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A Reproductive Kernel Hilbert Space and Kernel Mean Matching

A.1 RKHS

Let the tuple (F , κ,Z) denote a reproductive kernel Hilbert space (RKHS) F on the sample space
Z with kernel κ. The RKHS is a Hilbert space of functions f : Z → R, on which the inner product ⟨·, ·⟩F
satisfies the reproducing property:

⟨f, κ(z, ·)⟩F = f(z), ∀f ∈ F , z ∈ Z.

That said, the evaluation of function f on a single point z can be viewed as an inner product between
function f and the evaluation operator κ(z, ·). We define the feature map ϕ : Z → F by ϕ[z] := κ(z, ·).
Throughout this part, we will use the square bracket [·] to denote mappings to functional spaces. Based
on the reproducing property, the feature map satisfies ⟨ϕ[z], ϕ[z′]⟩F = κ(z, z′) for all z, z′ ∈ Z.

The kernel mean embedding of a probability distribution Pz [41], denoted by µF [·], is a mapping
from the space of all the probability distributions on Z to F . The mapping is given by

µF [Pz] := EZ∼Pz [ϕ[Z]].

The kernel κ is called characteristic if the kernel mean embedding is injective: for Pz ̸= P ′
z, it holds

that µF [Pz] ̸= µF [P ′
z]. And following [19], the operator µF [·] is bijective if κ is a universal kernel in

the sense of [35]. The core idea of the kernel mean matching is estimate Pz with a P̂z satisfying
µF [Pz] ≈ µF [P̂z].

A.2 Cross-covariance Operator

Consider the joint random variable (Z,C) ∈ Z×C. Define two RKHS’s by (F , κ,Z) and (G, η, C) respec-
tively. Let P denote the joint distribution of (Z,C) and Pz,Pc their marginal distributions respectively,
then the cross-covariance operator AZ,C (with the dependency on P omitted) is defined as [1]

AZ,C := E(Z,C)∼P [ϕ[Z]⊗ ψ[C]]− EZ∼Pz
[ϕ[Z]]⊗ EC∼Pc

[ψ[C]].

In the following, we will omit the explicit distribution of the random variable in the subscript of E and
replace expressions like E(Z,C)∼P with EZ,C . The operator AZ,C [·] can be viewed as a mapping from G
to F in the following way: by noting that ⟨ψ[C], g⟩G = g(C) for any g ∈ G, we can define AZ,C [g] as

AZ,C [g] := EZ,C [g(C) · ϕ[Z]]− EC [g(C)] · EZ [ϕ[Z]].

For any functions f ∈ F and g ∈ G, the cross-covariace operator has the following property:

⟨f,AZ,C [g]⟩F = EZ,C [f(Z) · g(C)]− EZ [f(Z)] · EC [g(C)],

which exactly corresponds to the covariance between f(Z) and g(C). The conditional embedding
operator UZ|C is a mapping from G to F such that, for any c ∈ C, the follow equation holds:

UZ|C [ψ(c)] = µF [Pz|c]. (13)

In other words, UZ|C maps the feature map ψ(c) to the kernel mean embedding of the conditional
distribution Z|C = c. Following [34], if the cross-covariance operator AC,C is invertible, by defining

UZ|C := AZ,CA−1
C,C

the equation (13) is satisfied. To see this, it is sufficient to show that ⟨f,AZ,CA−1
C,C [ψ[c]]⟩F =

⟨f, µF [Pz|c]⟩F for all f ∈ F , and this holds following the derivations below,

⟨f, µF [Pz|c]⟩F = Ez|c[f(Z)|c]
= ⟨Ez|c[f(Z)|C], ψ[c]⟩G
= ⟨AC,C [Ez|c[f(Z)|C]],A−1

C,C [ψ[c]]⟩G
= ⟨AC,Z [f ],A−1

C,C [ψ[c]]⟩G
= ⟨f,AZ,CA−1

C,C [ψ[c]]⟩F .

