveals the importance of information redundancy reduction when designing CTR models. In (d),
we can find the generative DCN V2 almost produces a zero correlation matrix, perfectly aligning with the redundancy reduction principle.

we have derived two major observations: (1) Intra-field
correlation. It forms some obvious diagonal blocks, while
each block corresponds to a feature field. This means the
information within a feature field is highly correlated, i.e.,
redundant information. (2) Inter-field correlation. The index
32 - 160 forms a big diagonal block, which is exactly the
correlation between field with index 3 - 10. This means
these feature fields are also highly correlated, violating the
redundancy reduction principle. These observations may
explain the inferior performance of FM.

Then we analyze by comparing different models. DeepFM
builds a parallel DNN upon FM, which greatly decreases
inter-field correlation and increases recommendation per-
formance. DCN V2 further incorporates a more advanced
explicit feature interaction module based on DeepFM. In
Fig. 4c, the diagonal blocks representing intra-field correla-
tion are almost reduced, which explains the recommendation
performance lift. All these results reveal a negative connec-
tion between the redundancy metric and recommendation
performance, which can guide model designing.

Generative paradigm reduces information redundancy.
Despite the transformations applied to raw ID embeddings
in DCN V2, we still observe correlations in Fig. 4c. In con-
trast, the correlation matrix is nearly a zero matrix in Fig. 4d,
indicating that the two vectors are highly de-correlated and
thus adhere to the redundancy reduction principle. This
demonstrates our framework’s ability to reduce information
redundancy effectively. We conclude the following result:

Result 3. The feature generation framework produces
embeddings highly de-correlated with raw ID embed-
dings, adhering to the redundancy reduction principle.

4.4. Ablation on the feature generation framework
design (RQ3)

For simplicity, all ablation studies are based on DCN V2.

Ablation on the xsource design. As stated in Discussion
1 of discriminative paradigms, one of their major limita-
tions is the direct interactions between raw ID embeddings,
especially those of low-cardinality fields. To tackle this
issue, we propose to utilize all field embeddings as xsource
to build new representations for all fields. For comparison,
we will investigate the following configurations to reveal
the significance of our design: (a) using only each field’s
embedding as xsource for all fields; (b) using all field embed-
dings as xsource for 10 fields with the highest cardinality; and
(c) using all field embeddings as xsource for 10 fields with
the lowest cardinality. Results are presented in Fig. 5a.

We can observe that using all field embeddings as xsource
outperforms other settings, revealing the necessity of con-
structing embeddings with all features. Additionally, the
results of only constructing low-cardinality fields with all
features are significantly better than the high-cardinality
counterpart, which corroborates our previous assertion that
low-cardinality fields suffer more from severe information
insufficiency. We conclude the following result:

Result 4. Treating all feature fields as xsource is effective
for feature generation. In particular, low-cardinality
field embeddings suffer from more severe issues than
high-cardinality field ones, underscoring the impor-
tance of constructing new embeddings for these fields.

Ablation on the Encoder design. The adopted Encoder
is a field-wise one-layer non-linear MLP. To further inves-
tigate its properties, we first construct the following model
variants: (b.1) using a field-shared MLP, (b.2) removing
non-linear activations, and (b.3) stacking one more layer. In
Fig. 5b, simplifying the Encoder with either (b.1) or (b.2)
leads to significant performance degradation. The former
underscores the importance of constructing distinct embed-
dings for different fields, which aligns with our intuition.
The latter highlights the necessity of modeling non-linear
relationships among features, which also contributes sig-
nificantly to alleviating the dimensional collapse issue, as
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Figure 5. Ablation study on the feature generation framework design using DCN V2 on Avazu.

verified in Appendix C.4. On the other hand, increasing
the complexity of Encoder with (b.3) even greatly degrades
recommendation performance, AUC decreases from 0.7935
to 0.7929, which may be caused by over-fitting.

Next, we investigate whether other generative models are
feasible: (b.4) self-attention networks. In Fig. 5b, we ob-
serve that both (b.4) outperform the original discriminative
paradigm but underperform the generative paradigm with
the MLP-based encoder. This confirms the effectiveness
of the generative paradigm and further demonstrates that
our encoder is a simple yet effective design for constructing
meaningful embeddings. We conclude the following result:

Result 5. The field-wise non-linear one-layer MLP is a
simple yet effective Encoder. Common modifications,
including simplification or increased complexity, lead
to inferior recommendation performance.