Equation (13) directly implies the following property, which serves as the key step of the KMM procedure
in the density ratio estimation method of [41]:

UZ|C [µG [Pc]] = µF [Pz].
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A.3 Empirical Estimations

In this section, we briefly outline how to estimate the quantities above using i.i.d. samples (zi, ci)
N
i=1

drawn from P. By Mercer’s theorem, the feature map ϕ[z] can be represented as a column vector in a
(possibly infinite-dimensional) Hilbert space. We use ϕ[z]ψ[c]⊤ to denote the outer product ϕ[z]⊗ ψ[c].
Define the matrices Φ := (ϕ[z1], . . . , ϕ[zN ]) and Ψ := (ψ[c1], . . . , ψ[cN ]). Further define K,H ∈ RN×N

with Ki,j = κ(zi, zj) and Hi,j = η(ci, cj). The empirical estimators are indicated by adding a hat symbol
·̂ to the original quantities, with their explicit expressions shown below:

µF [Pz] ≈ µ̂F :=
1

N

N∑
i=1

ϕ(zi),

µG [Pc] ≈ µ̂G :=
1

N

N∑
i=1

ψ(ci),

AZ,C ≈ ÂZ,C :=
1

N
(Φ− µ̂F1

⊤)(Ψ− µ̂G1
⊤)⊤

=
1

N
Φ

(
I − 1

N
11⊤

)
Ψ⊤,

A−1
C,C ≈ Â−1

C,C := N ·ΨH−1

(
I − 1

N
11⊤

)−1

H−1Ψ⊤,

UZ|C ≈ ÛZ|C := ΦH−1Ψ⊤.

B Illustrative Example

Consider the illustrative example:

min
x

VaRQ
α (c · x|z) s.t. − 1 ≤ x ≤ 1, (14)

where α ∈ (0.5, 1) and c = z + ϵ. In the training distribution P, the z and ϵ are independent and
respectively follow N (0, σ2

1) and N (0, σ2
2). We list the explicit expressions for the following probability

distributions:
Pz = N (0, σ2

1), Pc = N (0, σ2
1 + σ2

2),

Pc|z = N (z, σ2
2), Pz|c = N

(
σ2
1 · c

σ2
1 + σ2

2

,
σ2
1σ

2
2

σ2
1 + σ2

2

)
,

(c, z) ∼ P = N
((

0
0

)
,

(
σ2
1 + σ2

2 σ2
1

σ2
1 σ2

1

))
.

We describe the explicit form of Q under the following two distribution shift scenarios:

• Covariate shift: let s represent the extent of covariate shift. The distribution of z is shifted from
Pz = N (0, σ2

1) to Qz = N (s, σ2
1), while the conditional distribution of c|z remains to be N (z, σ2

2).

The joint distribution of (c, z) is shifted to Q = N
((

s
s

)
,

(
σ2
1 + σ2

2 σ2
1

σ2
1 σ2

1

))
.

• Label shift: let s represent the extent of label shift. The distribution of c is shifted from
Pc = N (0, σ2

1 + σ2
2) to Qc = N (s, σ2

1 + σ2
2), while the conditional distribution z|c remains to be

N
(

σ2
1 ·c

σ2
1+σ2

2
,

σ2
1σ

2
2

σ2
1+σ2

2

)
. It follows that the distribution of z in Q is shifted to N

(
σ2
1 ·s

σ2
1+σ2

2
, σ2

1

)
, and

the distribution of ϵ is shifted to N
(

σ2
2 ·s

σ2
1+σ2

2
, σ2

2

)
. The joint distribution of (c, z) is shifted to

Q = N

((
s

σ2
1 ·s

σ2
1+σ2

2

)
,

(
σ2
1 + σ2

2 σ2
1

σ2
1 σ2

1

))
.

The solution to (14) admits a simple form under the idealized setting, as given in (9) and restated below:

x∗ =


1, VaRQ

α (c|z) ≤ 0,

− 1, VaRQ
1−α(c|z) ≥ 0,

0, otherwise,

(15)
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The probability of yielding an over-conservative solution is

P(x∗ = 0) = Pz∼Qz
(VaR1−α(c|z) ≤ 0 ≤ VaRα(c|z)). (16)

Specifically, in the covariate shift setting, the probability equals

P(x∗ = 0) = Φ

(
σ2
σ1

Φ−1(α)− s

σ1

)
− Φ

(
−σ2
σ1

Φ−1(α)− s

σ1

)
,

and in the label shift setting, the probability also equals

P(x∗ = 0) = Φ

(
σ2
σ1

Φ−1(α)− s

σ1

)
− Φ

(
−σ2
σ1

Φ−1(α)− s

σ1

)
.

Worst-case Approach Alternative to our density ratio-based approach is the worst-case approach.
Construct the worst-case ball:

B(R) :=
{
N
(
r,

(
σ2
1 + σ2

2 σ2
1

σ2
1 σ2

1

))
: ∥r∥ ≤ R

}
.

Following the discussions in the main context, the objective of the worst-case approach is given by (11)
and restated below:

min
x

max
Q∈B(R)

VaRQ
α (c · x|z) s.t. − 1 ≤ x ≤ 1.

The probability of yielding an over-conservative solution is

P(x∗ = 0) = Pz∼Qz
(VaR1−α(c|z) ≤ 0 ≤ VaRα(c|z)).

In the covariate shift setting, we have R =
√
2s in order that B(R) covers Q. In the label shift setting,

R =
√

1 +
σ4
1

(σ2
1+σ2

2)
2 · s. The explicit form of the conservative probability is

P(x∗ = 0) = Φ

(
σ2
σ1

Φ−1(α) +

√
2 · s
σ1

− s

σ1

)

− Φ

(
−σ2
σ1

Φ−1(α)−
√
2 · s
σ1

− s

σ1

)

for the covariate shift setting and

P(x∗ = 0) = Φ

(
σ2
σ1

Φ−1(α) +

√
1

σ2
1

+
σ2
1

(σ2
1 + σ2

2)
2
· s− σ1 · s

σ2
1 + σ2

2

)

− Φ

(
−σ2
σ1

Φ−1(α)−

√
1

σ2
1

+
σ2
1

(σ2
1 + σ2

2)
2
· s− σ1 · s

σ2
1 + σ2

2

)

for the label shift setting.

Figure 1 is plotted by setting σ1 = σ2 = 1.

C More Experiments and Experiment Details

We consider several implementations of the three components: f̂ , ĥ and ŵ for our Algorithm 1. For the
expectation predictor f̂ which predicts E[c|z] with z, we consider using Lasso regression, random forest,
and neural network. On different training datasets, the regularization parameter λ of the Lasso regression
is selected as the optimal parameter in range [0, 4]; for the random forest searches the best number of
trees in range [100, 1000] and the best depth in range [10, 80]; the neural network has a single middle layer
with 16 neurons, with the learning rate set to 0.01 and the training epochs set to 500. For the quantile
predictor ĥ, we implement linear quantile regression, gradient boosting regression, and neural network,
all trained by minimizing the quantile loss. For the density estimator, we mainly consider estimators for
the covariate shift setting, including the trivial estimator, the kernel mean matching method introduced
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in [16], and the probabilistic classification method introduced in [5]. The computational complexity of
the kernel mean matching method scales at least quadratically with the data size, so we only sample 200
data from the training distribution and 200 data from the test distribution to run the algorithm.

The performance metrics we consider include the coverage rate and the α-quantile of the objective c⊤x.
Specifically, we evaluate the marginal and conditional coverage rates of the uncertainty sets generated
from different implementations of our algorithm, and how different they are from the target coverage
rate. The α-quantile of the objective, denoted by VaRQ

α (c
⊤x|z), is evaluated by generating 100 samples

of c from the underlying conditional distribution Qc|z and then calculate the empirical α-quantile of c⊤x.

C.1 Additional Experiments on the Simple Example

This section presents additional experimental results for the simple optimization problem discussed in
Section 5. In Figure 4, we experiment with different choices of f̂ and ĥ, and different covariate dimensions
d. Specifically, the implementations of f̂ and ĥ follow the setup of Figure 2, and the d’s we consider
include d = 2, 4, 8. Both the mean squared error and the quantile loss are evaluated on the test dataset,
with the c values known. The results indicate that the algorithm tends to perform better, as reflected
by a lower conservative probability, when the prediction models f̂ and ĥ have lower prediction errors.
Further, for both f̂ and ĥ, neural networks (NN) generally achieve strong predictive performance.

Figure 4: The quality of the predictors affects the performance of Algorithm 1. In the left figure, the
x-axis represents the mean squared error (MSE) of f̂ on the test dataset, while in the right figure, the
x-axis represents the quantile loss of ĥ. For both metrics, lower values indicate higher predictor quality.
The y-axis shows the probability of obtaining an over-conservative solution at x∗ = 0, where a lower
probability indicates better algorithm performance. Both figures illustrate that improved prediction
models enhance the performance of the algorithm.