Ablation on the xtarget design. In our paradigm, we gener-
ate all features simultaneously. We compare different imple-
mentations of xtarget: (c.1) “predict-random-selected”: gen-
erating only randomly selected feature fields; (c.2) “masked
feature modeling”: randomly masking some fields in xsource
with a learnable mask vector and predicting them as xtarget,
akin to masked image modeling (He et al., 2022); (c.3)
“field-aware masked feature modeling”: similar to (c.2) but
using field-specific mask vectors; (c.4) “hard masked feature
modeling”: similar to (c.2) but with zero vectors as mask.
Formal definitions are detailed in Appendix B.6.

The results are depicted in Fig. 5c. In the figure, all
paradigms outperform the discriminative approach except
(c.2), which we attribute to the superior feature distribution
modeling ability of generative paradigms. For (c.2), the
semantic gap between different feature fields renders using
a single mask vector for all fields inherently impractical.
Therefore, adopting (c.3) with a field-aware mask signifi-
cantly improves performance. Counterintuitively, a fixed
zero vector outperforms learnable mask vectors. We hy-
pothesize this discrepancy stems from differences between
unsupervised and supervised generative paradigms. Using a
learnable mask vector with supervised signals may impede
feature distribution learning. Our “Predict All” paradigm

outperforms all others, demonstrating its superiority.

5. Related Works
Feature-interaction-based recommender systems. De-
signing improved feature interaction models has consistently
represented a significant area of research within the field of
recommender systems (Zhang et al., 2019; Cheng & Xue,
2021). A key focus in the advancement of modern recom-
mendation systems is the development of more sophisticated
feature interaction modules, including first-order (Richard-
son et al., 2007), second-order (Rendle, 2010; Pan et al.,
2018; Sun et al., 2021), and high-order interactions (Lian
et al., 2018; Wang et al., 2021; Li et al., 2024a). With the
rise of deep learning, Deep Neural Networks (DNNs) with
non-linear activation functions have been integrated into
recommendation systems to capture implicit high-order fea-
ture interactions (Cheng et al., 2016; Guo et al., 2017; He &
Chua, 2017; Lian et al., 2018; Wang et al., 2021). In addition
to incorporating non-linearity in DNNs, several studies have
explored the introduction of non-linearity in embeddings
through gating mechanisms, such as FiBiNET (Huang et al.,
2019), FinalMLP (Mao et al., 2023), and PEPNet (Chang
et al., 2023). Orthogonal to these works, we propose a
novel Supervised Feature Generation framework for CTR
models, shifting from a discriminative “feature interaction”
paradigm to a generative “feature generation” paradigm.

6. Conclusion
In conclusion, this work introduced a novel Supervised
Feature Generation framework that shifts CTR modeling
from discriminative feature interaction to generative feature
generation. The framework’s versatility was demonstrated
through reformulating various existing feature interaction
models into generative ones, ranging from explicit inter-
action models to complex DNN-based models. It could
produce feature embeddings with reduced collapse and re-
dundancy compared to raw ID embeddings.
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A. Formal reformulation of existing feature interaction models
In Tab. 2, we provide the formal definition of how to reformulate existing discriminative models into generative paradigms.
Notably, we only present the ”feature interaction” or ”feature generation” part in each paradigm for simplicity.

Table 2. Feature interaction models in discriminative & generative paradigm

Model Discriminative Generative

FM
řN

i“1

řN
j“i`1 vj d vi

řN
i“1

řN
j“i`1 σprvs ¨ WF pjqq d vi

FmFM
řN

i“1

řN
j“i`1 vj d rvi ¨ MF piqÑF pjqs

řN
i“1

řN
j“i`1 σprvs ¨ WF pjqq d rvi ¨ MF piqÑF pjqs

CrossNet V2
řL

l“1

řN
i,j“1 v0

j d pvl
i ¨ M l

F piqÑF pjq
q

řL
l“1

řN
i,j“1 σprvsl ¨ W l

F pjq
q d pvl

i ¨ M l
F piqÑF pjq

q

DeepFM
řN

i“1

řN
j“i`1 vj d vi ` DNNprvsq

řN
i“1

řN
j“i`1 σprvs ¨ WF pjqq d vi ` DNNprvsq

xDeepFM
řL

l“1

řN
i,j“1 Convl

p v0
j d vl

iq ` DNNprvsq
řL

l“1

řN
i,j“1 Convlp σprvsl ¨ W l

F pjq
q d vl

iq ` DNNprvsq

IPNN DNNprrvs,
řN

i“1

řN
j“i`1 vj d visq DNNprrvs,

řN
i“1

řN
j“i`1 σprvs ¨ WF pjqq d visq

DCN V2
řL

l“1

řN
i,j“1 v0

j d pvl
i ¨ M l

F piqÑF pjq
q ` DNNprvsq

řL
l“1

řN
i,j“1 σprvsl ¨ W l

F pjq
q d pvl

i ¨ M l
F piqÑF pjq

q ` DNNprvsq

B. Detailed experimental configuration
B.1. Dataset statistics

We adopt the Criteo x1 and Avazu x4 datasets provided by FuxiCTR (Zhu et al., 2020; 2022), whose statistics are summarized
in Tab. 3.

B.2. Implementation details of baseline methods

We first introduce common settings for all models: (1) For Criteo dataset, the embedding size is set to 10, batch size is set to
4,096, and learning rate is set to 1e-3. (2) For Avazu dataset, the embedding size is set to 16, batch size is set to 10,000, and
learning rate is set to 1e-3. All experiments will be early stopped when results on validation dataset decrease for consecutive
two training epochs.

Then we list the detailed setting of different baseline models. Notably, we do not tune these hyper-parameters when fitting
these models into the proposed generative paradigm:

• FM: embedding regularization coefficient is set to 5.0e-06 for Criteo and 1.0e-06 for Avazu.

• FmFM: parameter regularization coefficients are set to 1.0e-06 for the both datasets; we adopt matrixed field embedding
transform type (Sun et al., 2021) for both datasets.

• CrossNet V2: embedding regularization coefficient is set to 1.0e-05 and 0 for Criteo and Avazu, respectively; number
of cross layers is set to 3, 5 for Criteo and Avazu.

• DeepFM: embedding regularization coefficient is set to 1.0e-05 and 0 for Criteo and Avazu, respectively; a parallel
DNN with size [400, 400, 400] and [2000, 2000, 2000, 2000] are used for Criteo and Avazu, respectively.

Table 3. The number of user-item interactions of the adopted two datasets.

Train Valid Test

Criteo 33M 8M 4M
Avazu 32M 4M 4M
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• xDeepFM: embedding regularization coefficient is set to 1.0e-05 and 0 for Criteo and Avazu, respectively; CIN hidden
units are set to [16, 16] and [276] for Criteo and Avazu, respectively; DNN size is set to [400, 400, 400] and [500, 500,
500] for Criteo and Avazu, respectively.

• IPNN: embedding regularization coefficient is set to 1.0e-05 and 1.0e-09 for Criteo and Avazu, respectively; DNN size
is set to [400, 400, 400] and [1000, 1000, 1000] for Criteo and Avazu, respectively.

• DCN V2: based on the setting of CrossNet V2, a parallel DNN with size [500, 500, 500] and [2000, 2000, 2000, 2000]
are used for Criteo and Avazu, respectively.

All experiments can fit into a GPU with 14GB memories.

B.3. Variation coefficients comparison between discriminative and generative paradigms

In Fig. 6, we have depicted the variation coefficients of the discriminative (DIS) and generative (GEN) paradigm concerning
different datasets and recommendation performance metrics.
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Figure 6. Variation coefficients comparison between discriminative and generative paradigms.

B.4. Computational complexity analysis

Assuming the original model in the discriminative paradigm has complexity OpAq, the primary computational overhead
when transitioning to a generative paradigm arises from the encoder. The encoder is implemented as a field-wise non-linear
MLP, formally defined as:

f i
encoderprvsq “ σprvsWF piqq, (9)

where rvs P RNK denotes the concatenation of all feature embeddings, and WF piq P RNKˆK represents a field-wise weight
matrix. Consequently, the total encoder complexity becomes OpBLN2d2q, where B is the batch size, L denotes the number
of encoder layers, N the number of feature fields, and d the embedding dimension. This computational complexity aligns
with mainstream discriminative feature interaction models (e.g., DCN V2), indicating comparable efficiency. Furthermore,
as demonstrated in the source ablation study (Sec. 4.4), the complexity can be reduced to OpBLN 12d2q by using all field
embeddings as source only for fields with the lowest cardinality, achieving this optimization with moderate performance
trade-offs.