C.2 Shortest Path Problem and Fractional Knapsack Problem

We test our algorithm on two practical LP settings. The risk level α is fixed to 0.8 and we consider the
covariate shift of the test distribution.

The shortest path problem seeks a path between two vertices in a weighted graph such that the total
accumulated cost along the path’s edges is minimized. Specifically, we consider the shortest path problem
on a 5× 5 grid with 25 nodes and 40 edges. The objective is to find the shortest path from the top-left
node to the bottom-right node. For i = 0, . . . , 4 and j = 0, . . . , 4, let (i, j) denote the node on the i-th
row and j-th column, with the top-left node located at the coordinate (0, 0) and the bottom-right node
at the coordinate (5, 5). The tuple ((i, j), (i′, j′))e denotes the edge between node (i, j) and (i′, j′). Let V
denote the set of all nodes and E denote all edges. For ((i, j), (i′, j′))e ∈ E, use c(i,j),(i′,j′) to represent the
cost of the edge ((i, j), (i′, j′))e (for the undirected graph that we consider, set c(i,j),(i′,j′) = c(i′,j′),(i,j)).
The decision variables are x(i,j),(i′,j′) for all ((i, j), (i′, j′))e ∈ E, where x(i,j),(i′,j′) = 1 denotes a directed
path segment from the node (i, j) to the node (i′, j′). The shortest path problem then has the following



Manuscript under review by AISTATS 2025

risk-sensitive LP formulation:

min
x

VaRα

 ∑
((i,j),(i′,j′))e∈E

c(i,j),(i′,j′) · x(i,j),(i′,j′)


s.t.

∑
(i′,j′):((i,j),(i′,j′))e∈E

(
x(i,j),(i′,j′) − x(i′,j′),(i,j)

)
=


1 (i, j) = (0, 0)

−1 (i, j) = (4, 4)

0 otherwise

(17)

Extending to the OOD robust formulation, we assume that the dynamic of the cost vector c ∈ R40 is
controlled by the covariate z ∈ Rd (we fix d = 10 in this experiment) through

Pc|z ∼

((
1√
d
Θz + 3

)5

+ 1

)
◦ ϵ,

where Θ ∈ R40×d is a 0-1 matrix with each entry generated independently from a Bernoulli(0.5) distri-
bution. The Θ matrix is fixed once it is generated. The ◦ symbol denotes an elementwise multiplication.
Each element of the random vector ϵ ∈ R40 is generated independently from Uniform( 34 ,

5
4 ). In the

training data, the covariate z is generated from Pz = N (0, Id), and in the test data z is generated from
Qz = N (1d, Id). The objective of the OOD formulation replaces the VaRα(·) part in (17) with VaRQ

α (·).

The fractional knapsack problem models the case where customers select items that maximize their
utility, under a budget constraint. We consider a simple setting with 20 items. The decision variables
x = (x1, . . . , x20) denote the fractions (in range [0, 1]) of items to purchase, c ∈ R20 denote the item
utilities, p ∈ R20 denote the price of items, and B > 0 the total budget. The fractional knapsack problem
has the following risk-sensitive LP formulation:

min
x

VaRα(−c⊤x)

s.t. p⊤x ≤ B

xi ∈ [0, 1], i = 1, . . . , 20.

(18)

The OOD robust formulation considers covariate z ∈ Rd (with d = 10) and assumes the conditional
distribution of c|z to be

Pc|z ∼ (Θz)2 ◦ ϵ,

where Θ ∈ R20×d is a 0-1 matrix with each entry generated independently from a Bernoulli(0.5) distribu-
tion. Each element of ϵ ∈ R20 is generated independently from Uniform( 45 ,

6
5 ). The training distribution

of the covariate z is Pz = N (0, Id) and the test distribution is Qz = N (1d, Id).

In Figure 5, we compare our algorithm against multiple benchmarks on the two LP settings above. As
there is no existing algorithm that handles covariate shift in the risk-sensitive setting, we just implement
the existing benchmark methods and evaluate them in the test environment. The “Ellipsoid” method
ignores the contextual information and calibrates the ellipsoid to achieve an empirical coverage rate of α
on the training samples. The “DCC” and “IDCC” algorithms are proposed in [9]. The “kNN” algorithm
is a conditional robust optimization method proposed in [29]. The “Ours-Trivial” and “Ours” both
implement our Algorithm 1 (with f̂ and ĥ being neural networks). “Ours-Trivial” sets a trivial density
ratio estimator ŵ ≡ 1, while “Ours” uses the probabilistic classification method (which is shown to enjoy
the best performance based on the previous experiments) to estimate ŵ. The result demonstrates that
our algorithm generally outperforms the rest benchmarks, and leveraging the density ratio information
further improves the performance on the test dataset.