Result 7. The extra computational burden introduced by reformulating existing discriminative feature interaction
paradigms to the generative feature generation paradigm is marginal.

B.5. Robustness analysis of the batch-wise setting in Sec. 4.3.1.

In Sec. 4.3.1, we have conducted embedding analyses in dimensional collapse with a batch-wise setting, which greatly
accelerates the analysis process compared with that based on the full validation dataset. But this batch-wise setting may
introduce randomness to the analysis results, so we further provided the analysis of different seeds in Fig. 7. In the figure,
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Table 4. Computational complexity when reformulating a discriminative feature interaction model into a generative feature generation
model.The proposed generative paradigm achieves significant recommendation performance improvements, as detailed in Section 4.2,
while incurring only a marginal increase in computational overhead—averaging 3.14% more computation time and 1.45% additional GPU
memory consumption.

Model Criteo Avazu
Speed (time/epoch) GPU memory (MB) Speed (time/epoch) GPU memory (MB)

E
xplicit

FM DIS 8m40s 1600 3m08s 2554
GEN 8m58s 1605 3m13s 2626

FmFM DIS 9m38s 4846 3m48s 10148
GEN 9m45s 4892 3m57s 10180

CrossNetv2 DIS 5m01s 1050 1m43s 2100
GEN 5m09s 1096 1m57s 2190

D
N

N
-based

DeepFM DIS 8m23s 2090 4m36s 3622
GEN 8m33s 2122 4m44s 3676

xDeepFM DIS 8m15s 1906 2m43s 3268
GEN 8m24s 1908 2m45s 3322

IPNN DIS 6m37s 1544 3m06s 2592
GEN 6m41s 1558 3m14s 2614

DCNv2 DIS 5m31s 1238 5m44s 2982
GEN 5m58s 1282 6m01s 3070

the trend of embedding spectra is consistent across all seeds, demonstrating the robustness of our batch-wise analysis setting.
Specifically, on both Avazu and Criteo, the spectrum curves of discriminative paradigms exhibit an abrupt singular decay
from 1 ˆ 10´5 to 1 ˆ 10´15, a reduction of 1010times. This indicates a severe dimensional collapse issue. But in our
generative paradigm, the abrupt singular value decay has been greatly alleviated. This verifies that the generative paradigm
substantially mitigates the embedding dimensional collapse issue, forming a more balanced embedding space.

B.6. Formal definition of different target design

We provide a detailed formal definition of the different target designs mentioned in Sec. 4.4.

(c.1) ”Predict-random-selected”, which generates only randomly selected feature fields:

y “
ÿ

i

ÿ

jPFrandom

σprvs ¨ WF piqq d vj , (10)

where Frandom is a set of fields randomly sampled from all fields.

(c.2) ”Masked feature modeling”: randomly masking some fields in source with a learnable mask vector and predicting
them as target, akin to masked image modeling (He et al., 2022):

y “
ÿ

i

ÿ

jPpFunmaskYFmaskq

σprvsnot masked ¨ WF piqq d vj,mask (11)

where Funmask Y Fmask “ F , vj,mask “ mask if j in Fmask else vj .

(c.3) ”Field-aware masked feature modeling”: similar to (c.2) but using field-specific mask vectors:

y “
ÿ

i

ÿ

jPpFunmaskYFmaskq

σprvsnot masked ¨ WF piqq d vj,mask (12)

where Funmask Y Fmask “ F , vj,mask “ maskj if j in Fmask else vj .
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Figure 7. Normalized embedding spectrum visualization with batch-wise setting in different seeds. We can observe that the trend of
embedding spectra is consistent across all seeds, which demonstrates the robustness of our batch-wise analysis setting.

(c.4) ”Hard masked feature modeling”: similar to (c.2) but with zero vectors as mask:

y “
ÿ

i

ÿ

jPpFunmaskYFmaskq

σprvsnot masked ¨ WF piqq d vj,mask (13)

where Funmask Y Fmask “ F , vj,mask “ 0 if j in Fmask else vj .

C. Supplemental results
C.1. Normalized singular value spectrum visualization of all models

The normalized singular value spectrum of all models are illustrated in Fig. 8. Similar to results concluded in Sec. 4.3.1, the
feature generation framework substantially mitigates the embedding dimensional collapse issue, forming a more balanced
and meaningful embedding space.

C.2. Dimensional collapse analysis of embedding lookup tables

In Sec. 4.3.1, we focus on analyzing the spectrum of embeddings used to interact with the original embeddings, since we are
mainly motivated to address the dimensional collapse issue of these embeddings. On the other hand, we can also follow Guo
et al. (2024) to visualize the spectrum of embedding lookup tables, i.e., Vi P RDiˆK defined in Sec. 2.2, where i denotes
one of the feature field, Di is the field’s cardinality, and K is the embedding dimension size of the embedding table. The
results have been depicted in Fig. 9. In the figure, the spectrum of high-cardinality embedding lookup tables in the generative
paradigm is higher than the discriminative one. This indicates the embedding space will be less dominated by some specific
dimensions, which will greatly enhance the robustness of these embeddings. However, for those low-cardinality embeddings,
the improvement remains limited. This is fundamentally because these field embeddings are inherently constrained by
nature. For instance, the number of meaningful singular values of a matrix sized 4 ˆ K cannot exceed four.

C.3. Pearson correlation matrix of all models

Similar to Sec. 4.3.2, we provide Pearson correlation matrix of all models on the Avazu dataset in Fig. 13. The conclusion
remains the same as in Sec. 4.3.2: (1)There is a strong connection between redundancy reduction metric and recommendation
performance: The most simple model FM yields the most matrix with intra-field and inter-field correlations, while the
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(b) FmFM
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(c) CrossNet
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(d) DeepFM
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(e) xDeepFM
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(f) IPNN
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(g) DCNv2

Figure 8. Normalized singular value spectrum of embeddings used to interact with raw ID embeddings. It is the concatenation of raw ID
embeddings for the discriminative paradigm, while the embedding immediately constructed by the encoder for the generative paradigm.

correlation matrix of other models are reduced to some extent, depending on whether DNN (DeepFM, IPNN) or more
advanced interaction modules (CrossNet V2, xDeepFM, DCN V2). (2)The feature generation framework produces
embeddings highly de-correlated with raw ID embeddings: We can observe that the correlation matrices of all models
become a nearly zero matrix within the generative paradigm.

C.4. Comparison of different non-linear activation functions

We employ a field-wise non-linear single-layer MLP as our encoder, with the non-linear activation function being one
of its most critical components. A natural question arises regarding the role of the non-linear activation function and the
criteria for selecting an appropriate one. We have empirically assessed the effects of various activation functions on the
encoder, with the findings illustrated in Fig. 10. As depicted in Fig. 10a, the absence of a non-linear activation function in the
encoder results in a notable decline in performance, underscoring the importance of incorporating non-linearity within the
encoder. Conversely, all non-linear activation functions enhance recommendation performance relative to the discriminative
paradigm, with the rank of recommendation performance being Sigmoid ă Tanh ă ReLU ă SiLU. Furthermore, we present
the normalized singular value spectrum of embeddings in Fig. 10b. Initially, the spectrum of the linear activation is highly
collapsed, potentially accounting for its inferior recommendation performance. Subsequently, it is observable that the
spectra of all non-linear activation functions exhibit greater smoothness than that of the discriminative one. This suggests
that non-linear activation functions play a pivotal role in alleviating the embedding dimensional collapse issue. Additionally,
the spectrum adheres to the rank Sigmoid ă Tanh ă ReLU ă SiLU, mirroring the ranking of recommendation performance.
This observation further implies a strong correlation between the mitigation of embedding dimensional collapse and the
enhancement of recommendation performance.

Result 8. The non-linear activation function is an important component of the field-wise MLP encoder, crucial for
embedding dimensional collapse mitigation. Besides, many non-linear activation functions, including Sigmoid, ReLU,
Tanh, and SiLU, can get consistent performance lift while mitigating the dimensional collapse.

C.5. Comparison with feature refinement and graph-based models

Some other methods also target enhancing the embeddings of CTR models with field graphs (Sun et al., 2022; Li et al.,
2019; Wang et al., 2022c) or feature enhancement modules (Wang et al., 2023; 2022b;a). Our paradigm differs from these
works in the sense that we aim to tackle the dimensional collapse issue due to the direct interaction of ID embeddings. We
have empirically compared our paradigm with several representative feature refinement models, with results depicted in
Tab. 5. We observed that some models outperform the discriminative DCNv2 models, but still underperform our generative
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(a) Field 24 (Di “ 4) (b) Field 19 (Di “ 6) (c) Field 14 (Di “ 6) (d) Field 13 (Di “ 7)