D Proof of Theorems

D.1 Proof of Theorem 1

Let N := |D2| and define xi := (ci, zi) for i = 1, . . . , N . The final η term produced from Algorithm 1 is
a function of (x1, . . . , xN ), which we define below as the η̂(·) function

η̂(x1, . . . , xN ) := min

{
η ≥ 0 :

N∑
i=1

w(xi) · 1{|f̂(zi)− ci| ≤ η · ĥ(zi)} ≥ α ·
N∑
i=1

w(xi)

}
.
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Figure 5: The scaled VaR for the objective in the shortest path and fractional knapsack problems. The
x-axis lists the algorithms we test. The “Ellipsoid”, “kNN”, “DCC” and “IDCC” algorithms are introduced
in the experiment descriptions. “Ours-Trivial” implements our algorithm but uses a trivial density ratio
estimator ŵ ≡ 1. “Ours” implements our algorithm and uses the probabilistic classification method to
estimate ŵ. Amongst the benchmark algorithms, our proposed Algorithm 1 generally achieves the lowest
VaR.

For each xi, let η̃(xi) denote the minimum η such that [f̂(zi)− η · ĥ(zi), f̂(zi) + η · ĥ(zi)] covers ci. The
η̃(·) function is formally defined below

η̃(xi) := min
{
η ≥ 0 : |f̂(zi)− ci| ≤ η · ĥ(zi)

}
.

Under this new notation, the form of η̂(·) can be formulated as

η̂(x1, . . . , xN ) = min

{
η ≥ 0 :

N∑
i=1

w(xi) · 1{η ≥ η̃(xi)} ≥ α ·
N∑
i=1

w(xi)

}
.

Further, if the density ratio estimate in Algorithm 1 is perfect, then the event {cnew ∈ Uα(znew)} is
equivent to {η̃(xnew) ≤ η̂(x1, . . . , xN )}. We restate Theorem 1 below and provide a proof.
Theorem D.1. Under Assumption 1, suppose the density ratio estimate is perfect, i.e., ŵ(c, z) =
w(c, z) = q(c, z)/p(c, z), then the uncertainty set Uα(z) generated by Algorithm 1 satisfies the follow-
ing coverage guarantee, ∣∣∣P (η̃(xnew) ≤ η̂(x1, . . . , xN ))− α

∣∣∣ ≤ 1

N + 1
· w̄
w

where the probability on the left-hand-side is with respect to xnew ∼ Q and x1, . . . , xN ∼ P.

Proof. Since the distributions P and Q are continuous, almost surely the samples x1, . . . , xN , xnew are
mutually distinct. Let {·} denote an unordered set (e.g. {x1, . . . , xN} denotes an unordered set containing
distinct elements x1, . . . , xN ). Then the following equation holds:

P(η̃(xnew) ≤ η̂(x1, . . . , xN ))

=

∫
{a1,...,aN+1}

P
(
η̃(xnew) ≤ η̂(x1, . . . , xN )

∣∣∣∣ {x1, . . . , xn, xnew} = {a1, . . . , aN+1}
)

· P
(
{x1, . . . , xn, xnew} = {a1, . . . , aN+1}

)
.

(19)

The integration is over all possible sets of N + 1 distinct elements, denoted by {a1, . . . , aN+1}. The

remaining part of the proof uniformly bounds the P
(
η̃(xnew) ≤ η̂(x1, . . . , xN )

∣∣∣∣ {x1, . . . , xn, xnew} =

{a1, . . . , aN+1}
)

term for all sets {a1, . . . , aN+1}.
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Given a set {a1, . . . , aN+1}, let E denote the event that {x1, . . . , xn, xnew} = {a1, . . . , aN+1}, and

let Ei denote the event that xnew = ai and {x1, . . . , xN} = {a1, . . . , aN+1}\{ai}. The P
(
η̃(xnew) ≤

η̂(x1, . . . , xN )