(e) Field 7 (Di “ 6, 545) (f) Field 12 (Di “ 7, 259) (g) Field 10 (Di “ 820, 509) (h) Field 11 (Di “ 2, 903, 322)

Figure 9. Normalized singular value spectrum of embeddings lookup tables Vi P RDiˆK , where i denotes one of the feature field, Di is
the field’s cardinality, and K is the embedding dimension size of the embedding table.

paradigm. Besides, we also studied the singular spectrum in Fig. 11, and we find that the feature enhancement methods can
mitigate the dimensional collapse on the tail singular values compared to the vanilla discriminative DCN V2. However, our
generative paradigm leads to more robust values across all dimensions.

Table 5. Comparison with other methods that also target enhancing embeddings of CTR models. We have compared with one classic
field-graph method Fi-GNN (Li et al., 2019), and two feature enhancement methods GFRL (Wang et al., 2022a) and FRNet (Wang et al.,
2022b). Notably, we also visualize the normalized spectrum of these methods in Fig.

Model Criteo Avazu
AUCÒ LoglossÓ AUCÒ LoglossÓ

FiGNN 0.81352 0.43845 0.79156 0.37343

DCNv2

DIS 0.81387 0.43826 0.79282 0.37222
GFRL 0.81427 0.043773 0.79296 0.37194
FRNet 0.81431 0.43789 0.79313 0.37191
GEN 0.81472 0.43713 0.79342 0.37180

C.6. T-SNE visualization comparison

In Fig. 12, we have visualized discriminative and generative embeddings with different cardinalities with T-SNE (Van der
Maaten & Hinton, 2008). Fig. 12d and Fig. 12h depict embeddings of the highest cardinality field in the dataset, where we
observe that the generative embeddings retain the separability as the discriminative paradigm. However, the improvement
brought by the generative paradigm is substantial for embeddings of fields with less cardinality. In Fig. 12a, Fig. 12b, and
Fig. 12c, the embeddings coalesce in the latent space, even for the field with the second-highest cardinality (Fig. 12c and
Fig. 12g). After the generative reformulation, all three embeddings can form a more uniform distribution in the latent space,
as illustrated respectively in Fig. 12e, Fig. 12f, and Fig. 12g. These results demonstrate that our generative paradigm can
greatly improve the separability of embeddings, especially for embeddings with fewer cardinalities. This also supplements
the aforementioned dimensional collapse phenomena analysis from a field-wise perspective.
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Different model variants
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Figure 10. We have implemented the encoder with different non-linear activation functions, including ReLU, Sigmoid, Tanh, and SiLU,
and providing the corresponding results based on DCN V2: (a) The recommendation performance with different non-linear activation
functions. (b) The normalized singular value spectrum of the embedding space with different non-linear activation functions.

Figure 11. Normalized embedding spectrum of the feature enhancement methods. We can find that these feature enhancement methods
can mitigate the dimensional collapse on the tail singular values compared to the vanilla discriminative DCN V2. However, our generative
model leads to more robust values on all dimensions.
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(a) Feature 1 (Discriminative) (b) Feature 2 (Discriminative) (c) Feature 3 (Discriminative) (d) Feature 4 (Discriminative)

(e) Feature 1 (Generative) (f) Feature 2 (Generative) (g) Feature 3 (Generative) (h) Feature 4 (Generative)

Figure 12. T-SNE visualisation of discriminative and generative embeddings of four features, numbered from 1 to 4. The cardinality of
these features is 4, 4,051, 820,509, and 2,903,322, respectively. (a-d) illustrate embeddings of the four features within the discriminative
paradigm; (e-h) illustrate embeddings of the four features within the generative paradigm.
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(a) FM (DIS) (b) FM (GEN) (c) FmFM (DIS) (d) FmFM (GEN)

(e) CrossNet V2 (DIS) (f) CrossNet V2 (GEN) (g) DeepFM (DIS) (h) DeepFM (GEN)

(i) xDeepFM (DIS) (j) xDeepFM (GEN) (k) IPNN (DIS) (l) IPNN (GEN)

(m) DCN V2 (DIS) (n) DCN V2 (GEN)

Figure 13. Pearson correlation matrix between two interacted embeddings. For all discriminative feature interaction models, the correlation
matrix becomes a nearly zero matrix after reformulating them into a generative paradigm, which perfectly aligns with the redundancy
reduction principle.
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