∣∣∣∣ E) term can be decomposed by the following chain of equations:

P
(
η̃(xnew) ≤ η̂(x1, . . . , xN )

∣∣∣∣ E)
=

N+1∑
i=1

P(Ei | E) · P
(
η̃(xnew) ≤ η̂(x1, . . . , xN )

∣∣∣∣ Ei

)
(1)
=

N+1∑
i=1

P(Ei | E) · 1
{
η̃(xnew) ≤ η̂(x1, . . . , xN )

∣∣∣∣ Ei

}
(2)
=

N+1∑
i=1

w(ai)∑N+1
j=1 w(aj)

· 1
{
η̃(xnew) ≤ η̂(x1, . . . , xN )

∣∣∣∣ Ei

}
,

(20)

where (1) is from the fact that η̂(x1, . . . , xN ) is invariant to the permutation of (x1, . . . , xN ), and (2) is
by that

P(Ei) = N ! · q(ai) ·
∏
j ̸=i

p(aj)

= N ! · w(ai) ·
N+1∏
j=1

p(aj),

and P(E) =
∑N+1

i=1 P(Ei).

We now characterize the terms 1
{
η̃(xnew) ≤ η̂(x1, . . . , xN )

∣∣∣∣ Ei

}
. Without loss of generality, let η̃(a1) <

η̃(a2) · · · < η̃(aN+1), then

1

{
η̃(xnew) ≤ η̂(x1, . . . , xN )

∣∣∣∣ Ei

}
= 1

{
η̃(ai) ≤ η̂({a1, . . . , aN+1}\{ai})

}
= 1

{ i−1∑
j=1

w(aj) < α ·
∑
j ̸=i

w(aj)

}
.

(21)

The last line of (21) has the following bounds:

1

{ i∑
j=1

w(aj) < α ·
N+1∑
j=1

w(aj)

}
≤ 1

{ i−1∑
j=1

w(aj) < α ·
∑
j ̸=i

w(aj)

}
≤ 1

{ i−1∑
j=1

w(aj) < α ·
N+1∑
j=1

w(aj)

}
. (22)

Combining (20), (21) and (22), the P
(
η̃(xnew) ≤ η̂(x1, . . . , xN )

∣∣∣∣ {x1, . . . , xn, xnew} = {a1, . . . , aN+1}
)

term is uniformly bounded:

P
(
η̃(xnew) ≤ η̂(x1, . . . , xN )

∣∣∣∣ E)
≥

N+1∑
i=1

w(ai)∑N+1
j=1 w(aj)

· 1
{ i∑

j=1

w(aj) < α ·
N+1∑
j=1

w(aj)

}
≥ α− w̄∑N+1

j=1 w(aj)
≥ α− 1

N + 1
· w̄
w
.
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P
(
η̃(xnew) ≤ η̂(x1, . . . , xN )

∣∣∣∣ E)
≤

N+1∑
i=1

w(ai)∑N+1
j=1 w(aj)

· 1
{ i−1∑

j=1

w(aj) < α ·
N+1∑
j=1

w(aj)

}
≤ α+

w̄∑N+1
j=1 w(aj)

≤ α+
1

N + 1
· w̄
w
.

Plugging the bounds above into (19) finishes the proof.

D.2 Proof of Corollary 1

By defining the estimated test distribution Q̂ as a distribution with the following density function:

q̂(c, z) =
ŵ(c, z) · p(c, z)∫

(c,z)
ŵ(c, z) · p(c, z)dzdc

,

we could directly apply Theorem 1 to see that∣∣∣PQ̂ (cnew ∈ Uα(znew))− α
∣∣∣ ≤ 1

|D2|+ 1
· w̄
w
, (23)

where the probability PQ̂ is with respect to (cnew, znew) ∼ Q̂ and D2 ∼ P. From the definition of the
total variation distance, the following inequality holds:∣∣∣PQ̂ (cnew ∈ Uα(znew))− P (cnew ∈ Uα(znew))

∣∣∣ ≤ DTV(Q, Q̂), (24)

where P is with respect to (cnew, znew) ∼ Q and D2 ∼ P. Combining (23) and (24) gives the result of
Corollary 1, which we restate below:∣∣∣P (cnew ∈ Uα(znew))− α

∣∣∣ ≤ 1

|D2|+ 1
· w̄
w

+DTV(Q, Q̂).


